1 /* 2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * Optimization module for tcpdump intermediate representation. 22 */ 23 #ifndef lint 24 static const char rcsid[] _U_ = 25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)"; 26 #endif 27 28 #ifdef HAVE_CONFIG_H 29 #include "config.h" 30 #endif 31 32 #ifdef WIN32 33 #include <pcap-stdinc.h> 34 #else /* WIN32 */ 35 #if HAVE_INTTYPES_H 36 #include <inttypes.h> 37 #elif HAVE_STDINT_H 38 #include <stdint.h> 39 #endif 40 #ifdef HAVE_SYS_BITYPES_H 41 #include <sys/bitypes.h> 42 #endif 43 #include <sys/types.h> 44 #endif /* WIN32 */ 45 46 #include <stdio.h> 47 #include <stdlib.h> 48 #include <memory.h> 49 #include <string.h> 50 51 #include <errno.h> 52 53 #include "pcap-int.h" 54 55 #include "gencode.h" 56 57 #ifdef HAVE_OS_PROTO_H 58 #include "os-proto.h" 59 #endif 60 61 #ifdef BDEBUG 62 extern int dflag; 63 #endif 64 65 #if defined(MSDOS) && !defined(__DJGPP__) 66 extern int _w32_ffs (int mask); 67 #define ffs _w32_ffs 68 #endif 69 70 #if defined(WIN32) && defined (_MSC_VER) 71 int ffs(int mask); 72 #endif 73 74 /* 75 * Represents a deleted instruction. 76 */ 77 #define NOP -1 78 79 /* 80 * Register numbers for use-def values. 81 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 82 * location. A_ATOM is the accumulator and X_ATOM is the index 83 * register. 84 */ 85 #define A_ATOM BPF_MEMWORDS 86 #define X_ATOM (BPF_MEMWORDS+1) 87 88 /* 89 * This define is used to represent *both* the accumulator and 90 * x register in use-def computations. 91 * Currently, the use-def code assumes only one definition per instruction. 92 */ 93 #define AX_ATOM N_ATOMS 94 95 /* 96 * A flag to indicate that further optimization is needed. 97 * Iterative passes are continued until a given pass yields no 98 * branch movement. 99 */ 100 static int done; 101 102 /* 103 * A block is marked if only if its mark equals the current mark. 104 * Rather than traverse the code array, marking each item, 'cur_mark' is 105 * incremented. This automatically makes each element unmarked. 106 */ 107 static int cur_mark; 108 #define isMarked(p) ((p)->mark == cur_mark) 109 #define unMarkAll() cur_mark += 1 110 #define Mark(p) ((p)->mark = cur_mark) 111 112 static void opt_init(struct block *); 113 static void opt_cleanup(void); 114 115 static void intern_blocks(struct block *); 116 117 static void find_inedges(struct block *); 118 #ifdef BDEBUG 119 static void opt_dump(struct block *); 120 #endif 121 122 static int n_blocks; 123 struct block **blocks; 124 static int n_edges; 125 struct edge **edges; 126 127 /* 128 * A bit vector set representation of the dominators. 129 * We round up the set size to the next power of two. 130 */ 131 static int nodewords; 132 static int edgewords; 133 struct block **levels; 134 bpf_u_int32 *space; 135 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 136 /* 137 * True if a is in uset {p} 138 */ 139 #define SET_MEMBER(p, a) \ 140 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) 141 142 /* 143 * Add 'a' to uset p. 144 */ 145 #define SET_INSERT(p, a) \ 146 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) 147 148 /* 149 * Delete 'a' from uset p. 150 */ 151 #define SET_DELETE(p, a) \ 152 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) 153 154 /* 155 * a := a intersect b 156 */ 157 #define SET_INTERSECT(a, b, n)\ 158 {\ 159 register bpf_u_int32 *_x = a, *_y = b;\ 160 register int _n = n;\ 161 while (--_n >= 0) *_x++ &= *_y++;\ 162 } 163 164 /* 165 * a := a - b 166 */ 167 #define SET_SUBTRACT(a, b, n)\ 168 {\ 169 register bpf_u_int32 *_x = a, *_y = b;\ 170 register int _n = n;\ 171 while (--_n >= 0) *_x++ &=~ *_y++;\ 172 } 173 174 /* 175 * a := a union b 176 */ 177 #define SET_UNION(a, b, n)\ 178 {\ 179 register bpf_u_int32 *_x = a, *_y = b;\ 180 register int _n = n;\ 181 while (--_n >= 0) *_x++ |= *_y++;\ 182 } 183 184 static uset all_dom_sets; 185 static uset all_closure_sets; 186 static uset all_edge_sets; 187 188 #ifndef MAX 189 #define MAX(a,b) ((a)>(b)?(a):(b)) 190 #endif 191 192 static void 193 find_levels_r(struct block *b) 194 { 195 int level; 196 197 if (isMarked(b)) 198 return; 199 200 Mark(b); 201 b->link = 0; 202 203 if (JT(b)) { 204 find_levels_r(JT(b)); 205 find_levels_r(JF(b)); 206 level = MAX(JT(b)->level, JF(b)->level) + 1; 207 } else 208 level = 0; 209 b->level = level; 210 b->link = levels[level]; 211 levels[level] = b; 212 } 213 214 /* 215 * Level graph. The levels go from 0 at the leaves to 216 * N_LEVELS at the root. The levels[] array points to the 217 * first node of the level list, whose elements are linked 218 * with the 'link' field of the struct block. 219 */ 220 static void 221 find_levels(struct block *root) 222 { 223 memset((char *)levels, 0, n_blocks * sizeof(*levels)); 224 unMarkAll(); 225 find_levels_r(root); 226 } 227 228 /* 229 * Find dominator relationships. 230 * Assumes graph has been leveled. 231 */ 232 static void 233 find_dom(struct block *root) 234 { 235 int i; 236 struct block *b; 237 bpf_u_int32 *x; 238 239 /* 240 * Initialize sets to contain all nodes. 241 */ 242 x = all_dom_sets; 243 i = n_blocks * nodewords; 244 while (--i >= 0) 245 *x++ = ~0; 246 /* Root starts off empty. */ 247 for (i = nodewords; --i >= 0;) 248 root->dom[i] = 0; 249 250 /* root->level is the highest level no found. */ 251 for (i = root->level; i >= 0; --i) { 252 for (b = levels[i]; b; b = b->link) { 253 SET_INSERT(b->dom, b->id); 254 if (JT(b) == 0) 255 continue; 256 SET_INTERSECT(JT(b)->dom, b->dom, nodewords); 257 SET_INTERSECT(JF(b)->dom, b->dom, nodewords); 258 } 259 } 260 } 261 262 static void 263 propedom(struct edge *ep) 264 { 265 SET_INSERT(ep->edom, ep->id); 266 if (ep->succ) { 267 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords); 268 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords); 269 } 270 } 271 272 /* 273 * Compute edge dominators. 274 * Assumes graph has been leveled and predecessors established. 275 */ 276 static void 277 find_edom(struct block *root) 278 { 279 int i; 280 uset x; 281 struct block *b; 282 283 x = all_edge_sets; 284 for (i = n_edges * edgewords; --i >= 0; ) 285 x[i] = ~0; 286 287 /* root->level is the highest level no found. */ 288 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0)); 289 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0)); 290 for (i = root->level; i >= 0; --i) { 291 for (b = levels[i]; b != 0; b = b->link) { 292 propedom(&b->et); 293 propedom(&b->ef); 294 } 295 } 296 } 297 298 /* 299 * Find the backwards transitive closure of the flow graph. These sets 300 * are backwards in the sense that we find the set of nodes that reach 301 * a given node, not the set of nodes that can be reached by a node. 302 * 303 * Assumes graph has been leveled. 