Home | History | Annotate | Download | only in compiler
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_writer.h"
     18 
     19 #include <sys/stat.h>
     20 
     21 #include <memory>
     22 #include <vector>
     23 
     24 #include "base/logging.h"
     25 #include "base/unix_file/fd_file.h"
     26 #include "class_linker.h"
     27 #include "compiled_method.h"
     28 #include "dex_file-inl.h"
     29 #include "driver/compiler_driver.h"
     30 #include "elf_file.h"
     31 #include "elf_utils.h"
     32 #include "elf_patcher.h"
     33 #include "elf_writer.h"
     34 #include "gc/accounting/card_table-inl.h"
     35 #include "gc/accounting/heap_bitmap.h"
     36 #include "gc/accounting/space_bitmap-inl.h"
     37 #include "gc/heap.h"
     38 #include "gc/space/large_object_space.h"
     39 #include "gc/space/space-inl.h"
     40 #include "globals.h"
     41 #include "image.h"
     42 #include "intern_table.h"
     43 #include "lock_word.h"
     44 #include "mirror/art_field-inl.h"
     45 #include "mirror/art_method-inl.h"
     46 #include "mirror/array-inl.h"
     47 #include "mirror/class-inl.h"
     48 #include "mirror/class_loader.h"
     49 #include "mirror/dex_cache-inl.h"
     50 #include "mirror/object-inl.h"
     51 #include "mirror/object_array-inl.h"
     52 #include "mirror/string-inl.h"
     53 #include "oat.h"
     54 #include "oat_file.h"
     55 #include "runtime.h"
     56 #include "scoped_thread_state_change.h"
     57 #include "handle_scope-inl.h"
     58 
     59 #include <numeric>
     60 
     61 using ::art::mirror::ArtField;
     62 using ::art::mirror::ArtMethod;
     63 using ::art::mirror::Class;
     64 using ::art::mirror::DexCache;
     65 using ::art::mirror::EntryPointFromInterpreter;
     66 using ::art::mirror::Object;
     67 using ::art::mirror::ObjectArray;
     68 using ::art::mirror::String;
     69 
     70 namespace art {
     71 
     72 // Separate objects into multiple bins to optimize dirty memory use.
     73 static constexpr bool kBinObjects = true;
     74 
     75 bool ImageWriter::Write(const std::string& image_filename,
     76                         uintptr_t image_begin,
     77                         const std::string& oat_filename,
     78                         const std::string& oat_location,
     79                         bool compile_pic) {
     80   CHECK(!image_filename.empty());
     81 
     82   CHECK_NE(image_begin, 0U);
     83   image_begin_ = reinterpret_cast<byte*>(image_begin);
     84   compile_pic_ = compile_pic;
     85 
     86   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
     87 
     88   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
     89   std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
     90   if (oat_file.get() == NULL) {
     91     LOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location;
     92     return false;
     93   }
     94   std::string error_msg;
     95   oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, &error_msg);
     96   if (oat_file_ == nullptr) {
     97     LOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location
     98         << ": " << error_msg;
     99     return false;
    100   }
    101   CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_);
    102 
    103   interpreter_to_interpreter_bridge_offset_ =
    104       oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset();
    105   interpreter_to_compiled_code_bridge_offset_ =
    106       oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset();
    107 
    108   jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset();
    109 
    110   portable_imt_conflict_trampoline_offset_ =
    111       oat_file_->GetOatHeader().GetPortableImtConflictTrampolineOffset();
    112   portable_resolution_trampoline_offset_ =
    113       oat_file_->GetOatHeader().GetPortableResolutionTrampolineOffset();
    114   portable_to_interpreter_bridge_offset_ =
    115       oat_file_->GetOatHeader().GetPortableToInterpreterBridgeOffset();
    116 
    117   quick_generic_jni_trampoline_offset_ =
    118       oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset();
    119   quick_imt_conflict_trampoline_offset_ =
    120       oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset();
    121   quick_resolution_trampoline_offset_ =
    122       oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset();
    123   quick_to_interpreter_bridge_offset_ =
    124       oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset();
    125   {
    126     Thread::Current()->TransitionFromSuspendedToRunnable();
    127     PruneNonImageClasses();  // Remove junk
    128     ComputeLazyFieldsForImageClasses();  // Add useful information
    129     ProcessStrings();
    130     Thread::Current()->TransitionFromRunnableToSuspended(kNative);
    131   }
    132   gc::Heap* heap = Runtime::Current()->GetHeap();
    133   heap->CollectGarbage(false);  // Remove garbage.
    134 
    135   if (!AllocMemory()) {
    136     return false;
    137   }
    138 
    139   if (kIsDebugBuild) {
    140     ScopedObjectAccess soa(Thread::Current());
    141     CheckNonImageClassesRemoved();
    142   }
    143 
    144   Thread::Current()->TransitionFromSuspendedToRunnable();
    145   size_t oat_loaded_size = 0;
    146   size_t oat_data_offset = 0;
    147   ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset);
    148   CalculateNewObjectOffsets(oat_loaded_size, oat_data_offset);
    149   CopyAndFixupObjects();
    150 
    151   PatchOatCodeAndMethods(oat_file.get());
    152 
    153   // Before flushing, which might fail, release the mutator lock.
    154   Thread::Current()->TransitionFromRunnableToSuspended(kNative);
    155 
    156   if (oat_file->FlushCloseOrErase() != 0) {
    157     LOG(ERROR) << "Failed to flush and close oat file " << oat_filename << " for " << oat_location;
    158     return false;
    159   }
    160 
    161   std::unique_ptr<File> image_file(OS::CreateEmptyFile(image_filename.c_str()));
    162   ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
    163   if (image_file.get() == NULL) {
    164     LOG(ERROR) << "Failed to open image file " << image_filename;
    165     return false;
    166   }
    167   if (fchmod(image_file->Fd(), 0644) != 0) {
    168     PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
    169     image_file->Erase();
    170     return EXIT_FAILURE;
    171   }
    172 
    173   // Write out the image.
    174   CHECK_EQ(image_end_, image_header->GetImageSize());
    175   if (!image_file->WriteFully(image_->Begin(), image_end_)) {
    176     PLOG(ERROR) << "Failed to write image file " << image_filename;
    177     image_file->Erase();
    178     return false;
    179   }
    180 
    181   // Write out the image bitmap at the page aligned start of the image end.
