Home | History | Annotate | Download | only in IR
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/IR/Dominators.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/GenericDomTreeConstruction.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <algorithm>
     29 using namespace llvm;
     30 
     31 // Always verify dominfo if expensive checking is enabled.
     32 #ifdef XDEBUG
     33 static bool VerifyDomInfo = true;
     34 #else
     35 static bool VerifyDomInfo = false;
     36 #endif
     37 static cl::opt<bool,true>
     38 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     39                cl::desc("Verify dominator info (time consuming)"));
     40 
     41 bool BasicBlockEdge::isSingleEdge() const {
     42   const TerminatorInst *TI = Start->getTerminator();
     43   unsigned NumEdgesToEnd = 0;
     44   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
     45     if (TI->getSuccessor(i) == End)
     46       ++NumEdgesToEnd;
     47     if (NumEdgesToEnd >= 2)
     48       return false;
     49   }
     50   assert(NumEdgesToEnd == 1);
     51   return true;
     52 }
     53 
     54 //===----------------------------------------------------------------------===//
     55 //  DominatorTree Implementation
     56 //===----------------------------------------------------------------------===//
     57 //
     58 // Provide public access to DominatorTree information.  Implementation details
     59 // can be found in Dominators.h, GenericDomTree.h, and
     60 // GenericDomTreeConstruction.h.
     61 //
     62 //===----------------------------------------------------------------------===//
     63 
     64 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
     65 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
     66 
     67 #define LLVM_COMMA ,
     68 TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
     69     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
     70         Function &F));
     71 TEMPLATE_INSTANTIATION(
     72     void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
     73         DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
     74             LLVM_COMMA Function &F));
     75 #undef LLVM_COMMA
     76 
     77 // dominates - Return true if Def dominates a use in User. This performs
     78 // the special checks necessary if Def and User are in the same basic block.
     79 // Note that Def doesn't dominate a use in Def itself!
     80 bool DominatorTree::dominates(const Instruction *Def,
     81                               const Instruction *User) const {
     82   const BasicBlock *UseBB = User->getParent();
     83   const BasicBlock *DefBB = Def->getParent();
     84 
     85   // Any unreachable use is dominated, even if Def == User.
     86   if (!isReachableFromEntry(UseBB))
     87     return true;
     88 
     89   // Unreachable definitions don't dominate anything.
     90   if (!isReachableFromEntry(DefBB))
     91     return false;
     92 
     93   // An instruction doesn't dominate a use in itself.
     94   if (Def == User)
     95     return false;
     96 
     97   // The value defined by an invoke dominates an instruction only if
     98   // it dominates every instruction in UseBB.
     99   // A PHI is dominated only if the instruction dominates every possible use
    100   // in the UseBB.
    101   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
    102     return dominates(Def, UseBB);
    103 
    104   if (DefBB != UseBB)
    105     return dominates(DefBB, UseBB);
    106 
    107   // Loop through the basic block until we find Def or User.
    108   BasicBlock::const_iterator I = DefBB->begin();
    109   for (; &*I != Def && &*I != User; ++I)
    110     /*empty*/;
    111 
    112   return &*I == Def;
    113 }
    114 
    115 // true if Def would dominate a use in any instruction in UseBB.
    116 // note that dominates(Def, Def->getParent()) is false.
    117 bool DominatorTree::dominates(const Instruction *Def,
    118                               const BasicBlock *UseBB) const {
    119   const BasicBlock *DefBB = Def->getParent();
    120 
    121   // Any unreachable use is dominated, even if DefBB == UseBB.
    122   if (!isReachableFromEntry(UseBB))
    123     return true;
    124 
    125   // Unreachable definitions don't dominate anything.
    126   if (!isReachableFromEntry(DefBB))
    127     return false;
    128 
    129   if (DefBB == UseBB)
    130     return false;
    131 
    132   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
    133   if (!II)
    134     return dominates(DefBB, UseBB);
    135 
    136   // Invoke results are only usable in the normal destination, not in the
    137   // exceptional destination.
    138   BasicBlock *NormalDest = II->getNormalDest();
    139   BasicBlockEdge E(DefBB, NormalDest);
    140   return dominates(E, UseBB);
    141 }
    142 
    143 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    144                               const BasicBlock *UseBB) const {
    145   // Assert that we have a single edge. We could handle them by simply
    146   // returning false, but since isSingleEdge is linear on the number of
    147   // edges, the callers can normally handle them more efficiently.
    148   assert(BBE.isSingleEdge());
    149 
    150   // If the BB the edge ends in doesn't dominate the use BB, then the
    151   // edge also doesn't.
    152   const BasicBlock *Start = BBE.getStart();
    153   const BasicBlock *End = BBE.getEnd();
    154   if (!dominates(End, UseBB))
    155     return false;
    156 
    157   // Simple case: if the end BB has a single predecessor, the fact that it
    158   // dominates the use block implies that the edge also does.
    159   if (End->getSinglePredecessor())
    160     return true;
    161 
    162   // The normal edge from the invoke is critical. Conceptually, what we would
    163   // like to do is split it and check if the new block dominates the use.
    164   // With X being the new block, the graph would look like:
    165   //
    166   //        DefBB
    167   //          /\      .  .
    168   //         /  \     .  .
    169   //        /    \    .  .