304 */ 305 static void 306 find_closure(struct block *root) 307 { 308 int i; 309 struct block *b; 310 311 /* 312 * Initialize sets to contain no nodes. 313 */ 314 memset((char *)all_closure_sets, 0, 315 n_blocks * nodewords * sizeof(*all_closure_sets)); 316 317 /* root->level is the highest level no found. */ 318 for (i = root->level; i >= 0; --i) { 319 for (b = levels[i]; b; b = b->link) { 320 SET_INSERT(b->closure, b->id); 321 if (JT(b) == 0) 322 continue; 323 SET_UNION(JT(b)->closure, b->closure, nodewords); 324 SET_UNION(JF(b)->closure, b->closure, nodewords); 325 } 326 } 327 } 328 329 /* 330 * Return the register number that is used by s. If A and X are both 331 * used, return AX_ATOM. If no register is used, return -1. 332 * 333 * The implementation should probably change to an array access. 334 */ 335 static int 336 atomuse(struct stmt *s) 337 { 338 register int c = s->code; 339 340 if (c == NOP) 341 return -1; 342 343 switch (BPF_CLASS(c)) { 344 345 case BPF_RET: 346 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 347 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 348 349 case BPF_LD: 350 case BPF_LDX: 351 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 352 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 353 354 case BPF_ST: 355 return A_ATOM; 356 357 case BPF_STX: 358 return X_ATOM; 359 360 case BPF_JMP: 361 case BPF_ALU: 362 if (BPF_SRC(c) == BPF_X) 363 return AX_ATOM; 364 return A_ATOM; 365 366 case BPF_MISC: 367 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 368 } 369 abort(); 370 /* NOTREACHED */ 371 } 372 373 /* 374 * Return the register number that is defined by 's'. We assume that 375 * a single stmt cannot define more than one register. If no register 376 * is defined, return -1. 377 * 378 * The implementation should probably change to an array access. 379 */ 380 static int 381 atomdef(struct stmt *s) 382 { 383 if (s->code == NOP) 384 return -1; 385 386 switch (BPF_CLASS(s->code)) { 387 388 case BPF_LD: 389 case BPF_ALU: 390 return A_ATOM; 391 392 case BPF_LDX: 393 return X_ATOM; 394 395 case BPF_ST: 396 case BPF_STX: 397 return s->k; 398 399 case BPF_MISC: 400 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 401 } 402 return -1; 403 } 404 405 /* 406 * Compute the sets of registers used, defined, and killed by 'b'. 407 * 408 * "Used" means that a statement in 'b' uses the register before any 409 * statement in 'b' defines it, i.e. it uses the value left in 410 * that register by a predecessor block of this block. 411 * "Defined" means that a statement in 'b' defines it. 412 * "Killed" means that a statement in 'b' defines it before any 413 * statement in 'b' uses it, i.e. it kills the value left in that 414 * register by a predecessor block of this block. 415 */ 416 static void 417 compute_local_ud(struct block *b) 418 { 419 struct slist *s; 420 atomset def = 0, use = 0, kill = 0; 421 int atom; 422 423 for (s = b->stmts; s; s = s->next) { 424 if (s->s.code == NOP) 425 continue; 426 atom = atomuse(&s->s); 427 if (atom >= 0) { 428 if (atom == AX_ATOM) { 429 if (!ATOMELEM(def, X_ATOM)) 430 use |= ATOMMASK(X_ATOM); 431 if (!ATOMELEM(def, A_ATOM)) 432 use |= ATOMMASK(A_ATOM); 433 } 434 else if (atom < N_ATOMS) { 435 if (!ATOMELEM(def, atom)) 436 use |= ATOMMASK(atom); 437 } 438 else 439 abort(); 440 } 441 atom = atomdef(&s->s); 442 if (atom >= 0) { 443 if (!ATOMELEM(use, atom)) 444 kill |= ATOMMASK(atom); 445 def |= ATOMMASK(atom); 446 } 447 } 448 if (BPF_CLASS(b->s.code) == BPF_JMP) { 449 /* 450 * XXX - what about RET? 451 */ 452 atom = atomuse(&b->s); 453 if (atom >= 0) { 454 if (atom == AX_ATOM) { 455 if (!ATOMELEM(def, X_ATOM)) 456 use |= ATOMMASK(X_ATOM); 457 if (!ATOMELEM(def, A_ATOM)) 458 use |= ATOMMASK(A_ATOM); 459 } 460 else if (atom < N_ATOMS) { 461 if (!ATOMELEM(def, atom)) 462 use |= ATOMMASK(atom); 463 } 464 else 465 abort(); 466 } 467 } 468 469 b->def = def; 470 b->kill = kill; 471 b->in_use = use; 472 } 473 474 /* 475 * Assume graph is already leveled. 476 */ 477 static void 478 find_ud(struct block *root) 479 { 480 int i, maxlevel; 481 struct block *p; 482 483 /* 484 * root->level is the highest level no found; 485 * count down from there. 486 */ 487 maxlevel = root->level; 488 for (i = maxlevel; i >= 0; --i) 489 for (p = levels[i]; p; p = p->link) { 490 compute_local_ud(p); 491 p->out_use = 0; 492 } 493 494 for (i = 1; i <= maxlevel; ++i) { 495 for (p = levels[i]; p; p = p->link) { 496 p->out_use |= JT(p)->in_use | JF(p)->in_use; 497 p->in_use |= p->out_use &~ p->kill; 498 } 499 } 500 } 501 502 /* 503 * These data structures are used in a Cocke and Shwarz style 504 * value numbering scheme. Since the flowgraph is acyclic, 505 * exit values can be propagated from a node's predecessors 506 * provided it is uniquely defined. 507 */ 508 struct valnode { 509 int code; 510 int v0, v1; 511 int val; 512 struct valnode *next; 513 }; 514 515 #define MODULUS 213 516 static struct valnode *hashtbl[MODULUS]; 517 static int curval; 518 static int maxval; 519 520 /* Integer constants mapped with the load immediate opcode. */ 521 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L) 522 523 struct vmapinfo { 524 int is_const; 525 bpf_int32 const_val; 526 }; 527 528 struct vmapinfo *vmap; 529 struct valnode *vnode_base; 530 struct valnode *next_vnode; 531 532 static void 533 init_val(void) 534 { 535 curval = 0; 536 next_vnode = vnode_base; 537 memset((char *)vmap, 0, maxval * sizeof(*vmap)); 538 memset((char *)hashtbl, 0, sizeof hashtbl); 539 } 540 541 /* Because we really don't have an IR, this stuff is a little messy. */ 542 static int 543 F(int code, int v0, int v1) 544 { 545 u_int hash; 546 int val; 547 struct valnode *p; 548 549 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 550 hash %= MODULUS; 551 552 for (p = hashtbl[hash]; p; p = p->next) 553 if (p->code == code && p->v0 == v0 && p->v1 == v1) 554 return p->val; 555 556 val = ++curval; 557 if (BPF_MODE(code) == BPF_IMM && 558 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 559 vmap[val].const_val = v0; 560 vmap[val].is_const = 1; 561 } 562 p = next_vnode++; 563 p->val = val; 564 p->code = code; 565 p->v0 = v0; 566 p->v1 = v1; 567 p->next = hashtbl[hash]; 568 hashtbl[hash] = p; 569 570 return val; 571 } 572 573 static inline void 574 vstore(struct stmt *s, int *valp, int newval, int alter) 575 { 576 if (alter && *valp == newval) 577 s->code = NOP; 578 else 579 *valp = newval; 580 } 581 582 /* 583 * Do constant-folding on binary operators. 584 * (Unary operators are handled elsewhere.) 