    182   CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize);
    183   if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()),
    184                          image_header->GetImageBitmapSize(),
    185                          image_header->GetImageBitmapOffset())) {
    186     PLOG(ERROR) << "Failed to write image file " << image_filename;
    187     image_file->Erase();
    188     return false;
    189   }
    190 
    191   if (image_file->FlushCloseOrErase() != 0) {
    192     PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
    193     return false;
    194   }
    195   return true;
    196 }
    197 
    198 void ImageWriter::SetImageOffset(mirror::Object* object,
    199                                  ImageWriter::BinSlot bin_slot,
    200                                  size_t offset) {
    201   DCHECK(object != nullptr);
    202   DCHECK_NE(offset, 0U);
    203   mirror::Object* obj = reinterpret_cast<mirror::Object*>(image_->Begin() + offset);
    204   DCHECK_ALIGNED(obj, kObjectAlignment);
    205 
    206   image_bitmap_->Set(obj);  // Mark the obj as mutated, since we will end up changing it.
    207   {
    208     // Remember the object-inside-of-the-image's hash code so we can restore it after the copy.
    209     auto hash_it = saved_hashes_map_.find(bin_slot);
    210     if (hash_it != saved_hashes_map_.end()) {
    211       std::pair<BinSlot, uint32_t> slot_hash = *hash_it;
    212       saved_hashes_.push_back(std::make_pair(obj, slot_hash.second));
    213       saved_hashes_map_.erase(hash_it);
    214     }
    215   }
    216   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
    217   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
    218   DCHECK(IsImageOffsetAssigned(object));
    219 }
    220 
    221 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
    222   DCHECK(object != nullptr);
    223   DCHECK_NE(image_objects_offset_begin_, 0u);
    224 
    225   size_t previous_bin_sizes = GetBinSizeSum(bin_slot.GetBin());  // sum sizes in [0..bin#)
    226   size_t new_offset = image_objects_offset_begin_ + previous_bin_sizes + bin_slot.GetIndex();
    227   DCHECK_ALIGNED(new_offset, kObjectAlignment);
    228 
    229   SetImageOffset(object, bin_slot, new_offset);
    230   DCHECK_LT(new_offset, image_end_);
    231 }
    232 
    233 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
    234   // Will also return true if the bin slot was assigned since we are reusing the lock word.
    235   DCHECK(object != nullptr);
    236   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
    237 }
    238 
    239 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
    240   DCHECK(object != nullptr);
    241   DCHECK(IsImageOffsetAssigned(object));
    242   LockWord lock_word = object->GetLockWord(false);
    243   size_t offset = lock_word.ForwardingAddress();
    244   DCHECK_LT(offset, image_end_);
    245   return offset;
    246 }
    247 
    248 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
    249   DCHECK(object != nullptr);
    250   DCHECK(!IsImageOffsetAssigned(object));
    251   DCHECK(!IsImageBinSlotAssigned(object));
    252 
    253   // Before we stomp over the lock word, save the hash code for later.
    254   Monitor::Deflate(Thread::Current(), object);;
    255   LockWord lw(object->GetLockWord(false));
    256   switch (lw.GetState()) {
    257     case LockWord::kFatLocked: {
    258       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
    259       break;
    260     }
    261     case LockWord::kThinLocked: {
    262       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
    263       break;
    264     }
    265     case LockWord::kUnlocked:
    266       // No hash, don't need to save it.
    267       break;
    268     case LockWord::kHashCode:
    269       saved_hashes_map_[bin_slot] = lw.GetHashCode();
    270       break;
    271     default:
    272       LOG(FATAL) << "Unreachable.";
    273       break;
    274   }
    275   object->SetLockWord(LockWord::FromForwardingAddress(static_cast<uint32_t>(bin_slot)),
    276                       false);
    277   DCHECK(IsImageBinSlotAssigned(object));
    278 }
    279 
    280 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
    281   DCHECK(object != nullptr);
    282   size_t object_size;
    283   if (object->IsArtMethod()) {
    284     // Methods are sized based on the target pointer size.
    285     object_size = mirror::ArtMethod::InstanceSize(target_ptr_size_);
    286   } else {
    287     object_size = object->SizeOf();
    288   }
    289 
    290   // The magic happens here. We segregate objects into different bins based
    291   // on how likely they are to get dirty at runtime.
    292   //
    293   // Likely-to-dirty objects get packed together into the same bin so that
    294   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
    295   // maximized.
    296   //
    297   // This means more pages will stay either clean or shared dirty (with zygote) and
    298   // the app will use less of its own (private) memory.
    299   Bin bin = kBinRegular;
    300 
    301   if (kBinObjects) {
    302     //
    303     // Changing the bin of an object is purely a memory-use tuning.
    304     // It has no change on runtime correctness.
    305     //
    306     // Memory analysis has determined that the following types of objects get dirtied
    307     // the most:
    308     //
    309     // * Class'es which are verified [their clinit runs only at runtime]
    310     //   - classes in general [because their static fields get overwritten]
    311     //   - initialized classes with all-final statics are unlikely to be ever dirty,
    312     //     so bin them separately
    313     // * Art Methods that are:
    314     //   - native [their native entry point is not looked up until runtime]
    315     //   - have declaring classes that aren't initialized
    316     //            [their interpreter/quick entry points are trampolines until the class
    317     //             becomes initialized]
    318     //
    319     // We also assume the following objects get dirtied either never or extremely rarely:
    320     //  * Strings (they are immutable)
    321     //  * Art methods that aren't native and have initialized declared classes
    322     //
    323     // We assume that "regular" bin objects are highly unlikely to become dirtied,
    324     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
    325     //
    326     if (object->IsClass()) {
    327       bin = kBinClassVerified;
    328       mirror::Class* klass = object->AsClass();
    329 
    330       if (klass->GetStatus() == Class::kStatusInitialized) {
    331         bin = kBinClassInitialized;
    332 
    333         // If the class's static fields are all final, put it into a separate bin
    334         // since it's very likely it will stay clean.
    335         uint32_t num_static_fields = klass->NumStaticFields();
    336         if (num_static_fields == 0) {
    337           bin = kBinClassInitializedFinalStatics;
    338         } else {
    339           // Maybe all the statics are final?
    340           bool all_final = true;
    341           for (uint32_t i = 0; i < num_static_fields; ++i) {
    342             ArtField* field = klass->GetStaticField(i);
    343             if (!field->IsFinal()) {
    344               all_final = false;
    345               break;
    346             }
    347           }
    348 
    349           if (all_final) {
    350             bin = kBinClassInitializedFinalStatics;
    351           }
    352         }
    353       }
    354     } else if (object->IsArtMethod<kVerifyNone>()) {
    355       mirror::ArtMethod* art_method = down_cast<ArtMethod*>(object);
    356       if (art_method->IsNative()) {
    357         bin = kBinArtMethodNative;
    358       } else {
    359         mirror::Class* declaring_class = art_method->GetDeclaringClass();
    360         if (declaring_class->GetStatus() != Class::kStatusInitialized) {
    361           bin = kBinArtMethodNotInitialized;
    362         } else {
    363           // This is highly unlikely to dirty since there's no entry points to mutate.
