1 // Copyright 2010 Google Inc. All Rights Reserved. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 // 15 // A (forgetful) hash table to the data seen by the compressor, to 16 // help create backward references to previous data. 17 18 #ifndef BROTLI_ENC_HASH_H_ 19 #define BROTLI_ENC_HASH_H_ 20 21 #include <stddef.h> 22 #include <stdint.h> 23 #include <string.h> 24 #include <sys/types.h> 25 #include <algorithm> 26 #include <cstdlib> 27 #include <memory> 28 #include <string> 29 30 #include "./transform.h" 31 #include "./fast_log.h" 32 #include "./find_match_length.h" 33 #include "./port.h" 34 #include "./static_dict.h" 35 36 namespace brotli { 37 38 // kHashMul32 multiplier has these properties: 39 // * The multiplier must be odd. Otherwise we may lose the highest bit. 40 // * No long streaks of 1s or 0s. 41 // * There is no effort to ensure that it is a prime, the oddity is enough 42 // for this use. 43 // * The number has been tuned heuristically against compression benchmarks. 44 static const uint32_t kHashMul32 = 0x1e35a7bd; 45 46 template<int kShiftBits, int kMinLength> 47 inline uint32_t Hash(const uint8_t *data) { 48 if (kMinLength <= 3) { 49 // If kMinLength is 2 or 3, we hash the first 3 bytes of data. 50 uint32_t h = (BROTLI_UNALIGNED_LOAD32(data) & 0xffffff) * kHashMul32; 51 // The higher bits contain more mixture from the multiplication, 52 // so we take our results from there. 53 return h >> (32 - kShiftBits); 54 } else { 55 // If kMinLength is at least 4, we hash the first 4 bytes of data. 56 uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; 57 // The higher bits contain more mixture from the multiplication, 58 // so we take our results from there. 59 return h >> (32 - kShiftBits); 60 } 61 } 62 63 // Usually, we always choose the longest backward reference. This function 64 // allows for the exception of that rule. 65 // 66 // If we choose a backward reference that is further away, it will 67 // usually be coded with more bits. We approximate this by assuming 68 // log2(distance). If the distance can be expressed in terms of the 69 // last four distances, we use some heuristic constants to estimate 70 // the bits cost. For the first up to four literals we use the bit 71 // cost of the literals from the literal cost model, after that we 72 // use the average bit cost of the cost model. 73 // 74 // This function is used to sometimes discard a longer backward reference 75 // when it is not much longer and the bit cost for encoding it is more 76 // than the saved literals. 77 inline double BackwardReferenceScore(double average_cost, 78 double start_cost4, 79 double start_cost3, 80 double start_cost2, 81 int copy_length, 82 int backward_reference_offset) { 83 double retval = 0; 84 switch (copy_length) { 85 case 2: retval = start_cost2; break; 86 case 3: retval = start_cost3; break; 87 default: retval = start_cost4 + (copy_length - 4) * average_cost; break; 88 } 89 retval -= 1.20 * Log2Floor(backward_reference_offset); 90 return retval; 91 } 92 93 inline double BackwardReferenceScoreUsingLastDistance(double average_cost, 94 double start_cost4, 95 double start_cost3, 96 double start_cost2, 97 int copy_length, 98 int distance_short_code) { 99 double retval = 0; 100 switch (copy_length) { 101 case 2: retval = start_cost2; break; 102 case 3: retval = start_cost3; break; 103 default: retval = start_cost4 + (copy_length - 4) * average_cost; break; 104 } 105 static const double kDistanceShortCodeBitCost[16] = { 106 -0.6, 0.95, 1.17, 1.27, 107 0.93, 0.93, 0.96, 0.96, 0.99, 0.99, 108 1.05, 1.05, 1.15, 1.15, 1.25, 1.25 109 }; 110 retval -= kDistanceShortCodeBitCost[distance_short_code]; 