585 */ 586 static void 587 fold_op(struct stmt *s, int v0, int v1) 588 { 589 bpf_u_int32 a, b; 590 591 a = vmap[v0].const_val; 592 b = vmap[v1].const_val; 593 594 switch (BPF_OP(s->code)) { 595 case BPF_ADD: 596 a += b; 597 break; 598 599 case BPF_SUB: 600 a -= b; 601 break; 602 603 case BPF_MUL: 604 a *= b; 605 break; 606 607 case BPF_DIV: 608 if (b == 0) 609 bpf_error("division by zero"); 610 a /= b; 611 break; 612 613 case BPF_AND: 614 a &= b; 615 break; 616 617 case BPF_OR: 618 a |= b; 619 break; 620 621 case BPF_LSH: 622 a <<= b; 623 break; 624 625 case BPF_RSH: 626 a >>= b; 627 break; 628 629 default: 630 abort(); 631 } 632 s->k = a; 633 s->code = BPF_LD|BPF_IMM; 634 done = 0; 635 } 636 637 static inline struct slist * 638 this_op(struct slist *s) 639 { 640 while (s != 0 && s->s.code == NOP) 641 s = s->next; 642 return s; 643 } 644 645 static void 646 opt_not(struct block *b) 647 { 648 struct block *tmp = JT(b); 649 650 JT(b) = JF(b); 651 JF(b) = tmp; 652 } 653 654 static void 655 opt_peep(struct block *b) 656 { 657 struct slist *s; 658 struct slist *next, *last; 659 int val; 660 661 s = b->stmts; 662 if (s == 0) 663 return; 664 665 last = s; 666 for (/*empty*/; /*empty*/; s = next) { 667 /* 668 * Skip over nops. 669 */ 670 s = this_op(s); 671 if (s == 0) 672 break; /* nothing left in the block */ 673 674 /* 675 * Find the next real instruction after that one 676 * (skipping nops). 677 */ 678 next = this_op(s->next); 679 if (next == 0) 680 break; /* no next instruction */ 681 last = next; 682 683 /* 684 * st M[k] --> st M[k] 685 * ldx M[k] tax 686 */ 687 if (s->s.code == BPF_ST && 688 next->s.code == (BPF_LDX|BPF_MEM) && 689 s->s.k == next->s.k) { 690 done = 0; 691 next->s.code = BPF_MISC|BPF_TAX; 692 } 693 /* 694 * ld #k --> ldx #k 695 * tax txa 696 */ 697 if (s->s.code == (BPF_LD|BPF_IMM) && 698 next->s.code == (BPF_MISC|BPF_TAX)) { 699 s->s.code = BPF_LDX|BPF_IMM; 700 next->s.code = BPF_MISC|BPF_TXA; 701 done = 0; 702 } 703 /* 704 * This is an ugly special case, but it happens 705 * when you say tcp[k] or udp[k] where k is a constant. 706 */ 707 if (s->s.code == (BPF_LD|BPF_IMM)) { 708 struct slist *add, *tax, *ild; 709 710 /* 711 * Check that X isn't used on exit from this 712 * block (which the optimizer might cause). 713 * We know the code generator won't generate 714 * any local dependencies. 715 */ 716 if (ATOMELEM(b->out_use, X_ATOM)) 717 continue; 718 719 /* 720 * Check that the instruction following the ldi 721 * is an addx, or it's an ldxms with an addx 722 * following it (with 0 or more nops between the 723 * ldxms and addx). 724 */ 725 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 726 add = next; 727 else 728 add = this_op(next->next); 729 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 730 continue; 731 732 /* 733 * Check that a tax follows that (with 0 or more 734 * nops between them). 735 */ 736 tax = this_op(add->next); 737 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 738 continue; 739 740 /* 741 * Check that an ild follows that (with 0 or more 742 * nops between them). 743 */ 744 ild = this_op(tax->next); 745 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 746 BPF_MODE(ild->s.code) != BPF_IND) 747 continue; 748 /* 749 * We want to turn this sequence: 750 * 751 * (004) ldi #0x2 {s} 752 * (005) ldxms [14] {next} -- optional 753 * (006) addx {add} 754 * (007) tax {tax} 755 * (008) ild [x+0] {ild} 756 * 757 * into this sequence: 758 * 759 * (004) nop 760 * (005) ldxms [14] 761 * (006) nop 762 * (007) nop 763 * (008) ild [x+2] 764 * 765 * XXX We need to check that X is not 766 * subsequently used, because we want to change 767 * what'll be in it after this sequence. 768 * 769 * We know we can eliminate the accumulator 770 * modifications earlier in the sequence since 771 * it is defined by the last stmt of this sequence 772 * (i.e., the last statement of the sequence loads 773 * a value into the accumulator, so we can eliminate 774 * earlier operations on the accumulator). 775 */ 776 ild->s.k += s->s.k; 777 s->s.code = NOP; 778 add->s.code = NOP; 779 tax->s.code = NOP; 780 done = 0; 781 } 782 } 783 /* 784 * If the comparison at the end of a block is an equality 785 * comparison against a constant, and nobody uses the value 786 * we leave in the A register at the end of a block, and 787 * the operation preceding the comparison is an arithmetic 788 * operation, we can sometime optimize it away. 789 */ 790 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 791 !ATOMELEM(b->out_use, A_ATOM)) { 792 /* 793 * We can optimize away certain subtractions of the 794 * X register. 795 */ 796 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 797 val = b->val[X_ATOM]; 798 if (vmap[val].is_const) { 799 /* 800 * If we have a subtract to do a comparison, 801 * and the X register is a known constant, 802 * we can merge this value into the 803 * comparison: 804 * 805 * sub x -> nop 806 * jeq #y jeq #(x+y) 807 */ 808 b->s.k += vmap[val].const_val; 809 last->s.code = NOP; 810 done = 0; 811 } else if (b->s.k == 0) { 812 /* 813 * If the X register isn't a constant, 814 * and the comparison in the test is 815 * against 0, we can compare with the 816 * X register, instead: 817 * 818 * sub x -> nop 819 * jeq #0 jeq x 820 */ 821 last->s.code = NOP; 822 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 823 done = 0; 824 } 825 } 826 /* 827 * Likewise, a constant subtract can be simplified: 828 * 829 * sub #x -> nop 830 * jeq #y -> jeq #(x+y) 831 */ 832 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 833 last->s.code = NOP; 834 b->s.k += last->s.k; 835 done = 0; 836 } 837 /* 838 * And, similarly, a constant AND can be simplified 839 * if we're testing against 0, i.e.: 840 * 841 * and #k nop 842 * jeq #0 -> jset #k 843 */ 844 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 845 b->s.k == 0) { 846 b->s.k = last->s.k; 847 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 848 last->s.code = NOP; 849 done = 0; 850 opt_not(b); 851 } 852 } 853 /* 854 * jset #0 -> never 855 * jset #ffffffff -> always 856 */ 857 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 858 if (b->s.k == 0) 859 JT(b) = JF(b); 860 if (b->s.k == 0xffffffff) 861 JF(b) = JT(b); 862 } 863 /* 864 * If we're comparing against the index register, and the index 865 * register is a known constant, we can just compare against that 866 * constant. 867 */ 868 val = b->val[X_ATOM]; 869 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 870 bpf_int32 v = vmap[val].const_val; 871 b->s.code &= ~BPF_X; 872 b->s.k = v; 873 } 874 /* 875 * If the accumulator is a known constant, we can compute the 876 * comparison result. 