    364           bin = kBinArtMethodsManagedInitialized;
    365         }
    366       }
    367     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
    368       bin = kBinString;  // Strings are almost always immutable (except for object header).
    369     }  // else bin = kBinRegular
    370   }
    371 
    372   size_t current_offset = bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
    373   // Move the current bin size up to accomodate the object we just assigned a bin slot.
    374   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
    375   bin_slot_sizes_[bin] += offset_delta;
    376 
    377   BinSlot new_bin_slot(bin, current_offset);
    378   SetImageBinSlot(object, new_bin_slot);
    379 
    380   ++bin_slot_count_[bin];
    381 
    382   DCHECK_LT(GetBinSizeSum(), image_->Size());
    383 
    384   // Grow the image closer to the end by the object we just assigned.
    385   image_end_ += offset_delta;
    386   DCHECK_LT(image_end_, image_->Size());
    387 }
    388 
    389 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
    390   DCHECK(object != nullptr);
    391 
    392   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
    393   // If it's in some other state, then we haven't yet assigned an image bin slot.
    394   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
    395     return false;
    396   } else if (kIsDebugBuild) {
    397     LockWord lock_word = object->GetLockWord(false);
    398     size_t offset = lock_word.ForwardingAddress();
    399     BinSlot bin_slot(offset);
    400     DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()])
    401       << "bin slot offset should not exceed the size of that bin";
    402   }
    403   return true;
    404 }
    405 
    406 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
    407   DCHECK(object != nullptr);
    408   DCHECK(IsImageBinSlotAssigned(object));
    409 
    410   LockWord lock_word = object->GetLockWord(false);
    411   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
    412   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
    413 
    414   BinSlot bin_slot(static_cast<uint32_t>(offset));
    415   DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]);
    416 
    417   return bin_slot;
    418 }
    419 
    420 bool ImageWriter::AllocMemory() {
    421   size_t length = RoundUp(Runtime::Current()->GetHeap()->GetTotalMemory(), kPageSize);
    422   std::string error_msg;
    423   image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, PROT_READ | PROT_WRITE,
    424                                     true, &error_msg));
    425   if (UNLIKELY(image_.get() == nullptr)) {
    426     LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
    427     return false;
    428   }
    429 
    430   // Create the image bitmap.
    431   image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", image_->Begin(),
    432                                                                     length));
    433   if (image_bitmap_.get() == nullptr) {
    434     LOG(ERROR) << "Failed to allocate memory for image bitmap";
    435     return false;
    436   }
    437   return true;
    438 }
    439 
    440 void ImageWriter::ComputeLazyFieldsForImageClasses() {
    441   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    442   class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL);
    443 }
    444 
    445 bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) {
    446   Thread* self = Thread::Current();
    447   StackHandleScope<1> hs(self);
    448   mirror::Class::ComputeName(hs.NewHandle(c));
    449   return true;
    450 }
    451 
    452 // Count the number of strings in the heap and put the result in arg as a size_t pointer.
    453 static void CountStringsCallback(Object* obj, void* arg)
    454     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    455   if (obj->GetClass()->IsStringClass()) {
    456     ++*reinterpret_cast<size_t*>(arg);
    457   }
    458 }
    459 
    460 // Collect all the java.lang.String in the heap and put them in the output strings_ array.
    461 class StringCollector {
    462  public:
    463   StringCollector(Handle<mirror::ObjectArray<mirror::String>> strings, size_t index)
    464       : strings_(strings), index_(index) {
    465   }
    466   static void Callback(Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    467     auto* collector = reinterpret_cast<StringCollector*>(arg);
    468     if (obj->GetClass()->IsStringClass()) {
    469       collector->strings_->SetWithoutChecks<false>(collector->index_++, obj->AsString());
    470     }
    471   }
    472   size_t GetIndex() const {
    473     return index_;
    474   }
    475 
    476  private:
    477   Handle<mirror::ObjectArray<mirror::String>> strings_;
    478   size_t index_;
    479 };
    480 
    481 // Compare strings based on length, used for sorting strings by length / reverse length.
    482 class StringLengthComparator {
    483  public:
    484   explicit StringLengthComparator(Handle<mirror::ObjectArray<mirror::String>> strings)
    485       : strings_(strings) {
    486   }
    487   bool operator()(size_t a, size_t b) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    488     return strings_->GetWithoutChecks(a)->GetLength() < strings_->GetWithoutChecks(b)->GetLength();
    489   }
    490 
    491  private:
    492   Handle<mirror::ObjectArray<mirror::String>> strings_;
    493 };
    494 
    495 // Normal string < comparison through the chars_ array.
    496 class SubstringComparator {
    497  public:
    498   explicit SubstringComparator(const std::vector<uint16_t>* const chars) : chars_(chars) {
    499   }
    500   bool operator()(const std::pair<size_t, size_t>& a, const std::pair<size_t, size_t>& b) {
    501     return std::lexicographical_compare(chars_->begin() + a.first,
    502                                         chars_->begin() + a.first + a.second,
    503                                         chars_->begin() + b.first,
    504                                         chars_->begin() + b.first + b.second);
    505   }
    506 
    507  private:
    508   const std::vector<uint16_t>* const chars_;
    509 };
    510 
    511 void ImageWriter::ProcessStrings() {
    512   size_t total_strings = 0;
    513   gc::Heap* heap = Runtime::Current()->GetHeap();
    514   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    515   {
    516     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    517     heap->VisitObjects(CountStringsCallback, &total_strings);  // Count the strings.
    518   }
    519   Thread* self = Thread::Current();
    520   StackHandleScope<1> hs(self);
    521   auto strings = hs.NewHandle(cl->AllocStringArray(self, total_strings));
    522   StringCollector string_collector(strings, 0U);
    523   {
    524     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    525     // Read strings into the array.
    526     heap->VisitObjects(StringCollector::Callback, &string_collector);
    527   }
    528   // Some strings could have gotten freed if AllocStringArray caused a GC.
    529   CHECK_LE(string_collector.GetIndex(), total_strings);
    530   total_strings = string_collector.GetIndex();
    531   size_t total_length = 0;
    532   std::vector<size_t> reverse_sorted_strings;
    533   for (size_t i = 0; i < total_strings; ++i) {
    534     mirror::String* s = strings->GetWithoutChecks(i);
    535     // Look up the string in the array.
    536     total_length += s->GetLength();
    537     reverse_sorted_strings.push_back(i);
    538   }
    539   // Sort by reverse length.
