Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/ast.h"
      8 #include "src/base/platform/platform.h"
      9 #include "src/compilation-cache.h"
     10 #include "src/compiler.h"
     11 #include "src/execution.h"
     12 #include "src/factory.h"
     13 #include "src/jsregexp-inl.h"
     14 #include "src/jsregexp.h"
     15 #include "src/ostreams.h"
     16 #include "src/parser.h"
     17 #include "src/regexp-macro-assembler.h"
     18 #include "src/regexp-macro-assembler-irregexp.h"
     19 #include "src/regexp-macro-assembler-tracer.h"
     20 #include "src/regexp-stack.h"
     21 #include "src/runtime.h"
     22 #include "src/string-search.h"
     23 
     24 #ifndef V8_INTERPRETED_REGEXP
     25 #if V8_TARGET_ARCH_IA32
     26 #include "src/ia32/regexp-macro-assembler-ia32.h"  // NOLINT
     27 #elif V8_TARGET_ARCH_X64
     28 #include "src/x64/regexp-macro-assembler-x64.h"  // NOLINT
     29 #elif V8_TARGET_ARCH_ARM64
     30 #include "src/arm64/regexp-macro-assembler-arm64.h"  // NOLINT
     31 #elif V8_TARGET_ARCH_ARM
     32 #include "src/arm/regexp-macro-assembler-arm.h"  // NOLINT
     33 #elif V8_TARGET_ARCH_MIPS
     34 #include "src/mips/regexp-macro-assembler-mips.h"  // NOLINT
     35 #elif V8_TARGET_ARCH_MIPS64
     36 #include "src/mips64/regexp-macro-assembler-mips64.h"  // NOLINT
     37 #elif V8_TARGET_ARCH_X87
     38 #include "src/x87/regexp-macro-assembler-x87.h"  // NOLINT
     39 #else
     40 #error Unsupported target architecture.
     41 #endif
     42 #endif
     43 
     44 #include "src/interpreter-irregexp.h"
     45 
     46 
     47 namespace v8 {
     48 namespace internal {
     49 
     50 MaybeHandle<Object> RegExpImpl::CreateRegExpLiteral(
     51     Handle<JSFunction> constructor,
     52     Handle<String> pattern,
     53     Handle<String> flags) {
     54   // Call the construct code with 2 arguments.
     55   Handle<Object> argv[] = { pattern, flags };
     56   return Execution::New(constructor, arraysize(argv), argv);
     57 }
     58 
     59 
     60 static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) {
     61   int flags = JSRegExp::NONE;
     62   for (int i = 0; i < str->length(); i++) {
     63     switch (str->Get(i)) {
     64       case 'i':
     65         flags |= JSRegExp::IGNORE_CASE;
     66         break;
     67       case 'g':
     68         flags |= JSRegExp::GLOBAL;
     69         break;
     70       case 'm':
     71         flags |= JSRegExp::MULTILINE;
     72         break;
     73       case 'y':
     74         if (FLAG_harmony_regexps) flags |= JSRegExp::STICKY;
     75         break;
     76     }
     77   }
     78   return JSRegExp::Flags(flags);
     79 }
     80 
     81 
     82 MUST_USE_RESULT
     83 static inline MaybeHandle<Object> ThrowRegExpException(
     84     Handle<JSRegExp> re,
     85     Handle<String> pattern,
     86     Handle<String> error_text,
     87     const char* message) {
     88   Isolate* isolate = re->GetIsolate();
     89   Factory* factory = isolate->factory();
     90   Handle<FixedArray> elements = factory->NewFixedArray(2);
     91   elements->set(0, *pattern);
     92   elements->set(1, *error_text);
     93   Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
     94   Handle<Object> regexp_err;
     95   THROW_NEW_ERROR(isolate, NewSyntaxError(message, array), Object);
     96 }
     97 
     98 
     99 ContainedInLattice AddRange(ContainedInLattice containment,
    100                             const int* ranges,
    101                             int ranges_length,
    102                             Interval new_range) {
    103   DCHECK((ranges_length & 1) == 1);
    104   DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
    105   if (containment == kLatticeUnknown) return containment;
    106   bool inside = false;
    107   int last = 0;
    108   for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
    109     // Consider the range from last to ranges[i].
    110     // We haven't got to the new range yet.
    111     if (ranges[i] <= new_range.from()) continue;
    112     // New range is wholly inside last-ranges[i].  Note that new_range.to() is
    113     // inclusive, but the values in ranges are not.
    114     if (last <= new_range.from() && new_range.to() < ranges[i]) {
    115       return Combine(containment, inside ? kLatticeIn : kLatticeOut);
    116     }
    117     return kLatticeUnknown;
    118   }
    119   return containment;
    120 }
    121 
    122 
    123 // More makes code generation slower, less makes V8 benchmark score lower.
    124 const int kMaxLookaheadForBoyerMoore = 8;
    125 // In a 3-character pattern you can maximally step forwards 3 characters
    126 // at a time, which is not always enough to pay for the extra logic.
    127 const int kPatternTooShortForBoyerMoore = 2;
    128 
    129 
    130 // Identifies the sort of regexps where the regexp engine is faster
    131 // than the code used for atom matches.
    132 static bool HasFewDifferentCharacters(Handle<String> pattern) {
    133   int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
    134   if (length <= kPatternTooShortForBoyerMoore) return false;
    135   const int kMod = 128;
    136   bool character_found[kMod];
    137   int different = 0;
    138   memset(&character_found[0], 0, sizeof(character_found));
    139   for (int i = 0; i < length; i++) {
    140     int ch = (pattern->Get(i) & (kMod - 1));
    141     if (!character_found[ch]) {
    142       character_found[ch] = true;
    143       different++;
    144       // We declare a regexp low-alphabet if it has at least 3 times as many
    145       // characters as it has different characters.
    146       if (different * 3 > length) return false;
    147     }
    148   }
    149   return true;
    150 }
    151 
    152 
    153 // Generic RegExp methods. Dispatches to implementation specific methods.
    154 
    155 
    156 MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
    157                                         Handle<String> pattern,
    158                                         Handle<String> flag_str) {
    159   Isolate* isolate = re->GetIsolate();
    160   Zone zone(isolate);
    161   JSRegExp::Flags flags = RegExpFlagsFromString(flag_str);
    162   CompilationCache* compilation_cache = isolate->compilation_cache();
    163   MaybeHandle<FixedArray> maybe_cached =
    164       compilation_cache->LookupRegExp(pattern, flags);
    165   Handle<FixedArray> cached;
    166   bool in_cache = maybe_cached.ToHandle(&cached);
    167   LOG(isolate, RegExpCompileEvent(re, in_cache));
    168 
    169   Handle<Object> result;
    170   if (in_cache) {
    171     re->set_data(*cached);
    172     return re;
    173   }
    174   pattern = String::Flatten(pattern);
    175   PostponeInterruptsScope postpone(isolate);
    176   RegExpCompileData parse_result;
    177   FlatStringReader reader(isolate, pattern);
    178   if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
    179                                  &parse_result, &zone)) {
    180     // Throw an exception if we fail to parse the pattern.
    181     return ThrowRegExpException(re,
    182                                 pattern,
    183                                 parse_result.error,
    184                                 "malformed_regexp");
    185   }
    186 
    187   bool has_been_compiled = false;
    188 
    189   if (parse_result.simple &&
    190       !flags.is_ignore_case() &&
    191       !flags.is_sticky() &&
    192       !HasFewDifferentCharacters(pattern)) {
    193     // Parse-tree is a single atom that is equal to the pattern.
    194     AtomCompile(re, pattern, flags, pattern);
    195     has_been_compiled = true;
    196   } else if (parse_result.tree->IsAtom() &&
    197       !flags.is_ignore_case() &&
    198       !flags.is_sticky() &&
    199       parse_result.capture_count == 0) {
    200     RegExpAtom* atom = parse_result.tree->AsAtom();
    201     Vector<const uc16> atom_pattern = atom->data();
    202     Handle<String> atom_string;
    203     ASSIGN_RETURN_ON_EXCEPTION(
    204         isolate, atom_string,
    205         isolate->factory()->NewStringFromTwoByte(atom_pattern),
    206         Object);
    207     if (!HasFewDifferentCharacters(atom_string)) {
    208       AtomCompile(re, pattern, flags, atom_string);
    209       has_been_compiled = true;
    210     }
    211   }
    212   if (!has_been_compiled) {
    213     IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
    214   }
    215   DCHECK(re->data()->IsFixedArray());
    216   // Compilation succeeded so the data is set on the regexp
    217   // and we can store it in the cache.
    218   Handle<FixedArray> data(FixedArray::cast(re->data()));
    219   compilation_cache->PutRegExp(pattern, flags, data);
    220 
    221   return re;
    222 }
    223 
    224 
    225 MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
    226                                      Handle<String> subject,
    227                                      int index,
    228                                      Handle<JSArray> last_match_info) {
    229   switch (regexp->TypeTag()) {
    230     case JSRegExp::ATOM:
    231       return AtomExec(regexp, subject, index, last_match_info);
    232     case JSRegExp::IRREGEXP: {
    233       return IrregexpExec(regexp, subject, index, last_match_info);
    234     }
    235     default:
    236       UNREACHABLE();
    237       return MaybeHandle<Object>();
    238   }
    239 }
    240 
    241 
    242 // RegExp Atom implementation: Simple string search using indexOf.