877 */ 878 val = b->val[A_ATOM]; 879 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 880 bpf_int32 v = vmap[val].const_val; 881 switch (BPF_OP(b->s.code)) { 882 883 case BPF_JEQ: 884 v = v == b->s.k; 885 break; 886 887 case BPF_JGT: 888 v = (unsigned)v > b->s.k; 889 break; 890 891 case BPF_JGE: 892 v = (unsigned)v >= b->s.k; 893 break; 894 895 case BPF_JSET: 896 v &= b->s.k; 897 break; 898 899 default: 900 abort(); 901 } 902 if (JF(b) != JT(b)) 903 done = 0; 904 if (v) 905 JF(b) = JT(b); 906 else 907 JT(b) = JF(b); 908 } 909 } 910 911 /* 912 * Compute the symbolic value of expression of 's', and update 913 * anything it defines in the value table 'val'. If 'alter' is true, 914 * do various optimizations. This code would be cleaner if symbolic 915 * evaluation and code transformations weren't folded together. 916 */ 917 static void 918 opt_stmt(struct stmt *s, int val[], int alter) 919 { 920 int op; 921 int v; 922 923 switch (s->code) { 924 925 case BPF_LD|BPF_ABS|BPF_W: 926 case BPF_LD|BPF_ABS|BPF_H: 927 case BPF_LD|BPF_ABS|BPF_B: 928 v = F(s->code, s->k, 0L); 929 vstore(s, &val[A_ATOM], v, alter); 930 break; 931 932 case BPF_LD|BPF_IND|BPF_W: 933 case BPF_LD|BPF_IND|BPF_H: 934 case BPF_LD|BPF_IND|BPF_B: 935 v = val[X_ATOM]; 936 if (alter && vmap[v].is_const) { 937 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 938 s->k += vmap[v].const_val; 939 v = F(s->code, s->k, 0L); 940 done = 0; 941 } 942 else 943 v = F(s->code, s->k, v); 944 vstore(s, &val[A_ATOM], v, alter); 945 break; 946 947 case BPF_LD|BPF_LEN: 948 v = F(s->code, 0L, 0L); 949 vstore(s, &val[A_ATOM], v, alter); 950 break; 951 952 case BPF_LD|BPF_IMM: 953 v = K(s->k); 954 vstore(s, &val[A_ATOM], v, alter); 955 break; 956 957 case BPF_LDX|BPF_IMM: 958 v = K(s->k); 959 vstore(s, &val[X_ATOM], v, alter); 960 break; 961 962 case BPF_LDX|BPF_MSH|BPF_B: 963 v = F(s->code, s->k, 0L); 964 vstore(s, &val[X_ATOM], v, alter); 965 break; 966 967 case BPF_ALU|BPF_NEG: 968 if (alter && vmap[val[A_ATOM]].is_const) { 969 s->code = BPF_LD|BPF_IMM; 970 s->k = -vmap[val[A_ATOM]].const_val; 971 val[A_ATOM] = K(s->k); 972 } 973 else 974 val[A_ATOM] = F(s->code, val[A_ATOM], 0L); 975 break; 976 977 case BPF_ALU|BPF_ADD|BPF_K: 978 case BPF_ALU|BPF_SUB|BPF_K: 979 case BPF_ALU|BPF_MUL|BPF_K: 980 case BPF_ALU|BPF_DIV|BPF_K: 981 case BPF_ALU|BPF_AND|BPF_K: 982 case BPF_ALU|BPF_OR|BPF_K: 983 case BPF_ALU|BPF_LSH|BPF_K: 984 case BPF_ALU|BPF_RSH|BPF_K: 985 op = BPF_OP(s->code); 986 if (alter) { 987 if (s->k == 0) { 988 /* don't optimize away "sub #0" 989 * as it may be needed later to 990 * fixup the generated math code */ 991 if (op == BPF_ADD || 992 op == BPF_LSH || op == BPF_RSH || 993 op == BPF_OR) { 994 s->code = NOP; 995 break; 996 } 997 if (op == BPF_MUL || op == BPF_AND) { 998 s->code = BPF_LD|BPF_IMM; 999 val[A_ATOM] = K(s->k); 1000 break; 1001 } 1002 } 1003 if (vmap[val[A_ATOM]].is_const) { 1004 fold_op(s, val[A_ATOM], K(s->k)); 1005 val[A_ATOM] = K(s->k); 1006 break; 1007 } 1008 } 1009 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k)); 1010 break; 1011 1012 case BPF_ALU|BPF_ADD|BPF_X: 1013 case BPF_ALU|BPF_SUB|BPF_X: 1014 case BPF_ALU|BPF_MUL|BPF_X: 1015 case BPF_ALU|BPF_DIV|BPF_X: 1016 case BPF_ALU|BPF_AND|BPF_X: 1017 case BPF_ALU|BPF_OR|BPF_X: 1018 case BPF_ALU|BPF_LSH|BPF_X: 1019 case BPF_ALU|BPF_RSH|BPF_X: 1020 op = BPF_OP(s->code); 1021 if (alter && vmap[val[X_ATOM]].is_const) { 1022 if (vmap[val[A_ATOM]].is_const) { 1023 fold_op(s, val[A_ATOM], val[X_ATOM]); 1024 val[A_ATOM] = K(s->k); 1025 } 1026 else { 1027 s->code = BPF_ALU|BPF_K|op; 1028 s->k = vmap[val[X_ATOM]].const_val; 1029 done = 0; 1030 val[A_ATOM] = 1031 F(s->code, val[A_ATOM], K(s->k)); 1032 } 1033 break; 1034 } 1035 /* 1036 * Check if we're doing something to an accumulator 1037 * that is 0, and simplify. This may not seem like 1038 * much of a simplification but it could open up further 1039 * optimizations. 1040 * XXX We could also check for mul by 1, etc. 1041 */ 1042 if (alter && vmap[val[A_ATOM]].is_const 1043 && vmap[val[A_ATOM]].const_val == 0) { 1044 if (op == BPF_ADD || op == BPF_OR) { 1045 s->code = BPF_MISC|BPF_TXA; 1046 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1047 break; 1048 } 1049 else if (op == BPF_MUL || op == BPF_DIV || 1050 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1051 s->code = BPF_LD|BPF_IMM; 1052 s->k = 0; 1053 vstore(s, &val[A_ATOM], K(s->k), alter); 1054 break; 1055 } 1056 else if (op == BPF_NEG) { 1057 s->code = NOP; 1058 break; 1059 } 1060 } 1061 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]); 1062 break; 1063 1064 case BPF_MISC|BPF_TXA: 1065 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1066 break; 1067 1068 case BPF_LD|BPF_MEM: 1069 v = val[s->k]; 1070 if (alter && vmap[v].is_const) { 1071 s->code = BPF_LD|BPF_IMM; 1072 s->k = vmap[v].const_val; 1073 done = 0; 1074 } 1075 vstore(s, &val[A_ATOM], v, alter); 1076 break; 1077 1078 case BPF_MISC|BPF_TAX: 1079 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1080 break; 1081 1082 case BPF_LDX|BPF_MEM: 1083 v = val[s->k]; 1084 if (alter && vmap[v].is_const) { 1085 s->code = BPF_LDX|BPF_IMM; 1086 s->k = vmap[v].const_val; 1087 done = 0; 1088 } 1089 vstore(s, &val[X_ATOM], v, alter); 1090 break; 1091 1092 case BPF_ST: 1093 vstore(s, &val[s->k], val[A_ATOM], alter); 1094 break; 1095 1096 case BPF_STX: 1097 vstore(s, &val[s->k], val[X_ATOM], alter); 1098 break; 1099 } 1100 } 1101 1102 static void 1103 deadstmt(register struct stmt *s, register struct stmt *last[]) 1104 { 1105 register int atom; 1106 1107 atom = atomuse(s); 1108 if (atom >= 0) { 1109 if (atom == AX_ATOM) { 1110 last[X_ATOM] = 0; 1111 last[A_ATOM] = 0; 1112 } 1113 else 1114 last[atom] = 0; 1115 } 1116 atom = atomdef(s); 1117 if (atom >= 0) { 1118 if (last[atom]) { 1119 done = 0; 1120 last[atom]->code = NOP; 1121 } 1122 last[atom] = s; 1123 } 1124 } 1125 1126 static void 1127 opt_deadstores(register struct block *b) 1128 { 1129 register struct slist *s; 1130 register int atom; 1131 struct stmt *last[N_ATOMS]; 1132 1133 memset((char *)last, 0, sizeof last); 1134 1135 for (s = b->stmts; s != 0; s = s->next) 1136 deadstmt(&s->s, last); 1137 deadstmt(&b->s, last); 1138 1139 for (atom = 0; atom < N_ATOMS; ++atom) 1140 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1141 last[atom]->code = NOP; 1142 done = 0; 1143 } 1144 } 1145 1146 static void 1147 opt_blk(struct block *b, int do_stmts) 1148 { 1149 struct slist *s; 1150 struct edge *p; 1151 int i; 1152 bpf_int32 aval, xval; 1153 1154 #if 0 1155 for (s = b->stmts; s && s->next; s = s->next) 1156 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1157 do_stmts = 0; 1158 break; 1159 } 1160 #endif 1161 1162 /* 1163 * Initialize the atom values. 1164 */ 1165 p = b->in_edges; 1166 if (p == 0) { 1167 /* 1168 * We have no predecessors, so everything is undefined 1169 * upon entry to this block. 