1 /* 2 * SpanDSP - a series of DSP components for telephony 3 * 4 * g711.h - In line A-law and u-law conversion routines 5 * 6 * Written by Steve Underwood <steveu (at) coppice.org> 7 * 8 * Copyright (C) 2001 Steve Underwood 9 * 10 * Despite my general liking of the GPL, I place this code in the 11 * public domain for the benefit of all mankind - even the slimy 12 * ones who might try to proprietize my work and use it to my 13 * detriment. 14 * 15 * $Id: g711.h,v 1.1 2006/06/07 15:46:39 steveu Exp $ 16 * 17 * Modifications for WebRtc, 2011/04/28, by tlegrand: 18 * -Changed to use WebRtc types 19 * -Changed __inline__ to __inline 20 * -Two changes to make implementation bitexact with ITU-T reference implementation 21 */ 22 23 /*! \page g711_page A-law and mu-law handling 24 Lookup tables for A-law and u-law look attractive, until you consider the impact 25 on the CPU cache. If it causes a substantial area of your processor cache to get 26 hit too often, cache sloshing will severely slow things down. The main reason 27 these routines are slow in C, is the lack of direct access to the CPU's "find 28 the first 1" instruction. A little in-line assembler fixes that, and the 29 conversion routines can be faster than lookup tables, in most real world usage. 30 A "find the first 1" instruction is available on most modern CPUs, and is a 31 much underused feature. 32 33 If an assembly language method of bit searching is not available, these routines 34 revert to a method that can be a little slow, so the cache thrashing might not 35 seem so bad :( 36 37 Feel free to submit patches to add fast "find the first 1" support for your own 38 favourite processor. 39 40 Look up tables are used for transcoding between A-law and u-law, since it is 41 difficult to achieve the precise transcoding procedure laid down in the G.711 42 specification by other means. 43 */ 44 45 #if !defined(_G711_H_) 46 #define _G711_H_ 47 48 #ifdef __cplusplus 49 extern "C" { 50 #endif 51 52 #include "webrtc/typedefs.h" 53 54 #if defined(__i386__) 55 /*! \brief Find the bit position of the highest set bit in a word 56 \param bits The word to be searched 57 \return The bit number of the highest set bit, or -1 if the word is zero. */ 58 static __inline__ int top_bit(unsigned int bits) { 59 int res; 60 61 __asm__ __volatile__(" movl $-1,%%edx;\n" 62 " bsrl %%eax,%%edx;\n" 63 : "=d" (res) 64 : "a" (bits)); 65 return res; 66 } 67 68 /*! \brief Find the bit position of the lowest set bit in a word 69 \param bits The word to be searched 70 \return The bit number of the lowest set bit, or -1 if the word is zero. */ 71 static __inline__ int bottom_bit(unsigned int bits) { 72 int res; 73 74 __asm__ __volatile__(" movl $-1,%%edx;\n" 75 " bsfl %%eax,%%edx;\n" 76 : "=d" (res) 77 : "a" (bits)); 78 return res; 79 } 80 #elif defined(__x86_64__) 81 static __inline__ int top_bit(unsigned int bits) { 82 int res; 83 84 __asm__ __volatile__(" movq $-1,%%rdx;\n" 85 " bsrq %%rax,%%rdx;\n" 86 : "=d" (res) 87 : "a" (bits)); 88 return res; 89 } 90 91 static __inline__ int bottom_bit(unsigned int bits) { 92 int res; 93 94 __asm__ __volatile__(" movq $-1,%%rdx;\n" 95 " bsfq %%rax,%%rdx;\n" 96 : "=d" (res) 97 : "a" (bits)); 98 return res; 99 } 100 #else 101 static __inline int top_bit(unsigned int bits) { 