    243 
    244 
    245 void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
    246                              Handle<String> pattern,
    247                              JSRegExp::Flags flags,
    248                              Handle<String> match_pattern) {
    249   re->GetIsolate()->factory()->SetRegExpAtomData(re,
    250                                                  JSRegExp::ATOM,
    251                                                  pattern,
    252                                                  flags,
    253                                                  match_pattern);
    254 }
    255 
    256 
    257 static void SetAtomLastCapture(FixedArray* array,
    258                                String* subject,
    259                                int from,
    260                                int to) {
    261   SealHandleScope shs(array->GetIsolate());
    262   RegExpImpl::SetLastCaptureCount(array, 2);
    263   RegExpImpl::SetLastSubject(array, subject);
    264   RegExpImpl::SetLastInput(array, subject);
    265   RegExpImpl::SetCapture(array, 0, from);
    266   RegExpImpl::SetCapture(array, 1, to);
    267 }
    268 
    269 
    270 int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
    271                             Handle<String> subject,
    272                             int index,
    273                             int32_t* output,
    274                             int output_size) {
    275   Isolate* isolate = regexp->GetIsolate();
    276 
    277   DCHECK(0 <= index);
    278   DCHECK(index <= subject->length());
    279 
    280   subject = String::Flatten(subject);
    281   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
    282 
    283   String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
    284   int needle_len = needle->length();
    285   DCHECK(needle->IsFlat());
    286   DCHECK_LT(0, needle_len);
    287 
    288   if (index + needle_len > subject->length()) {
    289     return RegExpImpl::RE_FAILURE;
    290   }
    291 
    292   for (int i = 0; i < output_size; i += 2) {
    293     String::FlatContent needle_content = needle->GetFlatContent();
    294     String::FlatContent subject_content = subject->GetFlatContent();
    295     DCHECK(needle_content.IsFlat());
    296     DCHECK(subject_content.IsFlat());
    297     // dispatch on type of strings
    298     index =
    299         (needle_content.IsOneByte()
    300              ? (subject_content.IsOneByte()
    301                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    302                                    needle_content.ToOneByteVector(), index)
    303                     : SearchString(isolate, subject_content.ToUC16Vector(),
    304                                    needle_content.ToOneByteVector(), index))
    305              : (subject_content.IsOneByte()
    306                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    307                                    needle_content.ToUC16Vector(), index)
    308                     : SearchString(isolate, subject_content.ToUC16Vector(),
    309                                    needle_content.ToUC16Vector(), index)));
    310     if (index == -1) {
    311       return i / 2;  // Return number of matches.
    312     } else {
    313       output[i] = index;
    314       output[i+1] = index + needle_len;
    315       index += needle_len;
    316     }
    317   }
    318   return output_size / 2;
    319 }
    320 
    321 
    322 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
    323                                     Handle<String> subject,
    324                                     int index,
    325                                     Handle<JSArray> last_match_info) {
    326   Isolate* isolate = re->GetIsolate();
    327 
    328   static const int kNumRegisters = 2;
    329   STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
    330   int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
    331 
    332   int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
    333 
    334   if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
    335 
    336   DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
    337   SealHandleScope shs(isolate);
    338   FixedArray* array = FixedArray::cast(last_match_info->elements());
    339   SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
    340   return last_match_info;
    341 }
    342 
    343 
    344 // Irregexp implementation.
    345 
    346 // Ensures that the regexp object contains a compiled version of the
    347 // source for either one-byte or two-byte subject strings.
    348 // If the compiled version doesn't already exist, it is compiled
    349 // from the source pattern.
    350 // If compilation fails, an exception is thrown and this function
    351 // returns false.
    352 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
    353                                         Handle<String> sample_subject,
    354                                         bool is_one_byte) {
    355   Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
    356 #ifdef V8_INTERPRETED_REGEXP
    357   if (compiled_code->IsByteArray()) return true;
    358 #else  // V8_INTERPRETED_REGEXP (RegExp native code)
    359   if (compiled_code->IsCode()) return true;
    360 #endif
    361   // We could potentially have marked this as flushable, but have kept
    362   // a saved version if we did not flush it yet.
    363   Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    364   if (saved_code->IsCode()) {
    365     // Reinstate the code in the original place.
    366     re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
    367     DCHECK(compiled_code->IsSmi());
    368     return true;
    369   }
    370   return CompileIrregexp(re, sample_subject, is_one_byte);
    371 }
    372 
    373 
    374 static void CreateRegExpErrorObjectAndThrow(Handle<JSRegExp> re,
    375                                             Handle<String> error_message,
    376                                             Isolate* isolate) {
    377   Factory* factory = isolate->factory();
    378   Handle<FixedArray> elements = factory->NewFixedArray(2);
    379   elements->set(0, re->Pattern());
    380   elements->set(1, *error_message);
    381   Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
    382   Handle<Object> error;
    383   MaybeHandle<Object> maybe_error =
    384       factory->NewSyntaxError("malformed_regexp", array);
    385   if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
    386 }
    387 
    388 
    389 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
    390                                  Handle<String> sample_subject,
    391                                  bool is_one_byte) {
    392   // Compile the RegExp.
    393   Isolate* isolate = re->GetIsolate();
    394   Zone zone(isolate);
    395   PostponeInterruptsScope postpone(isolate);
    396   // If we had a compilation error the last time this is saved at the
    397   // saved code index.
    398   Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
    399   // When arriving here entry can only be a smi, either representing an
    400   // uncompiled regexp, a previous compilation error, or code that has
    401   // been flushed.
    402   DCHECK(entry->IsSmi());
    403   int entry_value = Smi::cast(entry)->value();
    404   DCHECK(entry_value == JSRegExp::kUninitializedValue ||
    405          entry_value == JSRegExp::kCompilationErrorValue ||
    406          (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
    407 
    408   if (entry_value == JSRegExp::kCompilationErrorValue) {
    409     // A previous compilation failed and threw an error which we store in
    410     // the saved code index (we store the error message, not the actual
    411     // error). Recreate the error object and throw it.
    412     Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    413     DCHECK(error_string->IsString());
    414     Handle<String> error_message(String::cast(error_string));
    415     CreateRegExpErrorObjectAndThrow(re, error_message, isolate);
    416     return false;
    417   }
    418 
    419   JSRegExp::Flags flags = re->GetFlags();
    420 
    421   Handle<String> pattern(re->Pattern());
    422   pattern = String::Flatten(pattern);
    423   RegExpCompileData compile_data;
    424   FlatStringReader reader(isolate, pattern);
    425   if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
    426                                  &compile_data,
    427                                  &zone)) {
    428     // Throw an exception if we fail to parse the pattern.
    429     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
    430     USE(ThrowRegExpException(re,
    431                              pattern,
    432                              compile_data.error,
    433                              "malformed_regexp"));
    434     return false;
    435   }
    436   RegExpEngine::CompilationResult result = RegExpEngine::Compile(
    437       &compile_data, flags.is_ignore_case(), flags.is_global(),
    438       flags.is_multiline(), flags.is_sticky(), pattern, sample_subject,
    439       is_one_byte, &zone);
    440   if (result.error_message != NULL) {
    441     // Unable to compile regexp.
    442     Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
    443         CStrVector(result.error_message)).ToHandleChecked();
    444     CreateRegExpErrorObjectAndThrow(re, error_message, isolate);
    445     return false;
    446   }
    447 
    448   Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
    449   data->set(JSRegExp::code_index(is_one_byte), result.code);
    450   int register_max = IrregexpMaxRegisterCount(*data);
    451   if (result.num_registers > register_max) {
    452     SetIrregexpMaxRegisterCount(*data, result.num_registers);
    453   }
    454 
    455   return true;
    456 }
    457 
    458 
    459 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
    460   return Smi::cast(
    461       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    462 }
    463 
    464 
    465 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
    466   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
    467 }
    468 
    469 
    470 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
    471   return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
    472 }
    473 
    474 
    475 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
    476   return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    477 }
    478 
    479 
    480 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
    481   return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
    482 }
    483 
    484 
    485 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
    486   return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
    487 }
    488 
    489 
    490 void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
    491                                     Handle<String> pattern,
    492                                     JSRegExp::Flags flags,
    493                                     int capture_count) {
    494   // Initialize compiled code entries to null.
    495   re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
    496                                                      JSRegExp::IRREGEXP,
    497                                                      pattern,
    498                                                      flags,
    499                                                      capture_count);
    500 }
    501 
    502 
    503 int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
    504                                 Handle<String> subject) {
    505   subject = String::Flatten(subject);
    506 
    507   // Check representation of the underlying storage.
    508   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    509   if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
    510 
    511 #ifdef V8_INTERPRETED_REGEXP
    512   // Byte-code regexp needs space allocated for all its registers.
    513   // The result captures are copied to the start of the registers array
    514   // if the match succeeds.  This way those registers are not clobbered
    515   // when we set the last match info from last successful match.
    516   return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
    517          (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    518 #else  // V8_INTERPRETED_REGEXP
    519   // Native regexp only needs room to output captures. Registers are handled
    520   // internally.
    521   return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    522 #endif  // V8_INTERPRETED_REGEXP
    523 }
    524 
    525 
    526 int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
    527                                 Handle<String> subject,
    528                                 int index,
    529                                 int32_t* output,
    530                                 int output_size) {
    531   Isolate* isolate = regexp->GetIsolate();
    532 
    533   Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
    534 
    535   DCHECK(index >= 0);
    536   DCHECK(index <= subject->length());
    537   DCHECK(subject->IsFlat());
    538 
    539   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    540 
    541 #ifndef V8_INTERPRETED_REGEXP
    542   DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
    543   do {
    544     EnsureCompiledIrregexp(regexp, subject, is_one_byte);
    545     Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
    546     // The stack is used to allocate registers for the compiled regexp code.
    547     // This means that in case of failure, the output registers array is left
    548     // untouched and contains the capture results from the previous successful
    549     // match.  We can use that to set the last match info lazily.
    550     NativeRegExpMacroAssembler::Result res =
    551         NativeRegExpMacroAssembler::Match(code,
    552                                           subject,
    553                                           output,
    554                                           output_size,
    555                                           index,
    556                                           isolate);
    557     if (res != NativeRegExpMacroAssembler::RETRY) {
    558       DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
    559              isolate->has_pending_exception());
    560       STATIC_ASSERT(
    561           static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
    562       STATIC_ASSERT(
    563           static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
    564       STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
    565                     == RE_EXCEPTION);
    566       return static_cast<IrregexpResult>(res);
    567     }
    568     // If result is RETRY, the string has changed representation, and we
    569     // must restart from scratch.
    570     // In this case, it means we must make sure we are prepared to handle
    571     // the, potentially, different subject (the string can switch between
    572     // being internal and external, and even between being Latin1 and UC16,
    573     // but the characters are always the same).