1170 */ 1171 memset((char *)b->val, 0, sizeof(b->val)); 1172 } else { 1173 /* 1174 * Inherit values from our predecessors. 1175 * 1176 * First, get the values from the predecessor along the 1177 * first edge leading to this node. 1178 */ 1179 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1180 /* 1181 * Now look at all the other nodes leading to this node. 1182 * If, for the predecessor along that edge, a register 1183 * has a different value from the one we have (i.e., 1184 * control paths are merging, and the merging paths 1185 * assign different values to that register), give the 1186 * register the undefined value of 0. 1187 */ 1188 while ((p = p->next) != NULL) { 1189 for (i = 0; i < N_ATOMS; ++i) 1190 if (b->val[i] != p->pred->val[i]) 1191 b->val[i] = 0; 1192 } 1193 } 1194 aval = b->val[A_ATOM]; 1195 xval = b->val[X_ATOM]; 1196 for (s = b->stmts; s; s = s->next) 1197 opt_stmt(&s->s, b->val, do_stmts); 1198 1199 /* 1200 * This is a special case: if we don't use anything from this 1201 * block, and we load the accumulator or index register with a 1202 * value that is already there, or if this block is a return, 1203 * eliminate all the statements. 1204 * 1205 * XXX - what if it does a store? 1206 * 1207 * XXX - why does it matter whether we use anything from this 1208 * block? If the accumulator or index register doesn't change 1209 * its value, isn't that OK even if we use that value? 1210 * 1211 * XXX - if we load the accumulator with a different value, 1212 * and the block ends with a conditional branch, we obviously 1213 * can't eliminate it, as the branch depends on that value. 1214 * For the index register, the conditional branch only depends 1215 * on the index register value if the test is against the index 1216 * register value rather than a constant; if nothing uses the 1217 * value we put into the index register, and we're not testing 1218 * against the index register's value, and there aren't any 1219 * other problems that would keep us from eliminating this 1220 * block, can we eliminate it? 1221 */ 1222 if (do_stmts && 1223 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval && 1224 xval != 0 && b->val[X_ATOM] == xval) || 1225 BPF_CLASS(b->s.code) == BPF_RET)) { 1226 if (b->stmts != 0) { 1227 b->stmts = 0; 1228 done = 0; 1229 } 1230 } else { 1231 opt_peep(b); 1232 opt_deadstores(b); 1233 } 1234 /* 1235 * Set up values for branch optimizer. 1236 */ 1237 if (BPF_SRC(b->s.code) == BPF_K) 1238 b->oval = K(b->s.k); 1239 else 1240 b->oval = b->val[X_ATOM]; 1241 b->et.code = b->s.code; 1242 b->ef.code = -b->s.code; 1243 } 1244 1245 /* 1246 * Return true if any register that is used on exit from 'succ', has 1247 * an exit value that is different from the corresponding exit value 1248 * from 'b'. 1249 */ 1250 static int 1251 use_conflict(struct block *b, struct block *succ) 1252 { 1253 int atom; 1254 atomset use = succ->out_use; 1255 1256 if (use == 0) 1257 return 0; 1258 1259 for (atom = 0; atom < N_ATOMS; ++atom) 1260 if (ATOMELEM(use, atom)) 1261 if (b->val[atom] != succ->val[atom]) 1262 return 1; 1263 return 0; 1264 } 1265 1266 static struct block * 1267 fold_edge(struct block *child, struct edge *ep) 1268 { 1269 int sense; 1270 int aval0, aval1, oval0, oval1; 1271 int code = ep->code; 1272 1273 if (code < 0) { 1274 code = -code; 1275 sense = 0; 1276 } else 1277 sense = 1; 1278 1279 if (child->s.code != code) 1280 return 0; 1281 1282 aval0 = child->val[A_ATOM]; 1283 oval0 = child->oval; 1284 aval1 = ep->pred->val[A_ATOM]; 1285 oval1 = ep->pred->oval; 1286 1287 if (aval0 != aval1) 1288 return 0; 1289 1290 if (oval0 == oval1) 1291 /* 1292 * The operands of the branch instructions are 1293 * identical, so the result is true if a true 1294 * branch was taken to get here, otherwise false. 1295 */ 1296 return sense ? JT(child) : JF(child); 1297 1298 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1299 /* 1300 * At this point, we only know the comparison if we 1301 * came down the true branch, and it was an equality 1302 * comparison with a constant. 1303 * 1304 * I.e., if we came down the true branch, and the branch 1305 * was an equality comparison with a constant, we know the 1306 * accumulator contains that constant. If we came down 1307 * the false branch, or the comparison wasn't with a 1308 * constant, we don't know what was in the accumulator. 1309 * 1310 * We rely on the fact that distinct constants have distinct 1311 * value numbers. 1312 */ 1313 return JF(child); 1314 1315 return 0; 1316 } 1317 1318 static void 1319 opt_j(struct edge *ep) 1320 { 1321 register int i, k; 1322 register struct block *target; 1323 1324 if (JT(ep->succ) == 0) 1325 return; 1326 1327 if (JT(ep->succ) == JF(ep->succ)) { 1328 /* 1329 * Common branch targets can be eliminated, provided 1330 * there is no data dependency. 1331 */ 1332 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1333 done = 0; 1334 ep->succ = JT(ep->succ); 1335 } 1336 } 1337 /* 1338 * For each edge dominator that matches the successor of this 1339 * edge, promote the edge successor to the its grandchild. 1340 * 1341 * XXX We violate the set abstraction here in favor a reasonably 1342 * efficient loop. 1343 */ 1344 top: 1345 for (i = 0; i < edgewords; ++i) { 1346 register bpf_u_int32 x = ep->edom[i]; 1347 1348 while (x != 0) { 1349 k = ffs(x) - 1; 1350 x &=~ (1 << k); 1351 k += i * BITS_PER_WORD; 1352 1353 target = fold_edge(ep->succ, edges[k]); 1354 /* 1355 * Check that there is no data dependency between 1356 * nodes that will be violated if we move the edge. 1357 */ 1358 if (target != 0 && !use_conflict(ep->pred, target)) { 1359 done = 0; 1360 ep->succ = target; 1361 if (JT(target) != 0) 1362 /* 1363 * Start over unless we hit a leaf. 1364 */ 1365 goto top; 1366 return; 1367 } 1368 } 1369 } 1370 } 1371 1372 1373 static void 1374 or_pullup(struct block *b) 1375 { 1376 int val, at_top; 1377 struct block *pull; 1378 struct block **diffp, **samep; 1379 struct edge *ep; 1380 1381 ep = b->in_edges; 1382 if (ep == 0) 1383 return; 1384 1385 /* 1386 * Make sure each predecessor loads the same value. 