    170   //       /      \   |  |
    171   //      A        X  B  C
    172   //      |         \ | /
    173   //      .          \|/
    174   //      .      NormalDest
    175   //      .
    176   //
    177   // Given the definition of dominance, NormalDest is dominated by X iff X
    178   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    179   // trivially dominates itself, so we only have to find if it dominates the
    180   // other predecessors. Since the only way out of X is via NormalDest, X can
    181   // only properly dominate a node if NormalDest dominates that node too.
    182   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
    183        PI != E; ++PI) {
    184     const BasicBlock *BB = *PI;
    185     if (BB == Start)
    186       continue;
    187 
    188     if (!dominates(End, BB))
    189       return false;
    190   }
    191   return true;
    192 }
    193 
    194 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
    195   // Assert that we have a single edge. We could handle them by simply
    196   // returning false, but since isSingleEdge is linear on the number of
    197   // edges, the callers can normally handle them more efficiently.
    198   assert(BBE.isSingleEdge());
    199 
    200   Instruction *UserInst = cast<Instruction>(U.getUser());
    201   // A PHI in the end of the edge is dominated by it.
    202   PHINode *PN = dyn_cast<PHINode>(UserInst);
    203   if (PN && PN->getParent() == BBE.getEnd() &&
    204       PN->getIncomingBlock(U) == BBE.getStart())
    205     return true;
    206 
    207   // Otherwise use the edge-dominates-block query, which
    208   // handles the crazy critical edge cases properly.
    209   const BasicBlock *UseBB;
    210   if (PN)
    211     UseBB = PN->getIncomingBlock(U);
    212   else
    213     UseBB = UserInst->getParent();
    214   return dominates(BBE, UseBB);
    215 }
    216 
    217 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
    218   Instruction *UserInst = cast<Instruction>(U.getUser());
    219   const BasicBlock *DefBB = Def->getParent();
    220 
    221   // Determine the block in which the use happens. PHI nodes use
    222   // their operands on edges; simulate this by thinking of the use
    223   // happening at the end of the predecessor block.
    224   const BasicBlock *UseBB;
    225   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    226     UseBB = PN->getIncomingBlock(U);
    227   else
    228     UseBB = UserInst->getParent();
    229 
    230   // Any unreachable use is dominated, even if Def == User.
    231   if (!isReachableFromEntry(UseBB))
    232     return true;
    233 
    234   // Unreachable definitions don't dominate anything.
    235   if (!isReachableFromEntry(DefBB))
    236     return false;
    237 
    238   // Invoke instructions define their return values on the edges
    239   // to their normal successors, so we have to handle them specially.
    240   // Among other things, this means they don't dominate anything in
    241   // their own block, except possibly a phi, so we don't need to
    242   // walk the block in any case.
    243   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    244     BasicBlock *NormalDest = II->getNormalDest();
    245     BasicBlockEdge E(DefBB, NormalDest);
    246     return dominates(E, U);
    247   }
    248 
    249   // If the def and use are in different blocks, do a simple CFG dominator
    250   // tree query.
    251   if (DefBB != UseBB)
    252     return dominates(DefBB, UseBB);
    253 
    254   // Ok, def and use are in the same block. If the def is an invoke, it
    255   // doesn't dominate anything in the block. If it's a PHI, it dominates
    256   // everything in the block.
    257   if (isa<PHINode>(UserInst))
    258     return true;
    259 
    260   // Otherwise, just loop through the basic block until we find Def or User.
    261   BasicBlock::const_iterator I = DefBB->begin();
    262   for (; &*I != Def && &*I != UserInst; ++I)
    263     /*empty*/;
    264 
    265   return &*I != UserInst;
    266 }
    267 
    268 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    269   Instruction *I = dyn_cast<Instruction>(U.getUser());
    270 
    271   // ConstantExprs aren't really reachable from the entry block, but they
    272   // don't need to be treated like unreachable code either.
    273   if (!I) return true;
    274 
    275   // PHI nodes use their operands on their incoming edges.
    276   if (PHINode *PN = dyn_cast<PHINode>(I))
    277     return isReachableFromEntry(PN->getIncomingBlock(U));
    278 
    279   // Everything else uses their operands in their own block.
    280   return isReachableFromEntry(I->getParent());
    281 }
    282 
    283 void DominatorTree::verifyDomTree() const {
    284   if (!VerifyDomInfo)
    285     return;
    286 
    287   Function &F = *getRoot()->getParent();
    288 
    289   DominatorTree OtherDT;
    290   OtherDT.recalculate(F);
    291   if (compare(OtherDT)) {
    292     errs() << "DominatorTree is not up to date!\nComputed:\n";
    293     print(errs());
    294     errs() << "\nActual:\n";
    295     OtherDT.print(errs());
    296     abort();
    297   }
    298 }
    299 
    300 //===----------------------------------------------------------------------===//
    301 //  DominatorTreeWrapperPass Implementation
    302 //===----------------------------------------------------------------------===//
    303 //
    304 // The implementation details of the wrapper pass that holds a DominatorTree.
    305 //
    306 //===----------------------------------------------------------------------===//
    307 
    308 char DominatorTreeWrapperPass::ID = 0;
    309 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
    310                 "Dominator Tree Construction", true, true)
    311 
    312 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
    313   DT.recalculate(F);
    314   return false;
    315 }
    316 
    317 void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
    318 
    319 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
    320   DT.print(OS);
    321 }
    322 
    323