    540   StringLengthComparator comparator(strings);
    541   std::sort(reverse_sorted_strings.rbegin(), reverse_sorted_strings.rend(), comparator);
    542   // Deduplicate prefixes and add strings to the char array.
    543   std::vector<uint16_t> combined_chars(total_length, 0U);
    544   size_t num_chars = 0;
    545   // Characters of strings which are non equal prefix of another string (not the same string).
    546   // We don't count the savings from equal strings since these would get interned later anyways.
    547   size_t prefix_saved_chars = 0;
    548   std::set<std::pair<size_t, size_t>, SubstringComparator> existing_strings((
    549       SubstringComparator(&combined_chars)));
    550   for (size_t i = 0; i < total_strings; ++i) {
    551     mirror::String* s = strings->GetWithoutChecks(reverse_sorted_strings[i]);
    552     // Add the string to the end of the char array.
    553     size_t length = s->GetLength();
    554     for (size_t j = 0; j < length; ++j) {
    555       combined_chars[num_chars++] = s->CharAt(j);
    556     }
    557     // Try to see if the string exists as a prefix of an existing string.
    558     size_t new_offset = 0;
    559     std::pair<size_t, size_t> new_string(num_chars - length, length);
    560     auto it = existing_strings.lower_bound(new_string);
    561     bool is_prefix = true;
    562     if (it == existing_strings.end()) {
    563       is_prefix = false;
    564     } else {
    565       CHECK_LE(length, it->second);
    566       for (size_t j = 0; j < length; ++j) {
    567         if (combined_chars[it->first + j] != s->CharAt(j)) {
    568           is_prefix = false;
    569           break;
    570         }
    571       }
    572     }
    573     if (is_prefix) {
    574       // Shares a prefix, set the offset to where the new offset will be.
    575       new_offset = it->first;
    576       // Remove the added chars.
    577       num_chars -= length;
    578       if (it->second != length) {
    579         prefix_saved_chars += length;
    580       }
    581     } else {
    582       new_offset = new_string.first;
    583       existing_strings.insert(new_string);
    584     }
    585     s->SetOffset(new_offset);
    586   }
    587   // Allocate and update the char arrays.
    588   auto* array = mirror::CharArray::Alloc(self, num_chars);
    589   for (size_t i = 0; i < num_chars; ++i) {
    590     array->SetWithoutChecks<false>(i, combined_chars[i]);
    591   }
    592   for (size_t i = 0; i < total_strings; ++i) {
    593     strings->GetWithoutChecks(i)->SetArray(array);
    594   }
    595   if (kIsDebugBuild || VLOG_IS_ON(compiler)) {
    596     LOG(INFO) << "Total # image strings=" << total_strings << " combined length="
    597         << total_length << " prefix saved chars=" << prefix_saved_chars;
    598   }
    599   ComputeEagerResolvedStrings();
    600 }
    601 
    602 void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg) {
    603   if (!obj->GetClass()->IsStringClass()) {
    604     return;
    605   }
    606   mirror::String* string = obj->AsString();
    607   const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset();
    608   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    609   ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
    610   size_t dex_cache_count = class_linker->GetDexCacheCount();
    611   for (size_t i = 0; i < dex_cache_count; ++i) {
    612     DexCache* dex_cache = class_linker->GetDexCache(i);
    613     const DexFile& dex_file = *dex_cache->GetDexFile();
    614     const DexFile::StringId* string_id;
    615     if (UNLIKELY(string->GetLength() == 0)) {
    616       string_id = dex_file.FindStringId("");
    617     } else {
    618       string_id = dex_file.FindStringId(utf16_string);
    619     }
    620     if (string_id != nullptr) {
    621       // This string occurs in this dex file, assign the dex cache entry.
    622       uint32_t string_idx = dex_file.GetIndexForStringId(*string_id);
    623       if (dex_cache->GetResolvedString(string_idx) == NULL) {
    624         dex_cache->SetResolvedString(string_idx, string);
    625       }
    626     }
    627   }
    628 }
    629 
    630 void ImageWriter::ComputeEagerResolvedStrings() {
    631   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    632   Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this);
    633 }
    634 
    635 bool ImageWriter::IsImageClass(Class* klass) {
    636   std::string temp;
    637   return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
    638 }
    639 
    640 struct NonImageClasses {
    641   ImageWriter* image_writer;
    642   std::set<std::string>* non_image_classes;
    643 };
    644 
    645 void ImageWriter::PruneNonImageClasses() {
    646   if (compiler_driver_.GetImageClasses() == NULL) {
    647     return;
    648   }
    649   Runtime* runtime = Runtime::Current();
    650   ClassLinker* class_linker = runtime->GetClassLinker();
    651 
    652   // Make a list of classes we would like to prune.
    653   std::set<std::string> non_image_classes;
    654   NonImageClasses context;
    655   context.image_writer = this;
    656   context.non_image_classes = &non_image_classes;
    657   class_linker->VisitClasses(NonImageClassesVisitor, &context);
    658 
    659   // Remove the undesired classes from the class roots.
    660   for (const std::string& it : non_image_classes) {
    661     bool result = class_linker->RemoveClass(it.c_str(), NULL);
    662     DCHECK(result);
    663   }
    664 
    665   // Clear references to removed classes from the DexCaches.
    666   ArtMethod* resolution_method = runtime->GetResolutionMethod();
    667   ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
    668   size_t dex_cache_count = class_linker->GetDexCacheCount();
    669   for (size_t idx = 0; idx < dex_cache_count; ++idx) {
    670     DexCache* dex_cache = class_linker->GetDexCache(idx);
    671     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
    672       Class* klass = dex_cache->GetResolvedType(i);
    673       if (klass != NULL && !IsImageClass(klass)) {
    674         dex_cache->SetResolvedType(i, NULL);
    675       }
    676     }
    677     for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) {
    678       ArtMethod* method = dex_cache->GetResolvedMethod(i);
    679       if (method != NULL && !IsImageClass(method->GetDeclaringClass())) {
    680         dex_cache->SetResolvedMethod(i, resolution_method);
    681       }
    682     }
    683     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
    684       ArtField* field = dex_cache->GetResolvedField(i);
    685       if (field != NULL && !IsImageClass(field->GetDeclaringClass())) {
    686         dex_cache->SetResolvedField(i, NULL);
    687       }
    688     }
    689   }
    690 }
    691 
    692 bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) {
    693   NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg);
    694   if (!context->image_writer->IsImageClass(klass)) {
    695     std::string temp;
    696     context->non_image_classes->insert(klass->GetDescriptor(&temp));
    697   }
    698   return true;
    699 }
    700 
    701 void ImageWriter::CheckNonImageClassesRemoved() {
    702   if (compiler_driver_.GetImageClasses() != nullptr) {
    703     gc::Heap* heap = Runtime::Current()->GetHeap();
    704     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    705     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
    706   }
    707 }
    708 
    709 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
    710   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
    711   if (obj->IsClass()) {
    712     Class* klass = obj->AsClass();
    713     if (!image_writer->IsImageClass(klass)) {
    714       image_writer->DumpImageClasses();
    715       std::string temp;
    716       CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp)
    717                                                << " " << PrettyDescriptor(klass);
    718     }
    719   }
    720 }
    721 
    722 void ImageWriter::DumpImageClasses() {
    723   const std::set<std::string>* image_classes = compiler_driver_.GetImageClasses();
    724   CHECK(image_classes != NULL);
    725   for (const std::string& image_class : *image_classes) {
    726     LOG(INFO) << " " << image_class;
    727   }
    728 }
    729 
    730 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
    731   DCHECK(obj != NULL);
    732   // if it is a string, we want to intern it if its not interned.