102 int i; 103 104 if (bits == 0) { 105 return -1; 106 } 107 i = 0; 108 if (bits & 0xFFFF0000) { 109 bits &= 0xFFFF0000; 110 i += 16; 111 } 112 if (bits & 0xFF00FF00) { 113 bits &= 0xFF00FF00; 114 i += 8; 115 } 116 if (bits & 0xF0F0F0F0) { 117 bits &= 0xF0F0F0F0; 118 i += 4; 119 } 120 if (bits & 0xCCCCCCCC) { 121 bits &= 0xCCCCCCCC; 122 i += 2; 123 } 124 if (bits & 0xAAAAAAAA) { 125 bits &= 0xAAAAAAAA; 126 i += 1; 127 } 128 return i; 129 } 130 131 static __inline int bottom_bit(unsigned int bits) { 132 int i; 133 134 if (bits == 0) { 135 return -1; 136 } 137 i = 32; 138 if (bits & 0x0000FFFF) { 139 bits &= 0x0000FFFF; 140 i -= 16; 141 } 142 if (bits & 0x00FF00FF) { 143 bits &= 0x00FF00FF; 144 i -= 8; 145 } 146 if (bits & 0x0F0F0F0F) { 147 bits &= 0x0F0F0F0F; 148 i -= 4; 149 } 150 if (bits & 0x33333333) { 151 bits &= 0x33333333; 152 i -= 2; 153 } 154 if (bits & 0x55555555) { 155 bits &= 0x55555555; 156 i -= 1; 157 } 158 return i; 159 } 160 #endif 161 162 /* N.B. It is tempting to use look-up tables for A-law and u-law conversion. 163 * However, you should consider the cache footprint. 164 * 165 * A 64K byte table for linear to x-law and a 512 byte table for x-law to 166 * linear sound like peanuts these days, and shouldn't an array lookup be 167 * real fast? No! When the cache sloshes as badly as this one will, a tight 168 * calculation may be better. The messiest part is normally finding the 169 * segment, but a little inline assembly can fix that on an i386, x86_64 and 170 * many other modern processors. 171 */ 172 173 /* 174 * Mu-law is basically as follows: 175 * 176 * Biased Linear Input Code Compressed Code 177 * ------------------------ --------------- 178 * 00000001wxyza 000wxyz 179 * 0000001wxyzab 001wxyz 180 * 000001wxyzabc 010wxyz 181 * 00001wxyzabcd 011wxyz 182 * 0001wxyzabcde 100wxyz 183 * 001wxyzabcdef 101wxyz 184 * 01wxyzabcdefg 110wxyz 185 * 1wxyzabcdefgh 111wxyz 186 * 187 * Each biased linear code has a leading 1 which identifies the segment 188 * number. The value of the segment number is equal to 7 minus the number 189 * of leading 0's. The quantization interval is directly available as the 190 * four bits wxyz. * The trailing bits (a - h) are ignored. 191 * 192 * Ordinarily the complement of the resulting code word is used for 193 * transmission, and so the code word is complemented before it is returned. 194 * 195 * For further information see John C. Bellamy's Digital Telephony, 1982, 196 * John Wiley & Sons, pps 98-111 and 472-476. 197 */ 198 199 //#define ULAW_ZEROTRAP /* turn on the trap as per the MIL-STD */ 200 #define ULAW_BIAS 0x84 /* Bias for linear code. */ 201 202 /*! \brief Encode a linear sample to u-law 203 \param linear The sample to encode. 204 \return The u-law value. 205 */ 206 static __inline uint8_t linear_to_ulaw(int linear) { 207 uint8_t u_val; 208 int mask; 209 int seg; 210 211 /* Get the sign and the magnitude of the value. */ 212 if (linear < 0) { 213 /* WebRtc, tlegrand: -1 added to get bitexact to reference implementation */ 214 linear = ULAW_BIAS - linear - 1; 215 mask = 0x7F; 216 } else { 217 linear = ULAW_BIAS + linear; 218 mask = 0xFF; 219 } 220 221 seg = top_bit(linear | 0xFF) - 7; 222 223 /* 224 * Combine the sign, segment, quantization bits, 225 * and complement the code word. 226 */ 227 if (seg >= 8) 228 u_val = (uint8_t)(0x7F ^ mask); 229 else 230 u_val = (uint8_t)(((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask); 231 #ifdef ULAW_ZEROTRAP 232 /* Optional ITU trap */ 233 if (u_val == 0) 234 u_val = 0x02; 235 #endif 236 return u_val; 237 } 238 239 /*! \brief Decode an u-law sample to a linear value. 