    574     IrregexpPrepare(regexp, subject);
    575     is_one_byte = subject->IsOneByteRepresentationUnderneath();
    576   } while (true);
    577   UNREACHABLE();
    578   return RE_EXCEPTION;
    579 #else  // V8_INTERPRETED_REGEXP
    580 
    581   DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
    582   // We must have done EnsureCompiledIrregexp, so we can get the number of
    583   // registers.
    584   int number_of_capture_registers =
    585       (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
    586   int32_t* raw_output = &output[number_of_capture_registers];
    587   // We do not touch the actual capture result registers until we know there
    588   // has been a match so that we can use those capture results to set the
    589   // last match info.
    590   for (int i = number_of_capture_registers - 1; i >= 0; i--) {
    591     raw_output[i] = -1;
    592   }
    593   Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
    594                                isolate);
    595 
    596   IrregexpResult result = IrregexpInterpreter::Match(isolate,
    597                                                      byte_codes,
    598                                                      subject,
    599                                                      raw_output,
    600                                                      index);
    601   if (result == RE_SUCCESS) {
    602     // Copy capture results to the start of the registers array.
    603     MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
    604   }
    605   if (result == RE_EXCEPTION) {
    606     DCHECK(!isolate->has_pending_exception());
    607     isolate->StackOverflow();
    608   }
    609   return result;
    610 #endif  // V8_INTERPRETED_REGEXP
    611 }
    612 
    613 
    614 MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
    615                                              Handle<String> subject,
    616                                              int previous_index,
    617                                              Handle<JSArray> last_match_info) {
    618   Isolate* isolate = regexp->GetIsolate();
    619   DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
    620 
    621   // Prepare space for the return values.
    622 #if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
    623   if (FLAG_trace_regexp_bytecodes) {
    624     String* pattern = regexp->Pattern();
    625     PrintF("\n\nRegexp match:   /%s/\n\n", pattern->ToCString().get());
    626     PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
    627   }
    628 #endif
    629   int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
    630   if (required_registers < 0) {
    631     // Compiling failed with an exception.
    632     DCHECK(isolate->has_pending_exception());
    633     return MaybeHandle<Object>();
    634   }
    635 
    636   int32_t* output_registers = NULL;
    637   if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    638     output_registers = NewArray<int32_t>(required_registers);
    639   }
    640   SmartArrayPointer<int32_t> auto_release(output_registers);
    641   if (output_registers == NULL) {
    642     output_registers = isolate->jsregexp_static_offsets_vector();
    643   }
    644 
    645   int res = RegExpImpl::IrregexpExecRaw(
    646       regexp, subject, previous_index, output_registers, required_registers);
    647   if (res == RE_SUCCESS) {
    648     int capture_count =
    649         IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
    650     return SetLastMatchInfo(
    651         last_match_info, subject, capture_count, output_registers);
    652   }
    653   if (res == RE_EXCEPTION) {
    654     DCHECK(isolate->has_pending_exception());
    655     return MaybeHandle<Object>();
    656   }
    657   DCHECK(res == RE_FAILURE);
    658   return isolate->factory()->null_value();
    659 }
    660 
    661 
    662 Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
    663                                              Handle<String> subject,
    664                                              int capture_count,
    665                                              int32_t* match) {
    666   DCHECK(last_match_info->HasFastObjectElements());
    667   int capture_register_count = (capture_count + 1) * 2;
    668   JSArray::EnsureSize(last_match_info,
    669                       capture_register_count + kLastMatchOverhead);
    670   DisallowHeapAllocation no_allocation;
    671   FixedArray* array = FixedArray::cast(last_match_info->elements());
    672   if (match != NULL) {
    673     for (int i = 0; i < capture_register_count; i += 2) {
    674       SetCapture(array, i, match[i]);
    675       SetCapture(array, i + 1, match[i + 1]);
    676     }
    677   }
    678   SetLastCaptureCount(array, capture_register_count);
    679   SetLastSubject(array, *subject);
    680   SetLastInput(array, *subject);
    681   return last_match_info;
    682 }
    683 
    684 
    685 RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
    686                                      Handle<String> subject,
    687                                      bool is_global,
    688                                      Isolate* isolate)
    689   : register_array_(NULL),
    690     register_array_size_(0),
    691     regexp_(regexp),
    692     subject_(subject) {
    693 #ifdef V8_INTERPRETED_REGEXP
    694   bool interpreted = true;
    695 #else
    696   bool interpreted = false;
    697 #endif  // V8_INTERPRETED_REGEXP
    698 
    699   if (regexp_->TypeTag() == JSRegExp::ATOM) {
    700     static const int kAtomRegistersPerMatch = 2;
    701     registers_per_match_ = kAtomRegistersPerMatch;
    702     // There is no distinction between interpreted and native for atom regexps.
    703     interpreted = false;
    704   } else {
    705     registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
    706     if (registers_per_match_ < 0) {
    707       num_matches_ = -1;  // Signal exception.
    708       return;
    709     }
    710   }
    711 
    712   if (is_global && !interpreted) {
    713     register_array_size_ =
    714         Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
    715     max_matches_ = register_array_size_ / registers_per_match_;
    716   } else {
    717     // Global loop in interpreted regexp is not implemented.  We choose
    718     // the size of the offsets vector so that it can only store one match.
    719     register_array_size_ = registers_per_match_;
    720     max_matches_ = 1;
    721   }
    722 
    723   if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    724     register_array_ = NewArray<int32_t>(register_array_size_);
    725   } else {
    726     register_array_ = isolate->jsregexp_static_offsets_vector();
    727   }
    728 
    729   // Set state so that fetching the results the first time triggers a call
    730   // to the compiled regexp.
    731   current_match_index_ = max_matches_ - 1;
    732   num_matches_ = max_matches_;
    733   DCHECK(registers_per_match_ >= 2);  // Each match has at least one capture.
    734   DCHECK_GE(register_array_size_, registers_per_match_);
    735   int32_t* last_match =
    736       &register_array_[current_match_index_ * registers_per_match_];
    737   last_match[0] = -1;
    738   last_match[1] = 0;
    739 }
    740 
    741 
    742 // -------------------------------------------------------------------
    743 // Implementation of the Irregexp regular expression engine.
    744 //
    745 // The Irregexp regular expression engine is intended to be a complete
    746 // implementation of ECMAScript regular expressions.  It generates either
    747 // bytecodes or native code.
    748 
    749 //   The Irregexp regexp engine is structured in three steps.
    750 //   1) The parser generates an abstract syntax tree.  See ast.cc.
    751 //   2) From the AST a node network is created.  The nodes are all
    752 //      subclasses of RegExpNode.  The nodes represent states when
    753 //      executing a regular expression.  Several optimizations are
    754 //      performed on the node network.
    755 //   3) From the nodes we generate either byte codes or native code
    756 //      that can actually execute the regular expression (perform
    757 //      the search).  The code generation step is described in more
    758 //      detail below.
    759 
    760 // Code generation.
    761 //
    762 //   The nodes are divided into four main categories.
    763 //   * Choice nodes
    764 //        These represent places where the regular expression can
    765 //        match in more than one way.  For example on entry to an
    766 //        alternation (foo|bar) or a repetition (*, +, ? or {}).
    767 //   * Action nodes
    768 //        These represent places where some action should be
    769 //        performed.  Examples include recording the current position
    770 //        in the input string to a register (in order to implement
    771 //        captures) or other actions on register for example in order
    772 //        to implement the counters needed for {} repetitions.
    773 //   * Matching nodes
    774 //        These attempt to match some element part of the input string.
    775 //        Examples of elements include character classes, plain strings
    776 //        or back references.
    777 //   * End nodes
    778 //        These are used to implement the actions required on finding
    779 //        a successful match or failing to find a match.
    780 //
    781 //   The code generated (whether as byte codes or native code) maintains
    782 //   some state as it runs.  This consists of the following elements:
    783 //
    784 //   * The capture registers.  Used for string captures.
    785 //   * Other registers.  Used for counters etc.
    786 //   * The current position.
    787 //   * The stack of backtracking information.  Used when a matching node
    788 //     fails to find a match and needs to try an alternative.
    789 //
    790 // Conceptual regular expression execution model:
    791 //
    792 //   There is a simple conceptual model of regular expression execution
    793 //   which will be presented first.  The actual code generated is a more
    794 //   efficient simulation of the simple conceptual model:
    795 //
    796 //   * Choice nodes are implemented as follows:
    797 //     For each choice except the last {
    798 //       push current position
    799 //       push backtrack code location
    800 //       <generate code to test for choice>
    801 //       backtrack code location:
    802 //       pop current position
    803 //     }
    804 //     <generate code to test for last choice>
    805 //
    806 //   * Actions nodes are generated as follows
    807 //     <push affected registers on backtrack stack>
    808 //     <generate code to perform action>
    809 //     push backtrack code location
    810 //     <generate code to test for following nodes>
    811 //     backtrack code location:
    812 //     <pop affected registers to restore their state>
    813 //     <pop backtrack location from stack and go to it>
    814 //
    815 //   * Matching nodes are generated as follows:
    816 //     if input string matches at current position
    817 //       update current position
    818 //       <generate code to test for following nodes>
    819 //     else
    820 //       <pop backtrack location from stack and go to it>
    821 //
    822 //   Thus it can be seen that the current position is saved and restored
    823 //   by the choice nodes, whereas the registers are saved and restored by
    824 //   by the action nodes that manipulate them.
    825 //
    826 //   The other interesting aspect of this model is that nodes are generated
    827 //   at the point where they are needed by a recursive call to Emit().  If
    828 //   the node has already been code generated then the Emit() call will
    829 //   generate a jump to the previously generated code instead.  In order to
    830 //   limit recursion it is possible for the Emit() function to put the node
    831 //   on a work list for later generation and instead generate a jump.  The
    832 //   destination of the jump is resolved later when the code is generated.
    833 //
    834 // Actual regular expression code generation.
    835 //
    836 //   Code generation is actually more complicated than the above.  In order
    837 //   to improve the efficiency of the generated code some optimizations are
    838 //   performed
    839 //
    840 //   * Choice nodes have 1-character lookahead.
    841 //     A choice node looks at the following character and eliminates some of
    842 //     the choices immediately based on that character.  This is not yet
    843 //     implemented.