    733   if (obj->GetClass()->IsStringClass()) {
    734     // we must be an interned string that was forward referenced and already assigned
    735     if (IsImageBinSlotAssigned(obj)) {
    736       DCHECK_EQ(obj, obj->AsString()->Intern());
    737       return;
    738     }
    739     mirror::String* const interned = obj->AsString()->Intern();
    740     if (obj != interned) {
    741       if (!IsImageBinSlotAssigned(interned)) {
    742         // interned obj is after us, allocate its location early
    743         AssignImageBinSlot(interned);
    744       }
    745       // point those looking for this object to the interned version.
    746       SetImageBinSlot(obj, GetImageBinSlot(interned));
    747       return;
    748     }
    749     // else (obj == interned), nothing to do but fall through to the normal case
    750   }
    751 
    752   AssignImageBinSlot(obj);
    753 }
    754 
    755 ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
    756   Runtime* runtime = Runtime::Current();
    757   ClassLinker* class_linker = runtime->GetClassLinker();
    758   Thread* self = Thread::Current();
    759   StackHandleScope<3> hs(self);
    760   Handle<Class> object_array_class(hs.NewHandle(
    761       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
    762 
    763   // build an Object[] of all the DexCaches used in the source_space_.
    764   // Since we can't hold the dex lock when allocating the dex_caches
    765   // ObjectArray, we lock the dex lock twice, first to get the number
    766   // of dex caches first and then lock it again to copy the dex
    767   // caches. We check that the number of dex caches does not change.
    768   size_t dex_cache_count;
    769   {
    770     ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
    771     dex_cache_count = class_linker->GetDexCacheCount();
    772   }
    773   Handle<ObjectArray<Object>> dex_caches(
    774       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(),
    775                                               dex_cache_count)));
    776   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
    777   {
    778     ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
    779     CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount())
    780         << "The number of dex caches changed.";
    781     for (size_t i = 0; i < dex_cache_count; ++i) {
    782       dex_caches->Set<false>(i, class_linker->GetDexCache(i));
    783     }
    784   }
    785 
    786   // build an Object[] of the roots needed to restore the runtime
    787   Handle<ObjectArray<Object>> image_roots(hs.NewHandle(
    788       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
    789   image_roots->Set<false>(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod());
    790   image_roots->Set<false>(ImageHeader::kImtConflictMethod, runtime->GetImtConflictMethod());
    791   image_roots->Set<false>(ImageHeader::kImtUnimplementedMethod,
    792                           runtime->GetImtUnimplementedMethod());
    793   image_roots->Set<false>(ImageHeader::kDefaultImt, runtime->GetDefaultImt());
    794   image_roots->Set<false>(ImageHeader::kCalleeSaveMethod,
    795                           runtime->GetCalleeSaveMethod(Runtime::kSaveAll));
    796   image_roots->Set<false>(ImageHeader::kRefsOnlySaveMethod,
    797                           runtime->GetCalleeSaveMethod(Runtime::kRefsOnly));
    798   image_roots->Set<false>(ImageHeader::kRefsAndArgsSaveMethod,
    799                           runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
    800   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
    801   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
    802   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
    803     CHECK(image_roots->Get(i) != NULL);
    804   }
    805   return image_roots.Get();
    806 }
    807 
    808 // Walk instance fields of the given Class. Separate function to allow recursion on the super
    809 // class.
    810 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
    811   // Visit fields of parent classes first.
    812   StackHandleScope<1> hs(Thread::Current());
    813   Handle<mirror::Class> h_class(hs.NewHandle(klass));
    814   mirror::Class* super = h_class->GetSuperClass();
    815   if (super != nullptr) {
    816     WalkInstanceFields(obj, super);
    817   }
    818   //
    819   size_t num_reference_fields = h_class->NumReferenceInstanceFields();
    820   MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
    821   for (size_t i = 0; i < num_reference_fields; ++i) {
    822     mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
    823     if (value != nullptr) {
    824       WalkFieldsInOrder(value);
    825     }
    826     field_offset = MemberOffset(field_offset.Uint32Value() +
    827                                 sizeof(mirror::HeapReference<mirror::Object>));
    828   }
    829 }
    830 
    831 // For an unvisited object, visit it then all its children found via fields.
    832 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
    833   // Use our own visitor routine (instead of GC visitor) to get better locality between
    834   // an object and its fields
    835   if (!IsImageBinSlotAssigned(obj)) {
    836     // Walk instance fields of all objects
    837     StackHandleScope<2> hs(Thread::Current());
    838     Handle<mirror::Object> h_obj(hs.NewHandle(obj));
    839     Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
    840     // visit the object itself.
    841     CalculateObjectBinSlots(h_obj.Get());
    842     WalkInstanceFields(h_obj.Get(), klass.Get());
    843     // Walk static fields of a Class.
    844     if (h_obj->IsClass()) {
    845       size_t num_static_fields = klass->NumReferenceStaticFields();
    846       MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset();
    847       for (size_t i = 0; i < num_static_fields; ++i) {
    848         mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
    849         if (value != nullptr) {
    850           WalkFieldsInOrder(value);
    851         }
    852         field_offset = MemberOffset(field_offset.Uint32Value() +
    853                                     sizeof(mirror::HeapReference<mirror::Object>));
    854       }
    855     } else if (h_obj->IsObjectArray()) {
    856       // Walk elements of an object array.