111 return retval; 112 } 113 114 // A (forgetful) hash table to the data seen by the compressor, to 115 // help create backward references to previous data. 116 // 117 // This is a hash map of fixed size (kBucketSize) to a ring buffer of 118 // fixed size (kBlockSize). The ring buffer contains the last kBlockSize 119 // index positions of the given hash key in the compressed data. 120 template <int kBucketBits, int kBlockBits, int kMinLength> 121 class HashLongestMatch { 122 public: 123 HashLongestMatch() 124 : last_distance1_(4), 125 last_distance2_(11), 126 last_distance3_(15), 127 last_distance4_(16), 128 insert_length_(0), 129 average_cost_(5.4), 130 static_dict_(NULL) { 131 Reset(); 132 } 133 void Reset() { 134 std::fill(&num_[0], &num_[sizeof(num_) / sizeof(num_[0])], 0); 135 } 136 void SetStaticDictionary(const StaticDictionary *dict) { 137 static_dict_ = dict; 138 } 139 bool HasStaticDictionary() const { 140 return static_dict_ != NULL; 141 } 142 143 // Look at 3 bytes at data. 144 // Compute a hash from these, and store the value of ix at that position. 145 inline void Store(const uint8_t *data, const int ix) { 146 const uint32_t key = Hash<kBucketBits, kMinLength>(data); 147 const int minor_ix = num_[key] & kBlockMask; 148 buckets_[key][minor_ix] = ix; 149 ++num_[key]; 150 } 151 152 // Store hashes for a range of data. 153 void StoreHashes(const uint8_t *data, size_t len, int startix, int mask) { 154 for (int p = 0; p < len; ++p) { 155 Store(&data[p & mask], startix + p); 156 } 157 } 158 159 // Find a longest backward match of &data[cur_ix] up to the length of 160 // max_length. 161 // 162 // Does not look for matches longer than max_length. 163 // Does not look for matches further away than max_backward. 164 // Writes the best found match length into best_len_out. 165 // Writes the index (&data[index]) offset from the start of the best match 166 // into best_distance_out. 167 // Write the score of the best match into best_score_out. 168 bool FindLongestMatch(const uint8_t * __restrict data, 169 const float * __restrict literal_cost, 170 const size_t ring_buffer_mask, 171 const uint32_t cur_ix, 172 uint32_t max_length, 173 const uint32_t max_backward, 174 size_t * __restrict best_len_out, 175 size_t * __restrict best_len_code_out, 176 size_t * __restrict best_distance_out, 177 double * __restrict best_score_out, 178 bool * __restrict in_dictionary) { 179 *in_dictionary = true; 180 *best_len_code_out = 0; 181 const size_t cur_ix_masked = cur_ix & ring_buffer_mask; 182 const double start_cost4 = literal_cost == NULL ? 20 : 183 literal_cost[cur_ix_masked] + 184 literal_cost[(cur_ix + 1) & ring_buffer_mask] + 185 literal_cost[(cur_ix + 2) & ring_buffer_mask] + 186 literal_cost[(cur_ix + 3) & ring_buffer_mask]; 187 const double start_cost3 = literal_cost == NULL ? 15 : 188 literal_cost[cur_ix_masked] + 189 literal_cost[(cur_ix + 1) & ring_buffer_mask] + 190 literal_cost[(cur_ix + 2) & ring_buffer_mask] + 0.3; 191 double start_cost2 = literal_cost == NULL ? 10 : 192 literal_cost[cur_ix_masked] + 193 literal_cost[(cur_ix + 1) & ring_buffer_mask] + 1.2; 194 bool match_found = false; 195 // Don't accept a short copy from far away. 196 double best_score = 8.115; 197 if (insert_length_ < 4) { 198 double cost_diff[4] = { 0.10, 0.04, 0.02, 0.01 }; 199 best_score += cost_diff[insert_length_]; 200 } 201 size_t best_len = *best_len_out; 202 *best_len_out = 0; 203 size_t best_ix = 1; 204 // Try last distance first. 