    844 //   * Simple greedy loops store reduced backtracking information.
    845 //     A quantifier like /.*foo/m will greedily match the whole input.  It will
    846 //     then need to backtrack to a point where it can match "foo".  The naive
    847 //     implementation of this would push each character position onto the
    848 //     backtracking stack, then pop them off one by one.  This would use space
    849 //     proportional to the length of the input string.  However since the "."
    850 //     can only match in one way and always has a constant length (in this case
    851 //     of 1) it suffices to store the current position on the top of the stack
    852 //     once.  Matching now becomes merely incrementing the current position and
    853 //     backtracking becomes decrementing the current position and checking the
    854 //     result against the stored current position.  This is faster and saves
    855 //     space.
    856 //   * The current state is virtualized.
    857 //     This is used to defer expensive operations until it is clear that they
    858 //     are needed and to generate code for a node more than once, allowing
    859 //     specialized an efficient versions of the code to be created. This is
    860 //     explained in the section below.
    861 //
    862 // Execution state virtualization.
    863 //
    864 //   Instead of emitting code, nodes that manipulate the state can record their
    865 //   manipulation in an object called the Trace.  The Trace object can record a
    866 //   current position offset, an optional backtrack code location on the top of
    867 //   the virtualized backtrack stack and some register changes.  When a node is
    868 //   to be emitted it can flush the Trace or update it.  Flushing the Trace
    869 //   will emit code to bring the actual state into line with the virtual state.
    870 //   Avoiding flushing the state can postpone some work (e.g. updates of capture
    871 //   registers).  Postponing work can save time when executing the regular
    872 //   expression since it may be found that the work never has to be done as a
    873 //   failure to match can occur.  In addition it is much faster to jump to a
    874 //   known backtrack code location than it is to pop an unknown backtrack
    875 //   location from the stack and jump there.
    876 //
    877 //   The virtual state found in the Trace affects code generation.  For example
    878 //   the virtual state contains the difference between the actual current
    879 //   position and the virtual current position, and matching code needs to use
    880 //   this offset to attempt a match in the correct location of the input
    881 //   string.  Therefore code generated for a non-trivial trace is specialized
    882 //   to that trace.  The code generator therefore has the ability to generate
    883 //   code for each node several times.  In order to limit the size of the
    884 //   generated code there is an arbitrary limit on how many specialized sets of
    885 //   code may be generated for a given node.  If the limit is reached, the
    886 //   trace is flushed and a generic version of the code for a node is emitted.
    887 //   This is subsequently used for that node.  The code emitted for non-generic
    888 //   trace is not recorded in the node and so it cannot currently be reused in
    889 //   the event that code generation is requested for an identical trace.
    890 
    891 
    892 void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
    893   UNREACHABLE();
    894 }
    895 
    896 
    897 void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
    898   text->AddElement(TextElement::Atom(this), zone);
    899 }
    900 
    901 
    902 void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
    903   text->AddElement(TextElement::CharClass(this), zone);
    904 }
    905 
    906 
    907 void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
    908   for (int i = 0; i < elements()->length(); i++)
    909     text->AddElement(elements()->at(i), zone);
    910 }
    911 
    912 
    913 TextElement TextElement::Atom(RegExpAtom* atom) {
    914   return TextElement(ATOM, atom);
    915 }
    916 
    917 
    918 TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
    919   return TextElement(CHAR_CLASS, char_class);
    920 }
    921 
    922 
    923 int TextElement::length() const {
    924   switch (text_type()) {
    925     case ATOM:
    926       return atom()->length();
    927 
    928     case CHAR_CLASS:
    929       return 1;
    930   }
    931   UNREACHABLE();
    932   return 0;
    933 }
    934 
    935 
    936 DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
    937   if (table_ == NULL) {
    938     table_ = new(zone()) DispatchTable(zone());
    939     DispatchTableConstructor cons(table_, ignore_case, zone());
    940     cons.BuildTable(this);
    941   }
    942   return table_;
    943 }
    944 
    945 
    946 class FrequencyCollator {
    947  public:
    948   FrequencyCollator() : total_samples_(0) {
    949     for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
    950       frequencies_[i] = CharacterFrequency(i);
    951     }
    952   }
    953 
    954   void CountCharacter(int character) {
    955     int index = (character & RegExpMacroAssembler::kTableMask);
    956     frequencies_[index].Increment();
    957     total_samples_++;
    958   }
    959 
    960   // Does not measure in percent, but rather per-128 (the table size from the
    961   // regexp macro assembler).
    962   int Frequency(int in_character) {
    963     DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
    964     if (total_samples_ < 1) return 1;  // Division by zero.
    965     int freq_in_per128 =
    966         (frequencies_[in_character].counter() * 128) / total_samples_;
    967     return freq_in_per128;
    968   }
    969 
    970  private:
    971   class CharacterFrequency {
    972    public:
    973     CharacterFrequency() : counter_(0), character_(-1) { }
    974     explicit CharacterFrequency(int character)
    975         : counter_(0), character_(character) { }
    976 
    977     void Increment() { counter_++; }
    978     int counter() { return counter_; }
    979     int character() { return character_; }
    980 
    981    private:
    982     int counter_;
    983     int character_;
    984   };
    985 
    986 
    987  private:
    988   CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
    989   int total_samples_;
    990 };
    991 
    992 
    993 class RegExpCompiler {
    994  public:
    995   RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte,
    996                  Zone* zone);
    997 
    998   int AllocateRegister() {
    999     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
   1000       reg_exp_too_big_ = true;
   1001       return next_register_;
   1002     }
   1003     return next_register_++;
   1004   }
   1005 
   1006   RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
   1007                                            RegExpNode* start,
   1008                                            int capture_count,
   1009                                            Handle<String> pattern);
   1010 
   1011   inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
   1012 
   1013   static const int kImplementationOffset = 0;
   1014   static const int kNumberOfRegistersOffset = 0;
   1015   static const int kCodeOffset = 1;
   1016 
   1017   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
   1018   EndNode* accept() { return accept_; }
   1019 
   1020   static const int kMaxRecursion = 100;
   1021   inline int recursion_depth() { return recursion_depth_; }
   1022   inline void IncrementRecursionDepth() { recursion_depth_++; }
   1023   inline void DecrementRecursionDepth() { recursion_depth_--; }
   1024 
   1025   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
   1026 
   1027   inline bool ignore_case() { return ignore_case_; }
   1028   inline bool one_byte() { return one_byte_; }
   1029   FrequencyCollator* frequency_collator() { return &frequency_collator_; }
   1030 
   1031   int current_expansion_factor() { return current_expansion_factor_; }
   1032   void set_current_expansion_factor(int value) {
   1033     current_expansion_factor_ = value;
   1034   }
   1035 
   1036   Zone* zone() const { return zone_; }
   1037 
   1038   static const int kNoRegister = -1;
   1039 
   1040  private:
   1041   EndNode* accept_;
   1042   int next_register_;
   1043   List<RegExpNode*>* work_list_;
   1044   int recursion_depth_;
   1045   RegExpMacroAssembler* macro_assembler_;
   1046   bool ignore_case_;
   1047   bool one_byte_;
   1048   bool reg_exp_too_big_;
   1049   int current_expansion_factor_;
   1050   FrequencyCollator frequency_collator_;
   1051   Zone* zone_;
   1052 };
   1053 
   1054 
   1055 class RecursionCheck {
   1056  public:
   1057   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
   1058     compiler->IncrementRecursionDepth();
   1059   }
   1060   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
   1061  private:
   1062   RegExpCompiler* compiler_;
   1063 };
   1064 
   1065 
   1066 static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
   1067   return RegExpEngine::CompilationResult(isolate, "RegExp too big");
   1068 }
   1069 
   1070 
   1071 // Attempts to compile the regexp using an Irregexp code generator.  Returns
   1072 // a fixed array or a null handle depending on whether it succeeded.