    857       int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
    858       for (int32_t i = 0; i < length; i++) {
    859         mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
    860         mirror::Object* value = obj_array->Get(i);
    861         if (value != nullptr) {
    862           WalkFieldsInOrder(value);
    863         }
    864       }
    865     }
    866   }
    867 }
    868 
    869 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
    870   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
    871   DCHECK(writer != nullptr);
    872   writer->WalkFieldsInOrder(obj);
    873 }
    874 
    875 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
    876   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
    877   DCHECK(writer != nullptr);
    878   writer->UnbinObjectsIntoOffset(obj);
    879 }
    880 
    881 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
    882   CHECK(obj != nullptr);
    883 
    884   // We know the bin slot, and the total bin sizes for all objects by now,
    885   // so calculate the object's final image offset.
    886 
    887   DCHECK(IsImageBinSlotAssigned(obj));
    888   BinSlot bin_slot = GetImageBinSlot(obj);
    889   // Change the lockword from a bin slot into an offset
    890   AssignImageOffset(obj, bin_slot);
    891 }
    892 
    893 void ImageWriter::CalculateNewObjectOffsets(size_t oat_loaded_size, size_t oat_data_offset) {
    894   CHECK_NE(0U, oat_loaded_size);
    895   Thread* self = Thread::Current();
    896   StackHandleScope<1> hs(self);
    897   Handle<ObjectArray<Object>> image_roots(hs.NewHandle(CreateImageRoots()));
    898 
    899   gc::Heap* heap = Runtime::Current()->GetHeap();
    900   DCHECK_EQ(0U, image_end_);
    901 
    902   // Leave space for the header, but do not write it yet, we need to
    903   // know where image_roots is going to end up
    904   image_end_ += RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
    905 
    906   {
    907     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    908     // TODO: Image spaces only?
    909     const char* old = self->StartAssertNoThreadSuspension("ImageWriter");
    910     DCHECK_LT(image_end_, image_->Size());
    911     image_objects_offset_begin_ = image_end_;
    912     // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
    913     heap->VisitObjects(WalkFieldsCallback, this);
    914     // Transform each object's bin slot into an offset which will be used to do the final copy.
    915     heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
    916     DCHECK(saved_hashes_map_.empty());  // All binslot hashes should've been put into vector by now.
    917     self->EndAssertNoThreadSuspension(old);
    918   }
    919 
    920   DCHECK_GT(image_end_, GetBinSizeSum());
    921 
    922   if (kIsDebugBuild) {
    923     LOG(INFO) << "Bin summary (total size: " << GetBinSizeSum() << "): ";
    924     for (size_t bin = 0; bin < kBinSize; ++bin) {
    925       LOG(INFO) << "  bin# " << bin << ", number objects: " << bin_slot_count_[bin] << ", "
    926                 << " total byte size: " << bin_slot_sizes_[bin];
    927     }
    928   }
    929 
    930   const byte* oat_file_begin = image_begin_ + RoundUp(image_end_, kPageSize);
    931   const byte* oat_file_end = oat_file_begin + oat_loaded_size;
    932   oat_data_begin_ = oat_file_begin + oat_data_offset;
    933   const byte* oat_data_end = oat_data_begin_ + oat_file_->Size();
    934 
    935   // Return to write header at start of image with future location of image_roots. At this point,
    936   // image_end_ is the size of the image (excluding bitmaps).
    937   const size_t heap_bytes_per_bitmap_byte = kBitsPerByte * kObjectAlignment;
    938   const size_t bitmap_bytes = RoundUp(image_end_, heap_bytes_per_bitmap_byte) /
    939       heap_bytes_per_bitmap_byte;
    940   ImageHeader image_header(PointerToLowMemUInt32(image_begin_),
    941                            static_cast<uint32_t>(image_end_),
    942                            RoundUp(image_end_, kPageSize),
    943                            RoundUp(bitmap_bytes, kPageSize),
    944                            PointerToLowMemUInt32(GetImageAddress(image_roots.Get())),
    945                            oat_file_->GetOatHeader().GetChecksum(),
    946                            PointerToLowMemUInt32(oat_file_begin),
    947                            PointerToLowMemUInt32(oat_data_begin_),
    948                            PointerToLowMemUInt32(oat_data_end),
    949                            PointerToLowMemUInt32(oat_file_end),
    950                            compile_pic_);
    951   memcpy(image_->Begin(), &image_header, sizeof(image_header));
    952 
    953   // Note that image_end_ is left at end of used space
    954 }
    955 
    956 void ImageWriter::CopyAndFixupObjects() {
    957   Thread* self = Thread::Current();
    958   const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
    959   gc::Heap* heap = Runtime::Current()->GetHeap();
    960   // TODO: heap validation can't handle this fix up pass
    961   heap->DisableObjectValidation();
    962   // TODO: Image spaces only?
    963   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    964   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
    965   // Fix up the object previously had hash codes.
    966   for (const std::pair<mirror::Object*, uint32_t>& hash_pair : saved_hashes_) {
    967     hash_pair.first->SetLockWord(LockWord::FromHashCode(hash_pair.second), false);
    968   }
    969   saved_hashes_.clear();
    970   self->EndAssertNoThreadSuspension(old_cause);
    971 }
    972 
    973 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
    974   DCHECK(obj != nullptr);
    975   DCHECK(arg != nullptr);
    976   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
    977   // see GetLocalAddress for similar computation
    978   size_t offset = image_writer->GetImageOffset(obj);
    979   byte* dst = image_writer->image_->Begin() + offset;
    980   const byte* src = reinterpret_cast<const byte*>(obj);
    981   size_t n;
    982   if (obj->IsArtMethod()) {
    983     // Size without pointer fields since we don't want to overrun the buffer if target art method
    984     // is 32 bits but source is 64 bits.
    985     n = mirror::ArtMethod::SizeWithoutPointerFields(sizeof(void*));
    986   } else {
    987     n = obj->SizeOf();
    988   }
    989   DCHECK_LT(offset + n, image_writer->image_->Size());
    990   memcpy(dst, src, n);
    991   Object* copy = reinterpret_cast<Object*>(dst);
    992   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
    993   // word.
    994   copy->SetLockWord(LockWord(), false);
    995   image_writer->FixupObject(obj, copy);
    996 }
    997 
    998 // Rewrite all the references in the copied object to point to their image address equivalent
    999 class FixupVisitor {
   1000  public:
   1001   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
   1002   }
   1003 
   1004   void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const
   1005       EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1006     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
   1007     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
   1008     // image.
   1009     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1010         offset, image_writer_->GetImageAddress(ref));
   1011   }
   1012 
   1013   // java.lang.ref.Reference visitor.