1387 * XXX why? 1388 */ 1389 val = ep->pred->val[A_ATOM]; 1390 for (ep = ep->next; ep != 0; ep = ep->next) 1391 if (val != ep->pred->val[A_ATOM]) 1392 return; 1393 1394 if (JT(b->in_edges->pred) == b) 1395 diffp = &JT(b->in_edges->pred); 1396 else 1397 diffp = &JF(b->in_edges->pred); 1398 1399 at_top = 1; 1400 while (1) { 1401 if (*diffp == 0) 1402 return; 1403 1404 if (JT(*diffp) != JT(b)) 1405 return; 1406 1407 if (!SET_MEMBER((*diffp)->dom, b->id)) 1408 return; 1409 1410 if ((*diffp)->val[A_ATOM] != val) 1411 break; 1412 1413 diffp = &JF(*diffp); 1414 at_top = 0; 1415 } 1416 samep = &JF(*diffp); 1417 while (1) { 1418 if (*samep == 0) 1419 return; 1420 1421 if (JT(*samep) != JT(b)) 1422 return; 1423 1424 if (!SET_MEMBER((*samep)->dom, b->id)) 1425 return; 1426 1427 if ((*samep)->val[A_ATOM] == val) 1428 break; 1429 1430 /* XXX Need to check that there are no data dependencies 1431 between dp0 and dp1. Currently, the code generator 1432 will not produce such dependencies. */ 1433 samep = &JF(*samep); 1434 } 1435 #ifdef notdef 1436 /* XXX This doesn't cover everything. */ 1437 for (i = 0; i < N_ATOMS; ++i) 1438 if ((*samep)->val[i] != pred->val[i]) 1439 return; 1440 #endif 1441 /* Pull up the node. */ 1442 pull = *samep; 1443 *samep = JF(pull); 1444 JF(pull) = *diffp; 1445 1446 /* 1447 * At the top of the chain, each predecessor needs to point at the 1448 * pulled up node. Inside the chain, there is only one predecessor 1449 * to worry about. 1450 */ 1451 if (at_top) { 1452 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1453 if (JT(ep->pred) == b) 1454 JT(ep->pred) = pull; 1455 else 1456 JF(ep->pred) = pull; 1457 } 1458 } 1459 else 1460 *diffp = pull; 1461 1462 done = 0; 1463 } 1464 1465 static void 1466 and_pullup(struct block *b) 1467 { 1468 int val, at_top; 1469 struct block *pull; 1470 struct block **diffp, **samep; 1471 struct edge *ep; 1472 1473 ep = b->in_edges; 1474 if (ep == 0) 1475 return; 1476 1477 /* 1478 * Make sure each predecessor loads the same value. 1479 */ 1480 val = ep->pred->val[A_ATOM]; 1481 for (ep = ep->next; ep != 0; ep = ep->next) 1482 if (val != ep->pred->val[A_ATOM]) 1483 return; 1484 1485 if (JT(b->in_edges->pred) == b) 1486 diffp = &JT(b->in_edges->pred); 1487 else 1488 diffp = &JF(b->in_edges->pred); 1489 1490 at_top = 1; 1491 while (1) { 1492 if (*diffp == 0) 1493 return; 1494 1495 if (JF(*diffp) != JF(b)) 1496 return; 1497 1498 if (!SET_MEMBER((*diffp)->dom, b->id)) 1499 return; 1500 1501 if ((*diffp)->val[A_ATOM] != val) 1502 break; 1503 1504 diffp = &JT(*diffp); 1505 at_top = 0; 1506 } 1507 samep = &JT(*diffp); 1508 while (1) { 1509 if (*samep == 0) 1510 return; 1511 1512 if (JF(*samep) != JF(b)) 1513 return; 1514 1515 if (!SET_MEMBER((*samep)->dom, b->id)) 1516 return; 1517 1518 if ((*samep)->val[A_ATOM] == val) 1519 break; 1520 1521 /* XXX Need to check that there are no data dependencies 1522 between diffp and samep. Currently, the code generator 1523 will not produce such dependencies. */ 1524 samep = &JT(*samep); 1525 } 1526 #ifdef notdef 1527 /* XXX This doesn't cover everything. */ 1528 for (i = 0; i < N_ATOMS; ++i) 1529 if ((*samep)->val[i] != pred->val[i]) 1530 return; 1531 #endif 1532 /* Pull up the node. */ 1533 pull = *samep; 1534 *samep = JT(pull); 1535 JT(pull) = *diffp; 1536 1537 /* 1538 * At the top of the chain, each predecessor needs to point at the 1539 * pulled up node. Inside the chain, there is only one predecessor 1540 * to worry about. 1541 */ 1542 if (at_top) { 1543 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1544 if (JT(ep->pred) == b) 1545 JT(ep->pred) = pull; 1546 else 1547 JF(ep->pred) = pull; 1548 } 1549 } 1550 else 1551 *diffp = pull; 1552 1553 done = 0; 1554 } 1555 1556 static void 1557 opt_blks(struct block *root, int do_stmts) 1558 { 1559 int i, maxlevel; 1560 struct block *p; 1561 1562 init_val(); 1563 maxlevel = root->level; 1564 1565 find_inedges(root); 1566 for (i = maxlevel; i >= 0; --i) 1567 for (p = levels[i]; p; p = p->link) 1568 opt_blk(p, do_stmts); 1569 1570 if (do_stmts) 1571 /* 1572 * No point trying to move branches; it can't possibly 1573 * make a difference at this point. 1574 */ 1575 return; 1576 1577 for (i = 1; i <= maxlevel; ++i) { 1578 for (p = levels[i]; p; p = p->link) { 1579 opt_j(&p->et); 1580 opt_j(&p->ef); 1581 } 1582 } 1583 1584 find_inedges(root); 1585 for (i = 1; i <= maxlevel; ++i) { 1586 for (p = levels[i]; p; p = p->link) { 1587 or_pullup(p); 1588 and_pullup(p); 1589 } 1590 } 1591 } 1592 1593 static inline void 1594 link_inedge(struct edge *parent, struct block *child) 1595 { 1596 parent->next = child->in_edges; 1597 child->in_edges = parent; 1598 } 1599 1600 static void 1601 find_inedges(struct block *root) 1602 { 1603 int i; 1604 struct block *b; 1605 1606 for (i = 0; i < n_blocks; ++i) 1607 blocks[i]->in_edges = 0; 1608 1609 /* 1610 * Traverse the graph, adding each edge to the predecessor 1611 * list of its successors. Skip the leaves (i.e. level 0). 1612 */ 1613 for (i = root->level; i > 0; --i) { 1614 for (b = levels[i]; b != 0; b = b->link) { 1615 link_inedge(&b->et, JT(b)); 1616 link_inedge(&b->ef, JF(b)); 1617 } 1618 } 1619 } 1620 1621 static void 1622 opt_root(struct block **b) 1623 { 1624 struct slist *tmp, *s; 1625 1626 s = (*b)->stmts; 1627 (*b)->stmts = 0; 1628 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1629 *b = JT(*b); 1630 1631 tmp = (*b)->stmts; 1632 if (tmp != 0) 1633 sappend(s, tmp); 1634 (*b)->stmts = s; 1635 1636 /* 1637 * If the root node is a return, then there is no 1638 * point executing any statements (since the bpf machine 1639 * has no side effects). 1640 */ 1641 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1642 (*b)->stmts = 0; 1643 } 1644 1645 static void 1646 opt_loop(struct block *root, int do_stmts) 1647 { 1648 1649 #ifdef BDEBUG 1650 if (dflag > 1) { 1651 printf("opt_loop(root, %d) begin\n", do_stmts); 1652 opt_dump(root); 1653 } 1654 #endif 1655 do { 1656 done = 1; 1657 find_levels(root); 1658 find_dom(root); 1659 find_closure(root); 1660 find_ud(root); 1661 find_edom(root); 1662 opt_blks(root, do_stmts); 1663 #ifdef BDEBUG 1664 if (dflag > 1) { 1665 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done); 1666 opt_dump(root); 1667 } 1668 #endif 1669 } while (!done); 1670 } 1671 1672 /* 1673 * Optimize the filter code in its dag representation. 1674 */ 1675 void 1676 bpf_optimize(struct block **rootp) 1677 { 1678 struct block *root; 1679 1680 root = *rootp; 1681 1682 opt_init(root); 1683 opt_loop(root, 0); 1684 opt_loop(root, 1); 1685 intern_blocks(root); 1686 #ifdef BDEBUG 1687 if (dflag > 1) { 1688 printf("after intern_blocks()\n"); 1689 opt_dump(root); 1690 } 1691 #endif 1692 opt_root(rootp); 1693 #ifdef BDEBUG 1694 if (dflag > 1) { 1695 printf("after opt_root()\n"); 1696 opt_dump(root); 1697 } 1698 #endif 1699 opt_cleanup(); 1700 } 1701 1702 static void 1703 make_marks(struct block *p) 1704 { 1705 if (!isMarked(p)) { 1706 Mark(p); 1707 if (BPF_CLASS(p->s.code) != BPF_RET) { 1708 make_marks(JT(p)); 1709 make_marks(JF(p)); 1710 } 1711 } 1712 } 1713 1714 /* 1715 * Mark code array such that isMarked(i) is true 1716 * only for nodes that are alive. 1717 */ 1718 static void 1719 mark_code(struct block *p) 1720 { 1721 cur_mark += 1; 1722 make_marks(p); 1723 } 1724 1725 /* 1726 * True iff the two stmt lists load the same value from the packet into 1727 * the accumulator. 