   1073 RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case,
   1074                                bool one_byte, Zone* zone)
   1075     : next_register_(2 * (capture_count + 1)),
   1076       work_list_(NULL),
   1077       recursion_depth_(0),
   1078       ignore_case_(ignore_case),
   1079       one_byte_(one_byte),
   1080       reg_exp_too_big_(false),
   1081       current_expansion_factor_(1),
   1082       frequency_collator_(),
   1083       zone_(zone) {
   1084   accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
   1085   DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
   1086 }
   1087 
   1088 
   1089 RegExpEngine::CompilationResult RegExpCompiler::Assemble(
   1090     RegExpMacroAssembler* macro_assembler,
   1091     RegExpNode* start,
   1092     int capture_count,
   1093     Handle<String> pattern) {
   1094   Heap* heap = pattern->GetHeap();
   1095 
   1096   bool use_slow_safe_regexp_compiler = false;
   1097   if (heap->total_regexp_code_generated() >
   1098           RegExpImpl::kRegWxpCompiledLimit &&
   1099       heap->isolate()->memory_allocator()->SizeExecutable() >
   1100           RegExpImpl::kRegExpExecutableMemoryLimit) {
   1101     use_slow_safe_regexp_compiler = true;
   1102   }
   1103 
   1104   macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
   1105 
   1106 #ifdef DEBUG
   1107   if (FLAG_trace_regexp_assembler)
   1108     macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
   1109   else
   1110 #endif
   1111     macro_assembler_ = macro_assembler;
   1112 
   1113   List <RegExpNode*> work_list(0);
   1114   work_list_ = &work_list;
   1115   Label fail;
   1116   macro_assembler_->PushBacktrack(&fail);
   1117   Trace new_trace;
   1118   start->Emit(this, &new_trace);
   1119   macro_assembler_->Bind(&fail);
   1120   macro_assembler_->Fail();
   1121   while (!work_list.is_empty()) {
   1122     work_list.RemoveLast()->Emit(this, &new_trace);
   1123   }
   1124   if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate());
   1125 
   1126   Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
   1127   heap->IncreaseTotalRegexpCodeGenerated(code->Size());
   1128   work_list_ = NULL;
   1129 #ifdef DEBUG
   1130   if (FLAG_print_code) {
   1131     CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
   1132     OFStream os(trace_scope.file());
   1133     Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
   1134   }
   1135   if (FLAG_trace_regexp_assembler) {
   1136     delete macro_assembler_;
   1137   }
   1138 #endif
   1139   return RegExpEngine::CompilationResult(*code, next_register_);
   1140 }
   1141 
   1142 
   1143 bool Trace::DeferredAction::Mentions(int that) {
   1144   if (action_type() == ActionNode::CLEAR_CAPTURES) {
   1145     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
   1146     return range.Contains(that);
   1147   } else {
   1148     return reg() == that;
   1149   }
   1150 }
   1151 
   1152 
   1153 bool Trace::mentions_reg(int reg) {
   1154   for (DeferredAction* action = actions_;
   1155        action != NULL;
   1156        action = action->next()) {
   1157     if (action->Mentions(reg))
   1158       return true;
   1159   }
   1160   return false;
   1161 }
   1162 
   1163 
   1164 bool Trace::GetStoredPosition(int reg, int* cp_offset) {
   1165   DCHECK_EQ(0, *cp_offset);
   1166   for (DeferredAction* action = actions_;
   1167        action != NULL;
   1168        action = action->next()) {
   1169     if (action->Mentions(reg)) {
   1170       if (action->action_type() == ActionNode::STORE_POSITION) {
   1171         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
   1172         return true;
   1173       } else {
   1174         return false;
   1175       }
   1176     }
   1177   }
   1178   return false;
   1179 }
   1180 
   1181 
   1182 int Trace::FindAffectedRegisters(OutSet* affected_registers,
   1183                                  Zone* zone) {
   1184   int max_register = RegExpCompiler::kNoRegister;
   1185   for (DeferredAction* action = actions_;
   1186        action != NULL;
   1187        action = action->next()) {
   1188     if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
   1189       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
   1190       for (int i = range.from(); i <= range.to(); i++)
   1191         affected_registers->Set(i, zone);
   1192       if (range.to() > max_register) max_register = range.to();
   1193     } else {
   1194       affected_registers->Set(action->reg(), zone);
   1195       if (action->reg() > max_register) max_register = action->reg();
   1196     }
   1197   }
   1198   return max_register;
   1199 }
   1200 
   1201 
   1202 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
   1203                                      int max_register,
   1204                                      const OutSet& registers_to_pop,
   1205                                      const OutSet& registers_to_clear) {
   1206   for (int reg = max_register; reg >= 0; reg--) {
   1207     if (registers_to_pop.Get(reg)) {
   1208       assembler->PopRegister(reg);
   1209     } else if (registers_to_clear.Get(reg)) {
   1210       int clear_to = reg;
   1211       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
   1212         reg--;
   1213       }
   1214       assembler->ClearRegisters(reg, clear_to);
   1215     }
   1216   }
   1217 }
   1218 
   1219 
   1220 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
   1221                                    int max_register,
   1222                                    const OutSet& affected_registers,
   1223                                    OutSet* registers_to_pop,
   1224                                    OutSet* registers_to_clear,
   1225                                    Zone* zone) {
   1226   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
   1227   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
   1228 
   1229   // Count pushes performed to force a stack limit check occasionally.
   1230   int pushes = 0;
   1231 
   1232   for (int reg = 0; reg <= max_register; reg++) {
   1233     if (!affected_registers.Get(reg)) {
   1234       continue;
   1235     }
   1236 
   1237     // The chronologically first deferred action in the trace
   1238     // is used to infer the action needed to restore a register
   1239     // to its previous state (or not, if it's safe to ignore it).
   1240     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
   1241     DeferredActionUndoType undo_action = IGNORE;
   1242 
   1243     int value = 0;
   1244     bool absolute = false;
   1245     bool clear = false;
   1246     int store_position = -1;
   1247     // This is a little tricky because we are scanning the actions in reverse
   1248     // historical order (newest first).
   1249     for (DeferredAction* action = actions_;
   1250          action != NULL;
   1251          action = action->next()) {
   1252       if (action->Mentions(reg)) {
   1253         switch (action->action_type()) {
   1254           case ActionNode::SET_REGISTER: {
   1255             Trace::DeferredSetRegister* psr =
   1256                 static_cast<Trace::DeferredSetRegister*>(action);
   1257             if (!absolute) {
   1258               value += psr->value();
   1259               absolute = true;
   1260             }
   1261             // SET_REGISTER is currently only used for newly introduced loop
   1262             // counters. They can have a significant previous value if they
   1263             // occour in a loop. TODO(lrn): Propagate this information, so
   1264             // we can set undo_action to IGNORE if we know there is no value to
   1265             // restore.
   1266             undo_action = RESTORE;
   1267             DCHECK_EQ(store_position, -1);
   1268             DCHECK(!clear);
   1269             break;
   1270           }
   1271           case ActionNode::INCREMENT_REGISTER:
   1272             if (!absolute) {
   1273               value++;
   1274             }
   1275             DCHECK_EQ(store_position, -1);
   1276             DCHECK(!clear);
   1277             undo_action = RESTORE;
   1278             break;
   1279           case ActionNode::STORE_POSITION: {
   1280             Trace::DeferredCapture* pc =
   1281                 static_cast<Trace::DeferredCapture*>(action);
   1282             if (!clear && store_position == -1) {
   1283               store_position = pc->cp_offset();
   1284             }
   1285 
   1286             // For captures we know that stores and clears alternate.
   1287             // Other register, are never cleared, and if the occur
   1288             // inside a loop, they might be assigned more than once.
   1289             if (reg <= 1) {
   1290               // Registers zero and one, aka "capture zero", is
   1291               // always set correctly if we succeed. There is no
   1292               // need to undo a setting on backtrack, because we
   1293               // will set it again or fail.
   1294               undo_action = IGNORE;
   1295             } else {
   1296               undo_action = pc->is_capture() ? CLEAR : RESTORE;
   1297             }
   1298             DCHECK(!absolute);
   1299             DCHECK_EQ(value, 0);
   1300             break;
   1301           }
   1302           case ActionNode::CLEAR_CAPTURES: {
   1303             // Since we're scanning in reverse order, if we've already
   1304             // set the position we have to ignore historically earlier
   1305             // clearing operations.
   1306             if (store_position == -1) {
   1307               clear = true;
   1308             }
   1309             undo_action = RESTORE;
   1310             DCHECK(!absolute);
   1311             DCHECK_EQ(value, 0);
   1312             break;
   1313           }
   1314           default:
   1315             UNREACHABLE();
   1316             break;
   1317         }
   1318       }
   1319     }
   1320     // Prepare for the undo-action (e.g., push if it's going to be popped).
   1321     if (undo_action == RESTORE) {
   1322       pushes++;
   1323       RegExpMacroAssembler::StackCheckFlag stack_check =
   1324           RegExpMacroAssembler::kNoStackLimitCheck;
   1325       if (pushes == push_limit) {
   1326         stack_check = RegExpMacroAssembler::kCheckStackLimit;
   1327         pushes = 0;
   1328       }
   1329 
   1330       assembler->PushRegister(reg, stack_check);
   1331       registers_to_pop->Set(reg, zone);
   1332     } else if (undo_action == CLEAR) {
   1333       registers_to_clear->Set(reg, zone);
   1334     }
   1335     // Perform the chronologically last action (or accumulated increment)
   1336     // for the register.
   1337     if (store_position != -1) {
   1338       assembler->WriteCurrentPositionToRegister(reg, store_position);
   1339     } else if (clear) {
   1340       assembler->ClearRegisters(reg, reg);
   1341     } else if (absolute) {
   1342       assembler->SetRegister(reg, value);
   1343     } else if (value != 0) {
   1344       assembler->AdvanceRegister(reg, value);
   1345     }
   1346   }
   1347 }
   1348 
   1349 
   1350 // This is called as we come into a loop choice node and some other tricky
   1351 // nodes.  It normalizes the state of the code generator to ensure we can
   1352 // generate generic code.
   1353 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
   1354   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1355 
   1356   DCHECK(!is_trivial());
   1357 
   1358   if (actions_ == NULL && backtrack() == NULL) {
   1359     // Here we just have some deferred cp advances to fix and we are back to
   1360     // a normal situation.  We may also have to forget some information gained
   1361     // through a quick check that was already performed.
   1362     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
   1363     // Create a new trivial state and generate the node with that.
   1364     Trace new_state;
   1365     successor->Emit(compiler, &new_state);
   1366     return;
   1367   }
   1368 
   1369   // Generate deferred actions here along with code to undo them again.
   1370   OutSet affected_registers;
   1371 
   1372   if (backtrack() != NULL) {
   1373     // Here we have a concrete backtrack location.  These are set up by choice
   1374     // nodes and so they indicate that we have a deferred save of the current
   1375     // position which we may need to emit here.
   1376     assembler->PushCurrentPosition();
   1377   }
   1378 
   1379   int max_register = FindAffectedRegisters(&affected_registers,
   1380                                            compiler->zone());
   1381   OutSet registers_to_pop;
   1382   OutSet registers_to_clear;
   1383   PerformDeferredActions(assembler,
   1384                          max_register,
   1385                          affected_registers,
   1386                          &registers_to_pop,
   1387                          &registers_to_clear,
   1388                          compiler->zone());
   1389   if (cp_offset_ != 0) {
   1390     assembler->AdvanceCurrentPosition(cp_offset_);
   1391   }
   1392 
   1393   // Create a new trivial state and generate the node with that.
   1394   Label undo;
   1395   assembler->PushBacktrack(&undo);
   1396   Trace new_state;
   1397   successor->Emit(compiler, &new_state);
   1398 
   1399   // On backtrack we need to restore state.
   1400   assembler->Bind(&undo);
   1401   RestoreAffectedRegisters(assembler,
   1402                            max_register,
   1403                            registers_to_pop,
   1404                            registers_to_clear);
   1405   if (backtrack() == NULL) {
   1406     assembler->Backtrack();
   1407   } else {
   1408     assembler->PopCurrentPosition();
   1409     assembler->GoTo(backtrack());
   1410   }
   1411 }
   1412 
   1413 
   1414 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
   1415   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1416 
   1417   // Omit flushing the trace. We discard the entire stack frame anyway.