   1014   void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const
   1015       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1016       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
   1017     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1018         mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent()));
   1019   }
   1020 
   1021  protected:
   1022   ImageWriter* const image_writer_;
   1023   mirror::Object* const copy_;
   1024 };
   1025 
   1026 class FixupClassVisitor FINAL : public FixupVisitor {
   1027  public:
   1028   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
   1029   }
   1030 
   1031   void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const
   1032       EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1033     DCHECK(obj->IsClass());
   1034     FixupVisitor::operator()(obj, offset, /*is_static*/false);
   1035 
   1036     // TODO: Remove dead code
   1037     if (offset.Uint32Value() < mirror::Class::EmbeddedVTableOffset().Uint32Value()) {
   1038       return;
   1039     }
   1040   }
   1041 
   1042   void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const
   1043       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1044       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
   1045     LOG(FATAL) << "Reference not expected here.";
   1046   }
   1047 };
   1048 
   1049 void ImageWriter::FixupObject(Object* orig, Object* copy) {
   1050   DCHECK(orig != nullptr);
   1051   DCHECK(copy != nullptr);
   1052   if (kUseBakerOrBrooksReadBarrier) {
   1053     orig->AssertReadBarrierPointer();
   1054     if (kUseBrooksReadBarrier) {
   1055       // Note the address 'copy' isn't the same as the image address of 'orig'.
   1056       copy->SetReadBarrierPointer(GetImageAddress(orig));
   1057       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
   1058     }
   1059   }
   1060   if (orig->IsClass() && orig->AsClass()->ShouldHaveEmbeddedImtAndVTable()) {
   1061     FixupClassVisitor visitor(this, copy);
   1062     orig->VisitReferences<true /*visit class*/>(visitor, visitor);
   1063   } else {
   1064     FixupVisitor visitor(this, copy);
   1065     orig->VisitReferences<true /*visit class*/>(visitor, visitor);
   1066   }
   1067   if (orig->IsArtMethod<kVerifyNone>()) {
   1068     FixupMethod(orig->AsArtMethod<kVerifyNone>(), down_cast<ArtMethod*>(copy));
   1069   } else if (orig->IsClass() && orig->AsClass()->IsArtMethodClass()) {
   1070     // Set the right size for the target.
   1071     size_t size = mirror::ArtMethod::InstanceSize(target_ptr_size_);
   1072     down_cast<mirror::Class*>(copy)->SetObjectSizeWithoutChecks(size);
   1073   }
   1074 }
   1075 
   1076 const byte* ImageWriter::GetQuickCode(mirror::ArtMethod* method, bool* quick_is_interpreted) {
   1077   DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() &&
   1078          !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method);
   1079 
   1080   // Use original code if it exists. Otherwise, set the code pointer to the resolution
   1081   // trampoline.
   1082 
   1083   // Quick entrypoint:
   1084   const byte* quick_code = GetOatAddress(method->GetQuickOatCodeOffset());
   1085   *quick_is_interpreted = false;
   1086   if (quick_code != nullptr &&
   1087       (!method->IsStatic() || method->IsConstructor() || method->GetDeclaringClass()->IsInitialized())) {
   1088     // We have code for a non-static or initialized method, just use the code.
   1089   } else if (quick_code == nullptr && method->IsNative() &&
   1090       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
   1091     // Non-static or initialized native method missing compiled code, use generic JNI version.
   1092     quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_);
   1093   } else if (quick_code == nullptr && !method->IsNative()) {
   1094     // We don't have code at all for a non-native method, use the interpreter.
   1095     quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_);
   1096     *quick_is_interpreted = true;
   1097   } else {
   1098     CHECK(!method->GetDeclaringClass()->IsInitialized());
   1099     // We have code for a static method, but need to go through the resolution stub for class
   1100     // initialization.
   1101     quick_code = GetOatAddress(quick_resolution_trampoline_offset_);
   1102   }
   1103   return quick_code;
   1104 }
   1105 
   1106 const byte* ImageWriter::GetQuickEntryPoint(mirror::ArtMethod* method) {
   1107   // Calculate the quick entry point following the same logic as FixupMethod() below.
   1108   // The resolution method has a special trampoline to call.
   1109   Runtime* runtime = Runtime::Current();
   1110   if (UNLIKELY(method == runtime->GetResolutionMethod())) {
   1111     return GetOatAddress(quick_resolution_trampoline_offset_);
   1112   } else if (UNLIKELY(method == runtime->GetImtConflictMethod() ||
   1113                       method == runtime->GetImtUnimplementedMethod())) {
   1114     return GetOatAddress(quick_imt_conflict_trampoline_offset_);
   1115   } else {
   1116     // We assume all methods have code. If they don't currently then we set them to the use the
   1117     // resolution trampoline. Abstract methods never have code and so we need to make sure their
   1118     // use results in an AbstractMethodError. We use the interpreter to achieve this.
   1119     if (UNLIKELY(method->IsAbstract())) {
   1120       return GetOatAddress(quick_to_interpreter_bridge_offset_);
   1121     } else {
   1122       bool quick_is_interpreted;
   1123       return GetQuickCode(method, &quick_is_interpreted);
   1124     }
   1125   }
   1126 }
   1127 
   1128 void ImageWriter::FixupMethod(ArtMethod* orig, ArtMethod* copy) {
   1129   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
   1130   // oat_begin_
   1131   // For 64 bit targets we need to repack the current runtime pointer sized fields to the right
   1132   // locations.
   1133   // Copy all of the fields from the runtime methods to the target methods first since we did a
   1134   // bytewise copy earlier.
   1135 #if defined(ART_USE_PORTABLE_COMPILER)
   1136   copy->SetEntryPointFromPortableCompiledCodePtrSize<kVerifyNone>(
   1137       orig->GetEntryPointFromPortableCompiledCode(), target_ptr_size_);
   1138 #endif
   1139   copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>(orig->GetEntryPointFromInterpreter(),
   1140                                                          target_ptr_size_);
   1141   copy->SetEntryPointFromJniPtrSize<kVerifyNone>(orig->GetEntryPointFromJni(), target_ptr_size_);
   1142   copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(
   1143       orig->GetEntryPointFromQuickCompiledCode(), target_ptr_size_);
   1144 
   1145   // The resolution method has a special trampoline to call.
   1146   Runtime* runtime = Runtime::Current();
   1147   if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
   1148 #if defined(ART_USE_PORTABLE_COMPILER)
   1149     copy->SetEntryPointFromPortableCompiledCodePtrSize<kVerifyNone>(
   1150         GetOatAddress(portable_resolution_trampoline_offset_), target_ptr_size_);
   1151 #endif
   1152     copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(
   1153         GetOatAddress(quick_resolution_trampoline_offset_), target_ptr_size_);
   1154   } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() ||
   1155                       orig == runtime->GetImtUnimplementedMethod())) {
   1156 #if defined(ART_USE_PORTABLE_COMPILER)
   1157     copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(
   1158         GetOatAddress(portable_imt_conflict_trampoline_offset_), target_ptr_size_);
   1159 #endif
   1160     copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(
   1161         GetOatAddress(quick_imt_conflict_trampoline_offset_), target_ptr_size_);
   1162   } else {
   1163     // We assume all methods have code. If they don't currently then we set them to the use the
   1164     // resolution trampoline. Abstract methods never have code and so we need to make sure their
   1165     // use results in an AbstractMethodError. We use the interpreter to achieve this.