1728 */ 1729 static int 1730 eq_slist(struct slist *x, struct slist *y) 1731 { 1732 while (1) { 1733 while (x && x->s.code == NOP) 1734 x = x->next; 1735 while (y && y->s.code == NOP) 1736 y = y->next; 1737 if (x == 0) 1738 return y == 0; 1739 if (y == 0) 1740 return x == 0; 1741 if (x->s.code != y->s.code || x->s.k != y->s.k) 1742 return 0; 1743 x = x->next; 1744 y = y->next; 1745 } 1746 } 1747 1748 static inline int 1749 eq_blk(struct block *b0, struct block *b1) 1750 { 1751 if (b0->s.code == b1->s.code && 1752 b0->s.k == b1->s.k && 1753 b0->et.succ == b1->et.succ && 1754 b0->ef.succ == b1->ef.succ) 1755 return eq_slist(b0->stmts, b1->stmts); 1756 return 0; 1757 } 1758 1759 static void 1760 intern_blocks(struct block *root) 1761 { 1762 struct block *p; 1763 int i, j; 1764 int done1; /* don't shadow global */ 1765 top: 1766 done1 = 1; 1767 for (i = 0; i < n_blocks; ++i) 1768 blocks[i]->link = 0; 1769 1770 mark_code(root); 1771 1772 for (i = n_blocks - 1; --i >= 0; ) { 1773 if (!isMarked(blocks[i])) 1774 continue; 1775 for (j = i + 1; j < n_blocks; ++j) { 1776 if (!isMarked(blocks[j])) 1777 continue; 1778 if (eq_blk(blocks[i], blocks[j])) { 1779 blocks[i]->link = blocks[j]->link ? 1780 blocks[j]->link : blocks[j]; 1781 break; 1782 } 1783 } 1784 } 1785 for (i = 0; i < n_blocks; ++i) { 1786 p = blocks[i]; 1787 if (JT(p) == 0) 1788 continue; 1789 if (JT(p)->link) { 1790 done1 = 0; 1791 JT(p) = JT(p)->link; 1792 } 1793 if (JF(p)->link) { 1794 done1 = 0; 1795 JF(p) = JF(p)->link; 1796 } 1797 } 1798 if (!done1) 1799 goto top; 1800 } 1801 1802 static void 1803 opt_cleanup(void) 1804 { 1805 free((void *)vnode_base); 1806 free((void *)vmap); 1807 free((void *)edges); 1808 free((void *)space); 1809 free((void *)levels); 1810 free((void *)blocks); 1811 } 1812 1813 /* 1814 * Return the number of stmts in 's'. 1815 */ 1816 static u_int 1817 slength(struct slist *s) 1818 { 1819 u_int n = 0; 1820 1821 for (; s; s = s->next) 1822 if (s->s.code != NOP) 1823 ++n; 1824 return n; 1825 } 1826 1827 /* 1828 * Return the number of nodes reachable by 'p'. 1829 * All nodes should be initially unmarked. 1830 */ 1831 static int 1832 count_blocks(struct block *p) 1833 { 1834 if (p == 0 || isMarked(p)) 1835 return 0; 1836 Mark(p); 1837 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1; 1838 } 1839 1840 /* 1841 * Do a depth first search on the flow graph, numbering the 1842 * the basic blocks, and entering them into the 'blocks' array.` 1843 */ 1844 static void 1845 number_blks_r(struct block *p) 1846 { 1847 int n; 1848 1849 if (p == 0 || isMarked(p)) 1850 return; 1851 1852 Mark(p); 1853 n = n_blocks++; 1854 p->id = n; 1855 blocks[n] = p; 1856 1857 number_blks_r(JT(p)); 1858 number_blks_r(JF(p)); 1859 } 1860 1861 /* 1862 * Return the number of stmts in the flowgraph reachable by 'p'. 1863 * The nodes should be unmarked before calling. 1864 * 1865 * Note that "stmts" means "instructions", and that this includes 1866 * 1867 * side-effect statements in 'p' (slength(p->stmts)); 1868 * 1869 * statements in the true branch from 'p' (count_stmts(JT(p))); 1870 * 1871 * statements in the false branch from 'p' (count_stmts(JF(p))); 1872 * 1873 * the conditional jump itself (1); 1874 * 1875 * an extra long jump if the true branch requires it (p->longjt); 1876 * 1877 * an extra long jump if the false branch requires it (p->longjf). 1878 */ 1879 static u_int 1880 count_stmts(struct block *p) 1881 { 1882 u_int n; 1883 1884 if (p == 0 || isMarked(p)) 1885 return 0; 1886 Mark(p); 1887 n = count_stmts(JT(p)) + count_stmts(JF(p)); 1888 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 1889 } 1890 1891 /* 1892 * Allocate memory. All allocation is done before optimization 1893 * is begun. A linear bound on the size of all data structures is computed 1894 * from the total number of blocks and/or statements. 1895 */ 1896 static void 1897 opt_init(struct block *root) 1898 { 1899 bpf_u_int32 *p; 1900 int i, n, max_stmts; 1901 1902 /* 1903 * First, count the blocks, so we can malloc an array to map 1904 * block number to block. Then, put the blocks into the array. 1905 */ 1906 unMarkAll(); 1907 n = count_blocks(root); 1908 blocks = (struct block **)calloc(n, sizeof(*blocks)); 1909 if (blocks == NULL) 1910 bpf_error("malloc"); 1911 unMarkAll(); 1912 n_blocks = 0; 1913 number_blks_r(root); 1914 1915 n_edges = 2 * n_blocks; 1916 edges = (struct edge **)calloc(n_edges, sizeof(*edges)); 1917 if (edges == NULL) 1918 bpf_error("malloc"); 1919 1920 /* 1921 * The number of levels is bounded by the number of nodes. 1922 */ 1923 levels = (struct block **)calloc(n_blocks, sizeof(*levels)); 1924 if (levels == NULL) 1925 bpf_error("malloc"); 1926 1927 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1; 1928 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 1929 1930 /* XXX */ 1931 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space) 1932 + n_edges * edgewords * sizeof(*space)); 1933 if (space == NULL) 1934 bpf_error("malloc"); 1935 p = space; 1936 all_dom_sets = p; 1937 for (i = 0; i < n; ++i) { 1938 blocks[i]->dom = p; 1939 p += nodewords; 1940 } 1941 all_closure_sets = p; 1942 for (i = 0; i < n; ++i) { 1943 blocks[i]->closure = p; 1944 p += nodewords; 1945 } 1946 all_edge_sets = p; 1947 for (i = 0; i < n; ++i) { 1948 register struct block *b = blocks[i]; 1949 1950 b->et.edom = p; 1951 p += edgewords; 1952 b->ef.edom = p; 1953 p += edgewords; 1954 b->et.id = i; 1955 edges[i] = &b->et; 1956 b->ef.id = n_blocks + i; 1957 edges[n_blocks + i] = &b->ef; 1958 b->et.pred = b; 1959 b->ef.pred = b; 1960 } 1961 max_stmts = 0; 1962 for (i = 0; i < n; ++i) 1963 max_stmts += slength(blocks[i]->stmts) + 1; 1964 /* 1965 * We allocate at most 3 value numbers per statement, 1966 * so this is an upper bound on the number of valnodes 1967 * we'll need. 1968 */ 1969 maxval = 3 * max_stmts; 1970 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap)); 1971 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base)); 1972 if (vmap == NULL || vnode_base == NULL) 1973 bpf_error("malloc"); 1974 } 1975 1976 /* 1977 * Some pointers used to convert the basic block form of the code, 1978 * into the array form that BPF requires. 'fstart' will point to 1979 * the malloc'd array while 'ftail' is used during the recursive traversal. 1980 */ 1981 static struct bpf_insn *fstart; 1982 static struct bpf_insn *ftail; 1983 1984 #ifdef BDEBUG 1985 int bids[1000]; 1986 #endif 1987 1988 /* 1989 * Returns true if successful. Returns false if a branch has 1990 * an offset that is too large. If so, we have marked that 1991 * branch so that on a subsequent iteration, it will be treated 1992 * properly. 