   1418 
   1419   if (!label()->is_bound()) {
   1420     // We are completely independent of the trace, since we ignore it,
   1421     // so this code can be used as the generic version.
   1422     assembler->Bind(label());
   1423   }
   1424 
   1425   // Throw away everything on the backtrack stack since the start
   1426   // of the negative submatch and restore the character position.
   1427   assembler->ReadCurrentPositionFromRegister(current_position_register_);
   1428   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
   1429   if (clear_capture_count_ > 0) {
   1430     // Clear any captures that might have been performed during the success
   1431     // of the body of the negative look-ahead.
   1432     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
   1433     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
   1434   }
   1435   // Now that we have unwound the stack we find at the top of the stack the
   1436   // backtrack that the BeginSubmatch node got.
   1437   assembler->Backtrack();
   1438 }
   1439 
   1440 
   1441 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   1442   if (!trace->is_trivial()) {
   1443     trace->Flush(compiler, this);
   1444     return;
   1445   }
   1446   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1447   if (!label()->is_bound()) {
   1448     assembler->Bind(label());
   1449   }
   1450   switch (action_) {
   1451     case ACCEPT:
   1452       assembler->Succeed();
   1453       return;
   1454     case BACKTRACK:
   1455       assembler->GoTo(trace->backtrack());
   1456       return;
   1457     case NEGATIVE_SUBMATCH_SUCCESS:
   1458       // This case is handled in a different virtual method.
   1459       UNREACHABLE();
   1460   }
   1461   UNIMPLEMENTED();
   1462 }
   1463 
   1464 
   1465 void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
   1466   if (guards_ == NULL)
   1467     guards_ = new(zone) ZoneList<Guard*>(1, zone);
   1468   guards_->Add(guard, zone);
   1469 }
   1470 
   1471 
   1472 ActionNode* ActionNode::SetRegister(int reg,
   1473                                     int val,
   1474                                     RegExpNode* on_success) {
   1475   ActionNode* result =
   1476       new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
   1477   result->data_.u_store_register.reg = reg;
   1478   result->data_.u_store_register.value = val;
   1479   return result;
   1480 }
   1481 
   1482 
   1483 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
   1484   ActionNode* result =
   1485       new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
   1486   result->data_.u_increment_register.reg = reg;
   1487   return result;
   1488 }
   1489 
   1490 
   1491 ActionNode* ActionNode::StorePosition(int reg,
   1492                                       bool is_capture,
   1493                                       RegExpNode* on_success) {
   1494   ActionNode* result =
   1495       new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
   1496   result->data_.u_position_register.reg = reg;
   1497   result->data_.u_position_register.is_capture = is_capture;
   1498   return result;
   1499 }
   1500 
   1501 
   1502 ActionNode* ActionNode::ClearCaptures(Interval range,
   1503                                       RegExpNode* on_success) {
   1504   ActionNode* result =
   1505       new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
   1506   result->data_.u_clear_captures.range_from = range.from();
   1507   result->data_.u_clear_captures.range_to = range.to();
   1508   return result;
   1509 }
   1510 
   1511 
   1512 ActionNode* ActionNode::BeginSubmatch(int stack_reg,
   1513                                       int position_reg,
   1514                                       RegExpNode* on_success) {
   1515   ActionNode* result =
   1516       new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
   1517   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1518   result->data_.u_submatch.current_position_register = position_reg;
   1519   return result;
   1520 }
   1521 
   1522 
   1523 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
   1524                                                 int position_reg,
   1525                                                 int clear_register_count,
   1526                                                 int clear_register_from,
   1527                                                 RegExpNode* on_success) {
   1528   ActionNode* result =
   1529       new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
   1530   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1531   result->data_.u_submatch.current_position_register = position_reg;
   1532   result->data_.u_submatch.clear_register_count = clear_register_count;
   1533   result->data_.u_submatch.clear_register_from = clear_register_from;
   1534   return result;
   1535 }
   1536 
   1537 
   1538 ActionNode* ActionNode::EmptyMatchCheck(int start_register,
   1539                                         int repetition_register,
   1540                                         int repetition_limit,
   1541                                         RegExpNode* on_success) {
   1542   ActionNode* result =
   1543       new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
   1544   result->data_.u_empty_match_check.start_register = start_register;
   1545   result->data_.u_empty_match_check.repetition_register = repetition_register;
   1546   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
   1547   return result;
   1548 }
   1549 
   1550 
   1551 #define DEFINE_ACCEPT(Type)                                          \
   1552   void Type##Node::Accept(NodeVisitor* visitor) {                    \
   1553     visitor->Visit##Type(this);                                      \
   1554   }
   1555 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
   1556 #undef DEFINE_ACCEPT
   1557 
   1558 
   1559 void LoopChoiceNode::Accept(NodeVisitor* visitor) {
   1560   visitor->VisitLoopChoice(this);
   1561 }
   1562 
   1563 
   1564 // -------------------------------------------------------------------
   1565 // Emit code.
   1566 
   1567 
   1568 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1569                                Guard* guard,
   1570                                Trace* trace) {
   1571   switch (guard->op()) {
   1572     case Guard::LT:
   1573       DCHECK(!trace->mentions_reg(guard->reg()));
   1574       macro_assembler->IfRegisterGE(guard->reg(),
   1575                                     guard->value(),
   1576                                     trace->backtrack());
   1577       break;
   1578     case Guard::GEQ:
   1579       DCHECK(!trace->mentions_reg(guard->reg()));
   1580       macro_assembler->IfRegisterLT(guard->reg(),
   1581                                     guard->value(),
   1582                                     trace->backtrack());
   1583       break;
   1584   }
   1585 }
   1586 
   1587 
   1588 // Returns the number of characters in the equivalence class, omitting those
   1589 // that cannot occur in the source string because it is ASCII.
   1590 static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
   1591                                      bool one_byte_subject,
   1592                                      unibrow::uchar* letters) {
   1593   int length =
   1594       isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
   1595   // Unibrow returns 0 or 1 for characters where case independence is
   1596   // trivial.
   1597   if (length == 0) {
   1598     letters[0] = character;
   1599     length = 1;
   1600   }
   1601   if (!one_byte_subject || character <= String::kMaxOneByteCharCode) {
   1602     return length;
   1603   }
   1604 
   1605   // The standard requires that non-ASCII characters cannot have ASCII
   1606   // character codes in their equivalence class.
   1607   // TODO(dcarney): issue 3550 this is not actually true for Latin1 anymore,
   1608   // is it?  For example, \u00C5 is equivalent to \u212B.
   1609   return 0;
   1610 }
   1611 
   1612 
   1613 static inline bool EmitSimpleCharacter(Isolate* isolate,
   1614                                        RegExpCompiler* compiler,
   1615                                        uc16 c,
   1616                                        Label* on_failure,
   1617                                        int cp_offset,
   1618                                        bool check,
   1619                                        bool preloaded) {
   1620   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1621   bool bound_checked = false;
   1622   if (!preloaded) {
   1623     assembler->LoadCurrentCharacter(
   1624         cp_offset,
   1625         on_failure,
   1626         check);
   1627     bound_checked = true;
   1628   }
   1629   assembler->CheckNotCharacter(c, on_failure);
   1630   return bound_checked;
   1631 }
   1632 
   1633 
   1634 // Only emits non-letters (things that don't have case).  Only used for case
   1635 // independent matches.
   1636 static inline bool EmitAtomNonLetter(Isolate* isolate,
   1637                                      RegExpCompiler* compiler,
   1638                                      uc16 c,
   1639                                      Label* on_failure,
   1640                                      int cp_offset,
   1641                                      bool check,
   1642                                      bool preloaded) {
   1643   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1644   bool one_byte = compiler->one_byte();
   1645   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1646   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1647   if (length < 1) {
   1648     // This can't match.  Must be an one-byte subject and a non-one-byte
   1649     // character.  We do not need to do anything since the one-byte pass
   1650     // already handled this.
   1651     return false;  // Bounds not checked.
   1652   }
   1653   bool checked = false;
   1654   // We handle the length > 1 case in a later pass.
   1655   if (length == 1) {
   1656     if (one_byte && c > String::kMaxOneByteCharCodeU) {
   1657       // Can't match - see above.
   1658       return false;  // Bounds not checked.
   1659     }
   1660     if (!preloaded) {
   1661       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1662       checked = check;
   1663     }
   1664     macro_assembler->CheckNotCharacter(c, on_failure);
   1665   }
   1666   return checked;
   1667 }
   1668 
   1669 
   1670 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
   1671                                       bool one_byte, uc16 c1, uc16 c2,
   1672                                       Label* on_failure) {
   1673   uc16 char_mask;
   1674   if (one_byte) {
   1675     char_mask = String::kMaxOneByteCharCode;
   1676   } else {
   1677     char_mask = String::kMaxUtf16CodeUnit;
   1678   }
   1679   uc16 exor = c1 ^ c2;
   1680   // Check whether exor has only one bit set.
   1681   if (((exor - 1) & exor) == 0) {
   1682     // If c1 and c2 differ only by one bit.
   1683     // Ecma262UnCanonicalize always gives the highest number last.
   1684     DCHECK(c2 > c1);
   1685     uc16 mask = char_mask ^ exor;
   1686     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
   1687     return true;
   1688   }
   1689   DCHECK(c2 > c1);
   1690   uc16 diff = c2 - c1;
   1691   if (((diff - 1) & diff) == 0 && c1 >= diff) {
   1692     // If the characters differ by 2^n but don't differ by one bit then
   1693     // subtract the difference from the found character, then do the or
   1694     // trick.  We avoid the theoretical case where negative numbers are
   1695     // involved in order to simplify code generation.
   1696     uc16 mask = char_mask ^ diff;
   1697     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
   1698                                                     diff,
   1699                                                     mask,
   1700                                                     on_failure);
   1701     return true;
   1702   }
   1703   return false;
   1704 }
   1705 
   1706 
   1707 typedef bool EmitCharacterFunction(Isolate* isolate,
   1708                                    RegExpCompiler* compiler,
   1709                                    uc16 c,
   1710                                    Label* on_failure,
   1711                                    int cp_offset,
   1712                                    bool check,
   1713                                    bool preloaded);
   1714 
   1715 // Only emits letters (things that have case).  Only used for case independent
   1716 // matches.