   1166     if (UNLIKELY(orig->IsAbstract())) {
   1167 #if defined(ART_USE_PORTABLE_COMPILER)
   1168       copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(
   1169           GetOatAddress(portable_to_interpreter_bridge_offset_), target_ptr_size_);
   1170 #endif
   1171       copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(
   1172           GetOatAddress(quick_to_interpreter_bridge_offset_), target_ptr_size_);
   1173       copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>(
   1174           reinterpret_cast<EntryPointFromInterpreter*>(const_cast<byte*>(
   1175               GetOatAddress(interpreter_to_interpreter_bridge_offset_))), target_ptr_size_);
   1176     } else {
   1177       bool quick_is_interpreted;
   1178       const byte* quick_code = GetQuickCode(orig, &quick_is_interpreted);
   1179       copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(quick_code, target_ptr_size_);
   1180 
   1181       // Portable entrypoint:
   1182       bool portable_is_interpreted = false;
   1183 #if defined(ART_USE_PORTABLE_COMPILER)
   1184       const byte* portable_code = GetOatAddress(orig->GetPortableOatCodeOffset());
   1185       if (portable_code != nullptr && (!orig->IsStatic() || orig->IsConstructor() ||
   1186           orig->GetDeclaringClass()->IsInitialized())) {
   1187         // We have code for a non-static or initialized method, just use the code.
   1188       } else if (portable_code == nullptr && orig->IsNative() &&
   1189           (!orig->IsStatic() || orig->GetDeclaringClass()->IsInitialized())) {
   1190         // Non-static or initialized native method missing compiled code, use generic JNI version.
   1191         // TODO: generic JNI support for LLVM.
   1192         portable_code = GetOatAddress(portable_resolution_trampoline_offset_);
   1193       } else if (portable_code == nullptr && !orig->IsNative()) {
   1194         // We don't have code at all for a non-native method, use the interpreter.
   1195         portable_code = GetOatAddress(portable_to_interpreter_bridge_offset_);
   1196         portable_is_interpreted = true;
   1197       } else {
   1198         CHECK(!orig->GetDeclaringClass()->IsInitialized());
   1199         // We have code for a static method, but need to go through the resolution stub for class
   1200         // initialization.
   1201         portable_code = GetOatAddress(portable_resolution_trampoline_offset_);
   1202       }
   1203       copy->SetEntryPointFromPortableCompiledCodePtrSize<kVerifyNone>(
   1204           portable_code, target_ptr_size_);
   1205 #endif
   1206       // JNI entrypoint:
   1207       if (orig->IsNative()) {
   1208         // The native method's pointer is set to a stub to lookup via dlsym.
   1209         // Note this is not the code_ pointer, that is handled above.
   1210         copy->SetEntryPointFromJniPtrSize<kVerifyNone>(GetOatAddress(jni_dlsym_lookup_offset_),
   1211                                                        target_ptr_size_);
   1212       }
   1213 
   1214       // Interpreter entrypoint:
   1215       // Set the interpreter entrypoint depending on whether there is compiled code or not.
   1216       uint32_t interpreter_code = (quick_is_interpreted && portable_is_interpreted)
   1217           ? interpreter_to_interpreter_bridge_offset_
   1218           : interpreter_to_compiled_code_bridge_offset_;
   1219       EntryPointFromInterpreter* interpreter_entrypoint =
   1220           reinterpret_cast<EntryPointFromInterpreter*>(
   1221               const_cast<byte*>(GetOatAddress(interpreter_code)));
   1222       copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>(
   1223           interpreter_entrypoint, target_ptr_size_);
   1224     }
   1225   }
   1226 }
   1227 
   1228 static OatHeader* GetOatHeaderFromElf(ElfFile* elf) {
   1229   Elf32_Shdr* data_sec = elf->FindSectionByName(".rodata");
   1230   if (data_sec == nullptr) {
   1231     return nullptr;
   1232   }
   1233   return reinterpret_cast<OatHeader*>(elf->Begin() + data_sec->sh_offset);
   1234 }
   1235 
   1236 void ImageWriter::PatchOatCodeAndMethods(File* elf_file) {
   1237   std::string error_msg;
   1238   std::unique_ptr<ElfFile> elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE,
   1239                                              MAP_SHARED, &error_msg));
   1240   if (elf.get() == nullptr) {
   1241     LOG(FATAL) << "Unable patch oat file: " << error_msg;
   1242     return;
   1243   }
   1244   if (!ElfPatcher::Patch(&compiler_driver_, elf.get(), oat_file_,
   1245                          reinterpret_cast<uintptr_t>(oat_data_begin_),
   1246                          GetImageAddressCallback, reinterpret_cast<void*>(this),
   1247                          &error_msg)) {
   1248     LOG(FATAL) << "unable to patch oat file: " << error_msg;
   1249     return;
   1250   }
   1251   OatHeader* oat_header = GetOatHeaderFromElf(elf.get());
   1252   CHECK(oat_header != nullptr);
   1253   CHECK(oat_header->IsValid());
   1254 
   1255   ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
   1256   image_header->SetOatChecksum(oat_header->GetChecksum());
   1257 }
   1258 
   1259 size_t ImageWriter::GetBinSizeSum(ImageWriter::Bin up_to) const {
   1260   DCHECK_LE(up_to, kBinSize);
   1261   return std::accumulate(&bin_slot_sizes_[0], &bin_slot_sizes_[up_to], /*init*/0);
   1262 }
   1263 
   1264 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
   1265   // These values may need to get updated if more bins are added to the enum Bin
   1266   static_assert(kBinBits == 3, "wrong number of bin bits");
   1267   static_assert(kBinShift == 29, "wrong number of shift");
   1268   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
   1269 
   1270   DCHECK_LT(GetBin(), kBinSize);
   1271   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
   1272 }
   1273 
   1274 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
   1275     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
   1276   DCHECK_EQ(index, GetIndex());
   1277 }
   1278 
   1279 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
   1280   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
   1281 }
   1282 
   1283 uint32_t ImageWriter::BinSlot::GetIndex() const {
   1284   return lockword_ & ~kBinMask;
   1285 }
   1286 
   1287 }  // namespace art
   1288