1993 */ 1994 static int 1995 convert_code_r(struct block *p) 1996 { 1997 struct bpf_insn *dst; 1998 struct slist *src; 1999 int slen; 2000 u_int off; 2001 int extrajmps; /* number of extra jumps inserted */ 2002 struct slist **offset = NULL; 2003 2004 if (p == 0 || isMarked(p)) 2005 return (1); 2006 Mark(p); 2007 2008 if (convert_code_r(JF(p)) == 0) 2009 return (0); 2010 if (convert_code_r(JT(p)) == 0) 2011 return (0); 2012 2013 slen = slength(p->stmts); 2014 dst = ftail -= (slen + 1 + p->longjt + p->longjf); 2015 /* inflate length by any extra jumps */ 2016 2017 p->offset = dst - fstart; 2018 2019 /* generate offset[] for convenience */ 2020 if (slen) { 2021 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2022 if (!offset) { 2023 bpf_error("not enough core"); 2024 /*NOTREACHED*/ 2025 } 2026 } 2027 src = p->stmts; 2028 for (off = 0; off < slen && src; off++) { 2029 #if 0 2030 printf("off=%d src=%x\n", off, src); 2031 #endif 2032 offset[off] = src; 2033 src = src->next; 2034 } 2035 2036 off = 0; 2037 for (src = p->stmts; src; src = src->next) { 2038 if (src->s.code == NOP) 2039 continue; 2040 dst->code = (u_short)src->s.code; 2041 dst->k = src->s.k; 2042 2043 /* fill block-local relative jump */ 2044 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2045 #if 0 2046 if (src->s.jt || src->s.jf) { 2047 bpf_error("illegal jmp destination"); 2048 /*NOTREACHED*/ 2049 } 2050 #endif 2051 goto filled; 2052 } 2053 if (off == slen - 2) /*???*/ 2054 goto filled; 2055 2056 { 2057 int i; 2058 int jt, jf; 2059 const char *ljerr = "%s for block-local relative jump: off=%d"; 2060 2061 #if 0 2062 printf("code=%x off=%d %x %x\n", src->s.code, 2063 off, src->s.jt, src->s.jf); 2064 #endif 2065 2066 if (!src->s.jt || !src->s.jf) { 2067 bpf_error(ljerr, "no jmp destination", off); 2068 /*NOTREACHED*/ 2069 } 2070 2071 jt = jf = 0; 2072 for (i = 0; i < slen; i++) { 2073 if (offset[i] == src->s.jt) { 2074 if (jt) { 2075 bpf_error(ljerr, "multiple matches", off); 2076 /*NOTREACHED*/ 2077 } 2078 2079 dst->jt = i - off - 1; 2080 jt++; 2081 } 2082 if (offset[i] == src->s.jf) { 2083 if (jf) { 2084 bpf_error(ljerr, "multiple matches", off); 2085 /*NOTREACHED*/ 2086 } 2087 dst->jf = i - off - 1; 2088 jf++; 2089 } 2090 } 2091 if (!jt || !jf) { 2092 bpf_error(ljerr, "no destination found", off); 2093 /*NOTREACHED*/ 2094 } 2095 } 2096 filled: 2097 ++dst; 2098 ++off; 2099 } 2100 if (offset) 2101 free(offset); 2102 2103 #ifdef BDEBUG 2104 bids[dst - fstart] = p->id + 1; 2105 #endif 2106 dst->code = (u_short)p->s.code; 2107 dst->k = p->s.k; 2108 if (JT(p)) { 2109 extrajmps = 0; 2110 off = JT(p)->offset - (p->offset + slen) - 1; 2111 if (off >= 256) { 2112 /* offset too large for branch, must add a jump */ 2113 if (p->longjt == 0) { 2114 /* mark this instruction and retry */ 2115 p->longjt++; 2116 return(0); 2117 } 2118 /* branch if T to following jump */ 2119 dst->jt = extrajmps; 2120 extrajmps++; 2121 dst[extrajmps].code = BPF_JMP|BPF_JA; 2122 dst[extrajmps].k = off - extrajmps; 2123 } 2124 else 2125 dst->jt = off; 2126 off = JF(p)->offset - (p->offset + slen) - 1; 2127 if (off >= 256) { 2128 /* offset too large for branch, must add a jump */ 2129 if (p->longjf == 0) { 2130 /* mark this instruction and retry */ 2131 p->longjf++; 2132 return(0); 2133 } 2134 /* branch if F to following jump */ 2135 /* if two jumps are inserted, F goes to second one */ 2136 dst->jf = extrajmps; 2137 extrajmps++; 2138 dst[extrajmps].code = BPF_JMP|BPF_JA; 2139 dst[extrajmps].k = off - extrajmps; 2140 } 2141 else 2142 dst->jf = off; 2143 } 2144 return (1); 2145 } 2146 2147 2148 /* 2149 * Convert flowgraph intermediate representation to the 2150 * BPF array representation. Set *lenp to the number of instructions. 2151 * 2152 * This routine does *NOT* leak the memory pointed to by fp. It *must 2153 * not* do free(fp) before returning fp; doing so would make no sense, 2154 * as the BPF array pointed to by the return value of icode_to_fcode() 2155 * must be valid - it's being returned for use in a bpf_program structure. 2156 * 2157 * If it appears that icode_to_fcode() is leaking, the problem is that 2158 * the program using pcap_compile() is failing to free the memory in 2159 * the BPF program when it's done - the leak is in the program, not in 2160 * the routine that happens to be allocating the memory. (By analogy, if 2161 * a program calls fopen() without ever calling fclose() on the FILE *, 2162 * it will leak the FILE structure; the leak is not in fopen(), it's in 2163 * the program.) Change the program to use pcap_freecode() when it's 2164 * done with the filter program. See the pcap man page. 2165 */ 2166 struct bpf_insn * 2167 icode_to_fcode(struct block *root, u_int *lenp) 2168 { 2169 u_int n; 2170 struct bpf_insn *fp; 2171 2172 /* 2173 * Loop doing convert_code_r() until no branches remain 2174 * with too-large offsets. 2175 */ 2176 while (1) { 2177 unMarkAll(); 2178 n = *lenp = count_stmts(root); 2179 2180 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2181 if (fp == NULL) 2182 bpf_error("malloc"); 2183 memset((char *)fp, 0, sizeof(*fp) * n); 2184 fstart = fp; 2185 ftail = fp + n; 2186 2187 unMarkAll(); 2188 if (convert_code_r(root)) 2189 break; 2190 free(fp); 2191 } 2192 2193 return fp; 2194 } 2195 2196 /* 2197 * Make a copy of a BPF program and put it in the "fcode" member of 2198 * a "pcap_t". 2199 * 2200 * If we fail to allocate memory for the copy, fill in the "errbuf" 2201 * member of the "pcap_t" with an error message, and return -1; 2202 * otherwise, return 0. 2203 */ 2204 int 2205 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2206 { 2207 size_t prog_size; 2208 2209 /* 2210 * Validate the program. 2211 */ 2212 if (!bpf_validate(fp->bf_insns, fp->bf_len)) { 2213 snprintf(p->errbuf, sizeof(p->errbuf), 2214 "BPF program is not valid"); 2215 return (-1); 2216 } 2217 2218 /* 2219 * Free up any already installed program. 2220 */ 2221 pcap_freecode(&p->fcode); 2222 2223 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2224 p->fcode.bf_len = fp->bf_len; 2225 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2226 if (p->fcode.bf_insns == NULL) { 2227 snprintf(p->errbuf, sizeof(p->errbuf), 2228 "malloc: %s", pcap_strerror(errno)); 2229 return (-1); 2230 } 2231 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2232 return (0); 2233 } 2234 2235 #ifdef BDEBUG 2236 static void 2237 opt_dump(struct block *root) 2238 { 2239 struct bpf_program f; 2240 2241 memset(bids, 0, sizeof bids); 2242 f.bf_insns = icode_to_fcode(root, &f.bf_len); 2243 bpf_dump(&f, 1); 2244 putchar('\n'); 2245 free((char *)f.bf_insns); 2246 } 2247 #endif 2248