   1717 static inline bool EmitAtomLetter(Isolate* isolate,
   1718                                   RegExpCompiler* compiler,
   1719                                   uc16 c,
   1720                                   Label* on_failure,
   1721                                   int cp_offset,
   1722                                   bool check,
   1723                                   bool preloaded) {
   1724   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1725   bool one_byte = compiler->one_byte();
   1726   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1727   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1728   if (length <= 1) return false;
   1729   // We may not need to check against the end of the input string
   1730   // if this character lies before a character that matched.
   1731   if (!preloaded) {
   1732     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1733   }
   1734   Label ok;
   1735   DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
   1736   switch (length) {
   1737     case 2: {
   1738       if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
   1739                                     chars[1], on_failure)) {
   1740       } else {
   1741         macro_assembler->CheckCharacter(chars[0], &ok);
   1742         macro_assembler->CheckNotCharacter(chars[1], on_failure);
   1743         macro_assembler->Bind(&ok);
   1744       }
   1745       break;
   1746     }
   1747     case 4:
   1748       macro_assembler->CheckCharacter(chars[3], &ok);
   1749       // Fall through!
   1750     case 3:
   1751       macro_assembler->CheckCharacter(chars[0], &ok);
   1752       macro_assembler->CheckCharacter(chars[1], &ok);
   1753       macro_assembler->CheckNotCharacter(chars[2], on_failure);
   1754       macro_assembler->Bind(&ok);
   1755       break;
   1756     default:
   1757       UNREACHABLE();
   1758       break;
   1759   }
   1760   return true;
   1761 }
   1762 
   1763 
   1764 static void EmitBoundaryTest(RegExpMacroAssembler* masm,
   1765                              int border,
   1766                              Label* fall_through,
   1767                              Label* above_or_equal,
   1768                              Label* below) {
   1769   if (below != fall_through) {
   1770     masm->CheckCharacterLT(border, below);
   1771     if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
   1772   } else {
   1773     masm->CheckCharacterGT(border - 1, above_or_equal);
   1774   }
   1775 }
   1776 
   1777 
   1778 static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
   1779                                    int first,
   1780                                    int last,
   1781                                    Label* fall_through,
   1782                                    Label* in_range,
   1783                                    Label* out_of_range) {
   1784   if (in_range == fall_through) {
   1785     if (first == last) {
   1786       masm->CheckNotCharacter(first, out_of_range);
   1787     } else {
   1788       masm->CheckCharacterNotInRange(first, last, out_of_range);
   1789     }
   1790   } else {
   1791     if (first == last) {
   1792       masm->CheckCharacter(first, in_range);
   1793     } else {
   1794       masm->CheckCharacterInRange(first, last, in_range);
   1795     }
   1796     if (out_of_range != fall_through) masm->GoTo(out_of_range);
   1797   }
   1798 }
   1799 
   1800 
   1801 // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
   1802 // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
   1803 static void EmitUseLookupTable(
   1804     RegExpMacroAssembler* masm,
   1805     ZoneList<int>* ranges,
   1806     int start_index,
   1807     int end_index,
   1808     int min_char,
   1809     Label* fall_through,
   1810     Label* even_label,
   1811     Label* odd_label) {
   1812   static const int kSize = RegExpMacroAssembler::kTableSize;
   1813   static const int kMask = RegExpMacroAssembler::kTableMask;
   1814 
   1815   int base = (min_char & ~kMask);
   1816   USE(base);
   1817 
   1818   // Assert that everything is on one kTableSize page.
   1819   for (int i = start_index; i <= end_index; i++) {
   1820     DCHECK_EQ(ranges->at(i) & ~kMask, base);
   1821   }
   1822   DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
   1823 
   1824   char templ[kSize];
   1825   Label* on_bit_set;
   1826   Label* on_bit_clear;
   1827   int bit;
   1828   if (even_label == fall_through) {
   1829     on_bit_set = odd_label;
   1830     on_bit_clear = even_label;
   1831     bit = 1;
   1832   } else {
   1833     on_bit_set = even_label;
   1834     on_bit_clear = odd_label;
   1835     bit = 0;
   1836   }
   1837   for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
   1838     templ[i] = bit;
   1839   }
   1840   int j = 0;
   1841   bit ^= 1;
   1842   for (int i = start_index; i < end_index; i++) {
   1843     for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
   1844       templ[j] = bit;
   1845     }
   1846     bit ^= 1;
   1847   }
   1848   for (int i = j; i < kSize; i++) {
   1849     templ[i] = bit;
   1850   }
   1851   Factory* factory = masm->zone()->isolate()->factory();
   1852   // TODO(erikcorry): Cache these.
   1853   Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
   1854   for (int i = 0; i < kSize; i++) {
   1855     ba->set(i, templ[i]);
   1856   }
   1857   masm->CheckBitInTable(ba, on_bit_set);
   1858   if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
   1859 }
   1860 
   1861 
   1862 static void CutOutRange(RegExpMacroAssembler* masm,
   1863                         ZoneList<int>* ranges,
   1864                         int start_index,
   1865                         int end_index,
   1866                         int cut_index,
   1867                         Label* even_label,
   1868                         Label* odd_label) {
   1869   bool odd = (((cut_index - start_index) & 1) == 1);
   1870   Label* in_range_label = odd ? odd_label : even_label;
   1871   Label dummy;
   1872   EmitDoubleBoundaryTest(masm,
   1873                          ranges->at(cut_index),
   1874                          ranges->at(cut_index + 1) - 1,
   1875                          &dummy,
   1876                          in_range_label,
   1877                          &dummy);
   1878   DCHECK(!dummy.is_linked());
   1879   // Cut out the single range by rewriting the array.  This creates a new
   1880   // range that is a merger of the two ranges on either side of the one we
   1881   // are cutting out.  The oddity of the labels is preserved.
   1882   for (int j = cut_index; j > start_index; j--) {
   1883     ranges->at(j) = ranges->at(j - 1);
   1884   }
   1885   for (int j = cut_index + 1; j < end_index; j++) {
   1886     ranges->at(j) = ranges->at(j + 1);
   1887   }
   1888 }
   1889 
   1890 
   1891 // Unicode case.  Split the search space into kSize spaces that are handled
   1892 // with recursion.
   1893 static void SplitSearchSpace(ZoneList<int>* ranges,
   1894                              int start_index,
   1895                              int end_index,
   1896                              int* new_start_index,
   1897                              int* new_end_index,
   1898                              int* border) {
   1899   static const int kSize = RegExpMacroAssembler::kTableSize;
   1900   static const int kMask = RegExpMacroAssembler::kTableMask;
   1901 
   1902   int first = ranges->at(start_index);
   1903   int last = ranges->at(end_index) - 1;
   1904 
   1905   *new_start_index = start_index;
   1906   *border = (ranges->at(start_index) & ~kMask) + kSize;
   1907   while (*new_start_index < end_index) {
   1908     if (ranges->at(*new_start_index) > *border) break;
   1909     (*new_start_index)++;
   1910   }
   1911   // new_start_index is the index of the first edge that is beyond the
   1912   // current kSize space.
   1913 
   1914   // For very large search spaces we do a binary chop search of the non-Latin1
   1915   // space instead of just going to the end of the current kSize space.  The
   1916   // heuristics are complicated a little by the fact that any 128-character
   1917   // encoding space can be quickly tested with a table lookup, so we don't
   1918   // wish to do binary chop search at a smaller granularity than that.  A
   1919   // 128-character space can take up a lot of space in the ranges array if,
   1920   // for example, we only want to match every second character (eg. the lower
   1921   // case characters on some Unicode pages).
   1922   int binary_chop_index = (end_index + start_index) / 2;
   1923   // The first test ensures that we get to the code that handles the Latin1
   1924   // range with a single not-taken branch, speeding up this important
   1925   // character range (even non-Latin1 charset-based text has spaces and
   1926   // punctuation).
   1927   if (*border - 1 > String::kMaxOneByteCharCode &&  // Latin1 case.
   1928       end_index - start_index > (*new_start_index - start_index) * 2 &&
   1929       last - first > kSize * 2 && binary_chop_index > *new_start_index &&
   1930       ranges->at(binary_chop_index) >= first + 2 * kSize) {
   1931     int scan_forward_for_section_border = binary_chop_index;;
   1932     int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
   1933 
   1934     while (scan_forward_for_section_border < end_index) {
   1935       if (ranges->at(scan_forward_for_section_border) > new_border) {
   1936         *new_start_index = scan_forward_for_section_border;
   1937         *border = new_border;
   1938         break;
   1939       }
   1940       scan_forward_for_section_border++;
   1941     }
   1942   }
   1943 
   1944   DCHECK(*new_start_index > start_index);
   1945   *new_end_index = *new_start_index - 1;
   1946   if (ranges->at(*new_end_index) == *border) {
   1947     (*new_end_index)--;
   1948   }
   1949   if (*border >= ranges->at(end_index)) {
   1950     *border = ranges->at(end_index);
   1951     *new_start_index = end_index;  // Won't be used.
   1952     *new_end_index = end_index - 1;
   1953   }
   1954 }
   1955 
   1956 
   1957 // Gets a series of segment boundaries representing a character class.  If the
   1958 // character is in the range between an even and an odd boundary (counting from
   1959 // start_index) then go to even_label, otherwise go to odd_label.  We already
   1960 // know that the character is in the range of min_char to max_char inclusive.
   1961 // Either label can be NULL indicating backtracking.  Either label can also be
   1962 // equal to the fall_through label.
   1963 static void GenerateBranches(RegExpMacroAssembler* masm,
   1964                              ZoneList<int>* ranges,
   1965                              int start_index,
   1966                              int end_index,
   1967                              uc16 min_char,
   1968                              uc16 max_char,
   1969                              Label* fall_through,
   1970                              Label* even_label,
   1971                              Label* odd_label) {
   1972   int first = ranges->at(start_index);
   1973   int last = ranges->at(end_index) - 1;
   1974 
   1975   DCHECK_LT(min_char, first);
   1976 
   1977   // Just need to test if the character is before or on-or-after
   1978   // a particular character.