205 for (int i = 0; i < 16; ++i) { 206 size_t prev_ix = cur_ix; 207 switch(i) { 208 case 0: prev_ix -= last_distance1_; break; 209 case 1: prev_ix -= last_distance2_; break; 210 case 2: prev_ix -= last_distance3_; break; 211 case 3: prev_ix -= last_distance4_; break; 212 213 case 4: prev_ix -= last_distance1_ - 1; break; 214 case 5: prev_ix -= last_distance1_ + 1; break; 215 case 6: prev_ix -= last_distance1_ - 2; break; 216 case 7: prev_ix -= last_distance1_ + 2; break; 217 case 8: prev_ix -= last_distance1_ - 3; break; 218 case 9: prev_ix -= last_distance1_ + 3; break; 219 220 case 10: prev_ix -= last_distance2_ - 1; break; 221 case 11: prev_ix -= last_distance2_ + 1; break; 222 case 12: prev_ix -= last_distance2_ - 2; break; 223 case 13: prev_ix -= last_distance2_ + 2; break; 224 case 14: prev_ix -= last_distance2_ - 3; break; 225 case 15: prev_ix -= last_distance2_ + 3; break; 226 } 227 if (prev_ix >= cur_ix) { 228 continue; 229 } 230 const size_t backward = cur_ix - prev_ix; 231 if (PREDICT_FALSE(backward > max_backward)) { 232 continue; 233 } 234 prev_ix &= ring_buffer_mask; 235 if (cur_ix_masked + best_len > ring_buffer_mask || 236 prev_ix + best_len > ring_buffer_mask || 237 data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { 238 continue; 239 } 240 const size_t len = 241 FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], 242 max_length); 243 if (len >= std::max(kMinLength, 3) || 244 (kMinLength == 2 && len == 2 && i < 2)) { 245 // Comparing for >= 2 does not change the semantics, but just saves for 246 // a few unnecessary binary logarithms in backward reference score, 247 // since we are not interested in such short matches. 248 const double score = BackwardReferenceScoreUsingLastDistance( 249 average_cost_, 250 start_cost4, 251 start_cost3, 252 start_cost2, 253 len, i); 254 if (best_score < score) { 255 best_score = score; 256 best_len = len; 257 best_ix = backward; 258 *best_len_out = best_len; 259 *best_len_code_out = best_len; 260 *best_distance_out = best_ix; 261 *best_score_out = best_score; 262 match_found = true; 263 *in_dictionary = backward > max_backward; 264 } 265 } 266 } 267 if (kMinLength == 2) { 268 int stop = int(cur_ix) - 64; 269 if (stop < 0) { stop = 0; } 270 start_cost2 -= 1.0; 271 for (int i = cur_ix - 1; i > stop; --i) { 272 size_t prev_ix = i; 273 const size_t backward = cur_ix - prev_ix; 274 if (PREDICT_FALSE(backward > max_backward)) { 275 break; 276 } 277 prev_ix &= ring_buffer_mask; 278 if (data[cur_ix_masked] != data[prev_ix] || 279 data[cur_ix_masked + 1] != data[prev_ix + 1]) { 280 continue; 281 } 282 int len = 2; 283 const double score = start_cost2 - 2.3 * Log2Floor(backward); 284 285 if (best_score < score) { 286 best_score = score; 287 best_len = len; 288 best_ix = backward; 289 *best_len_out = best_len; 290 *best_len_code_out = best_len; 291 *best_distance_out = best_ix; 292 match_found = true; 293 } 294 } 295 } 296 const uint32_t key = Hash<kBucketBits, kMinLength>(&data[cur_ix_masked]); 297 const int * __restrict const bucket = &buckets_[key][0]; 298 const int down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0; 299 for (int i = num_[key] - 1; i >= down; --i) { 300 int prev_ix = bucket[i & kBlockMask]; 301 if (prev_ix >= 0) { 302 const size_t backward = cur_ix - prev_ix; 303 if (PREDICT_FALSE(backward > max_backward)) { 304 break; 305 } 306 prev_ix &= ring_buffer_mask; 307 if (cur_ix_masked + best_len > ring_buffer_mask || 308 prev_ix + best_len > ring_buffer_mask || 309 data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { 310 continue; 311 } 312 const size_t len = 313 FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], 314 max_length); 315 if (len >= std::max(kMinLength, 3)) { 316 // Comparing for >= 3 does not change the semantics, but just saves 317 // for a few unnecessary binary logarithms in backward reference 318 // score, since we are not interested in such short matches. 