240 \param ulaw The u-law sample to decode. 241 \return The linear value. 242 */ 243 static __inline int16_t ulaw_to_linear(uint8_t ulaw) { 244 int t; 245 246 /* Complement to obtain normal u-law value. */ 247 ulaw = ~ulaw; 248 /* 249 * Extract and bias the quantization bits. Then 250 * shift up by the segment number and subtract out the bias. 251 */ 252 t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4); 253 return (int16_t)((ulaw & 0x80) ? (ULAW_BIAS - t) : (t - ULAW_BIAS)); 254 } 255 256 /* 257 * A-law is basically as follows: 258 * 259 * Linear Input Code Compressed Code 260 * ----------------- --------------- 261 * 0000000wxyza 000wxyz 262 * 0000001wxyza 001wxyz 263 * 000001wxyzab 010wxyz 264 * 00001wxyzabc 011wxyz 265 * 0001wxyzabcd 100wxyz 266 * 001wxyzabcde 101wxyz 267 * 01wxyzabcdef 110wxyz 268 * 1wxyzabcdefg 111wxyz 269 * 270 * For further information see John C. Bellamy's Digital Telephony, 1982, 271 * John Wiley & Sons, pps 98-111 and 472-476. 272 */ 273 274 #define ALAW_AMI_MASK 0x55 275 276 /*! \brief Encode a linear sample to A-law 277 \param linear The sample to encode. 278 \return The A-law value. 279 */ 280 static __inline uint8_t linear_to_alaw(int linear) { 281 int mask; 282 int seg; 283 284 if (linear >= 0) { 285 /* Sign (bit 7) bit = 1 */ 286 mask = ALAW_AMI_MASK | 0x80; 287 } else { 288 /* Sign (bit 7) bit = 0 */ 289 mask = ALAW_AMI_MASK; 290 /* WebRtc, tlegrand: Changed from -8 to -1 to get bitexact to reference 291 * implementation */ 292 linear = -linear - 1; 293 } 294 295 /* Convert the scaled magnitude to segment number. */ 296 seg = top_bit(linear | 0xFF) - 7; 297 if (seg >= 8) { 298 if (linear >= 0) { 299 /* Out of range. Return maximum value. */ 300 return (uint8_t)(0x7F ^ mask); 301 } 302 /* We must be just a tiny step below zero */ 303 return (uint8_t)(0x00 ^ mask); 304 } 305 /* Combine the sign, segment, and quantization bits. */ 306 return (uint8_t)(((seg << 4) | ((linear >> ((seg) ? (seg + 3) : 4)) & 0x0F)) ^ 307 mask); 308 } 309 310 /*! \brief Decode an A-law sample to a linear value. 311 \param alaw The A-law sample to decode. 312 \return The linear value. 313 */ 314 static __inline int16_t alaw_to_linear(uint8_t alaw) { 315 int i; 316 int seg; 317 318 alaw ^= ALAW_AMI_MASK; 319 i = ((alaw & 0x0F) << 4); 320 seg = (((int) alaw & 0x70) >> 4); 321 if (seg) 322 i = (i + 0x108) << (seg - 1); 323 else 324 i += 8; 325 return (int16_t)((alaw & 0x80) ? i : -i); 326 } 327 328 /*! \brief Transcode from A-law to u-law, using the procedure defined in G.711. 329 \param alaw The A-law sample to transcode. 330 \return The best matching u-law value. 331 */ 332 uint8_t alaw_to_ulaw(uint8_t alaw); 333 334 /*! \brief Transcode from u-law to A-law, using the procedure defined in G.711. 335 \param alaw The u-law sample to transcode. 336 \return The best matching A-law value. 337 */ 338 uint8_t ulaw_to_alaw(uint8_t ulaw); 339 340 #ifdef __cplusplus 341 } 342 #endif 343 344 #endif 345