319 const double score = BackwardReferenceScore(average_cost_, 320 start_cost4, 321 start_cost3, 322 start_cost2, 323 len, backward); 324 if (best_score < score) { 325 best_score = score; 326 best_len = len; 327 best_ix = backward; 328 *best_len_out = best_len; 329 *best_len_code_out = best_len; 330 *best_distance_out = best_ix; 331 *best_score_out = best_score; 332 match_found = true; 333 *in_dictionary = false; 334 } 335 } 336 } 337 } 338 if (static_dict_ != NULL) { 339 // We decide based on first 4 bytes how many bytes to test for. 340 int prefix = BROTLI_UNALIGNED_LOAD32(&data[cur_ix_masked]); 341 int maxlen = static_dict_->GetLength(prefix); 342 for (int len = std::min<size_t>(maxlen, max_length); 343 len > best_len && len >= 4; --len) { 344 std::string snippet((const char *)&data[cur_ix_masked], len); 345 int copy_len_code; 346 int word_id; 347 if (static_dict_->Get(snippet, ©_len_code, &word_id)) { 348 const size_t backward = max_backward + word_id + 1; 349 const double score = BackwardReferenceScore(average_cost_, 350 start_cost4, 351 start_cost3, 352 start_cost2, 353 len, backward); 354 if (best_score < score) { 355 best_score = score; 356 best_len = len; 357 best_ix = backward; 358 *best_len_out = best_len; 359 *best_len_code_out = copy_len_code; 360 *best_distance_out = best_ix; 361 *best_score_out = best_score; 362 match_found = true; 363 *in_dictionary = true; 364 } 365 } 366 } 367 } 368 return match_found; 369 } 370 371 void set_last_distance(int v) { 372 if (last_distance1_ != v) { 373 last_distance4_ = last_distance3_; 374 last_distance3_ = last_distance2_; 375 last_distance2_ = last_distance1_; 376 last_distance1_ = v; 377 } 378 } 379 380 int last_distance() const { return last_distance1_; } 381 382 void set_insert_length(int v) { insert_length_ = v; } 383 384 void set_average_cost(double v) { average_cost_ = v; } 385 386 private: 387 // Number of hash buckets. 388 static const uint32_t kBucketSize = 1 << kBucketBits; 389 390 // Only kBlockSize newest backward references are kept, 391 // and the older are forgotten. 392 static const uint32_t kBlockSize = 1 << kBlockBits; 393 394 // Mask for accessing entries in a block (in a ringbuffer manner). 395 static const uint32_t kBlockMask = (1 << kBlockBits) - 1; 396 397 // Number of entries in a particular bucket. 398 uint16_t num_[kBucketSize]; 399 400 // Buckets containing kBlockSize of backward references. 401 int buckets_[kBucketSize][kBlockSize]; 402 403 int last_distance1_; 404 int last_distance2_; 405 int last_distance3_; 406 int last_distance4_; 407 408 // Cost adjustment for how many literals we are planning to insert 409 // anyway. 410 int insert_length_; 411 412 double average_cost_; 413 414 const StaticDictionary *static_dict_; 415 }; 416 417 struct Hashers { 418 enum Type { 419 HASH_15_8_4 = 0, 420 HASH_15_8_2 = 1, 421 }; 422 423 void Init(Type type) { 424 switch (type) { 425 case HASH_15_8_4: 426 hash_15_8_4.reset(new HashLongestMatch<15, 8, 4>()); 427 break; 428 case HASH_15_8_2: 429 hash_15_8_2.reset(new HashLongestMatch<15, 8, 2>()); 430 break; 431 default: 432 break; 433 } 434 } 435 436 void SetStaticDictionary(const StaticDictionary *dict) { 437 if (hash_15_8_4.get() != NULL) hash_15_8_4->SetStaticDictionary(dict); 438 if (hash_15_8_2.get() != NULL) hash_15_8_2->SetStaticDictionary(dict); 439 } 440 441 std::unique_ptr<HashLongestMatch<15, 8, 4> > hash_15_8_4; 442 std::unique_ptr<HashLongestMatch<15, 8, 2> > hash_15_8_2; 443 }; 444 445 } // namespace brotli 446 447 #endif // BROTLI_ENC_HASH_H_ 448