   1979   if (start_index == end_index) {
   1980     EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
   1981     return;
   1982   }
   1983 
   1984   // Another almost trivial case:  There is one interval in the middle that is
   1985   // different from the end intervals.
   1986   if (start_index + 1 == end_index) {
   1987     EmitDoubleBoundaryTest(
   1988         masm, first, last, fall_through, even_label, odd_label);
   1989     return;
   1990   }
   1991 
   1992   // It's not worth using table lookup if there are very few intervals in the
   1993   // character class.
   1994   if (end_index - start_index <= 6) {
   1995     // It is faster to test for individual characters, so we look for those
   1996     // first, then try arbitrary ranges in the second round.
   1997     static int kNoCutIndex = -1;
   1998     int cut = kNoCutIndex;
   1999     for (int i = start_index; i < end_index; i++) {
   2000       if (ranges->at(i) == ranges->at(i + 1) - 1) {
   2001         cut = i;
   2002         break;
   2003       }
   2004     }
   2005     if (cut == kNoCutIndex) cut = start_index;
   2006     CutOutRange(
   2007         masm, ranges, start_index, end_index, cut, even_label, odd_label);
   2008     DCHECK_GE(end_index - start_index, 2);
   2009     GenerateBranches(masm,
   2010                      ranges,
   2011                      start_index + 1,
   2012                      end_index - 1,
   2013                      min_char,
   2014                      max_char,
   2015                      fall_through,
   2016                      even_label,
   2017                      odd_label);
   2018     return;
   2019   }
   2020 
   2021   // If there are a lot of intervals in the regexp, then we will use tables to
   2022   // determine whether the character is inside or outside the character class.
   2023   static const int kBits = RegExpMacroAssembler::kTableSizeBits;
   2024 
   2025   if ((max_char >> kBits) == (min_char >> kBits)) {
   2026     EmitUseLookupTable(masm,
   2027                        ranges,
   2028                        start_index,
   2029                        end_index,
   2030                        min_char,
   2031                        fall_through,
   2032                        even_label,
   2033                        odd_label);
   2034     return;
   2035   }
   2036 
   2037   if ((min_char >> kBits) != (first >> kBits)) {
   2038     masm->CheckCharacterLT(first, odd_label);
   2039     GenerateBranches(masm,
   2040                      ranges,
   2041                      start_index + 1,
   2042                      end_index,
   2043                      first,
   2044                      max_char,
   2045                      fall_through,
   2046                      odd_label,
   2047                      even_label);
   2048     return;
   2049   }
   2050 
   2051   int new_start_index = 0;
   2052   int new_end_index = 0;
   2053   int border = 0;
   2054 
   2055   SplitSearchSpace(ranges,
   2056                    start_index,
   2057                    end_index,
   2058                    &new_start_index,
   2059                    &new_end_index,
   2060                    &border);
   2061 
   2062   Label handle_rest;
   2063   Label* above = &handle_rest;
   2064   if (border == last + 1) {
   2065     // We didn't find any section that started after the limit, so everything
   2066     // above the border is one of the terminal labels.
   2067     above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
   2068     DCHECK(new_end_index == end_index - 1);
   2069   }
   2070 
   2071   DCHECK_LE(start_index, new_end_index);
   2072   DCHECK_LE(new_start_index, end_index);
   2073   DCHECK_LT(start_index, new_start_index);
   2074   DCHECK_LT(new_end_index, end_index);
   2075   DCHECK(new_end_index + 1 == new_start_index ||
   2076          (new_end_index + 2 == new_start_index &&
   2077           border == ranges->at(new_end_index + 1)));
   2078   DCHECK_LT(min_char, border - 1);
   2079   DCHECK_LT(border, max_char);
   2080   DCHECK_LT(ranges->at(new_end_index), border);
   2081   DCHECK(border < ranges->at(new_start_index) ||
   2082          (border == ranges->at(new_start_index) &&
   2083           new_start_index == end_index &&
   2084           new_end_index == end_index - 1 &&
   2085           border == last + 1));
   2086   DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
   2087 
   2088   masm->CheckCharacterGT(border - 1, above);
   2089   Label dummy;
   2090   GenerateBranches(masm,
   2091                    ranges,
   2092                    start_index,
   2093                    new_end_index,
   2094                    min_char,
   2095                    border - 1,
   2096                    &dummy,
   2097                    even_label,
   2098                    odd_label);
   2099   if (handle_rest.is_linked()) {
   2100     masm->Bind(&handle_rest);
   2101     bool flip = (new_start_index & 1) != (start_index & 1);
   2102     GenerateBranches(masm,
   2103                      ranges,
   2104                      new_start_index,
   2105                      end_index,
   2106                      border,
   2107                      max_char,
   2108                      &dummy,
   2109                      flip ? odd_label : even_label,
   2110                      flip ? even_label : odd_label);
   2111   }
   2112 }
   2113 
   2114 
   2115 static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
   2116                           RegExpCharacterClass* cc, bool one_byte,
   2117                           Label* on_failure, int cp_offset, bool check_offset,
   2118                           bool preloaded, Zone* zone) {
   2119   ZoneList<CharacterRange>* ranges = cc->ranges(zone);
   2120   if (!CharacterRange::IsCanonical(ranges)) {
   2121     CharacterRange::Canonicalize(ranges);
   2122   }
   2123 
   2124   int max_char;
   2125   if (one_byte) {
   2126     max_char = String::kMaxOneByteCharCode;
   2127   } else {
   2128     max_char = String::kMaxUtf16CodeUnit;
   2129   }
   2130 
   2131   int range_count = ranges->length();
   2132 
   2133   int last_valid_range = range_count - 1;
   2134   while (last_valid_range >= 0) {
   2135     CharacterRange& range = ranges->at(last_valid_range);
   2136     if (range.from() <= max_char) {
   2137       break;
   2138     }
   2139     last_valid_range--;
   2140   }
   2141 
   2142   if (last_valid_range < 0) {
   2143     if (!cc->is_negated()) {
   2144       macro_assembler->GoTo(on_failure);
   2145     }
   2146     if (check_offset) {
   2147       macro_assembler->CheckPosition(cp_offset, on_failure);
   2148     }
   2149     return;
   2150   }
   2151 
   2152   if (last_valid_range == 0 &&
   2153       ranges->at(0).IsEverything(max_char)) {
   2154     if (cc->is_negated()) {
   2155       macro_assembler->GoTo(on_failure);
   2156     } else {
   2157       // This is a common case hit by non-anchored expressions.
   2158       if (check_offset) {
   2159         macro_assembler->CheckPosition(cp_offset, on_failure);
   2160       }
   2161     }
   2162     return;
   2163   }
   2164   if (last_valid_range == 0 &&
   2165       !cc->is_negated() &&
   2166       ranges->at(0).IsEverything(max_char)) {
   2167     // This is a common case hit by non-anchored expressions.
   2168     if (check_offset) {
   2169       macro_assembler->CheckPosition(cp_offset, on_failure);
   2170     }
   2171     return;
   2172   }
   2173 
   2174   if (!preloaded) {
   2175     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
   2176   }
   2177 
   2178   if (cc->is_standard(zone) &&
   2179         macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
   2180                                                     on_failure)) {
   2181       return;
   2182   }
   2183 
   2184 
   2185   // A new list with ascending entries.  Each entry is a code unit
   2186   // where there is a boundary between code units that are part of
   2187   // the class and code units that are not.  Normally we insert an
   2188   // entry at zero which goes to the failure label, but if there
   2189   // was already one there we fall through for success on that entry.
   2190   // Subsequent entries have alternating meaning (success/failure).
   2191   ZoneList<int>* range_boundaries =
   2192       new(zone) ZoneList<int>(last_valid_range, zone);
   2193 
   2194   bool zeroth_entry_is_failure = !cc->is_negated();
   2195 
   2196   for (int i = 0; i <= last_valid_range; i++) {
   2197     CharacterRange& range = ranges->at(i);
   2198     if (range.from() == 0) {
   2199       DCHECK_EQ(i, 0);
   2200       zeroth_entry_is_failure = !zeroth_entry_is_failure;
   2201     } else {
   2202       range_boundaries->Add(range.from(), zone);
   2203     }
   2204     range_boundaries->Add(range.to() + 1, zone);
   2205   }
   2206   int end_index = range_boundaries->length() - 1;
   2207   if (range_boundaries->at(end_index) > max_char) {
   2208     end_index--;
   2209   }
   2210 
   2211   Label fall_through;
   2212   GenerateBranches(macro_assembler,
   2213                    range_boundaries,
   2214                    0,  // start_index.
   2215                    end_index,
   2216                    0,  // min_char.
   2217                    max_char,
   2218                    &fall_through,
   2219                    zeroth_entry_is_failure ? &fall_through : on_failure,
   2220                    zeroth_entry_is_failure ? on_failure : &fall_through);
   2221   macro_assembler->Bind(&fall_through);
   2222 }
   2223 
   2224 
   2225 RegExpNode::~RegExpNode() {
   2226 }
   2227 
   2228 
   2229 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
   2230                                                   Trace* trace) {
   2231   // If we are generating a greedy loop then don't stop and don't reuse code.
   2232   if (trace->stop_node() != NULL) {
   2233     return CONTINUE;
   2234   }
   2235 
   2236   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   2237   if (trace->is_trivial()) {
   2238     if (label_.is_bound()) {
   2239       // We are being asked to generate a generic version, but that's already
   2240       // been done so just go to it.
   2241       macro_assembler->GoTo(&label_);
   2242       return DONE;
   2243     }
   2244     if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
   2245       // To avoid too deep recursion we push the node to the work queue and just
   2246       // generate a goto here.
   2247       compiler->AddWork(this);
   2248       macro_assembler->GoTo(&label_);
   2249       return DONE;
   2250     }
   2251     // Generate generic version of the node and bind the label for later use.
   2252     macro_assembler->Bind(&label_);
   2253     return CONTINUE;
   2254   }
   2255 
   2256   // We are being asked to make a non-generic version.  Keep track of how many
   2257   // non-generic versions we generate so as not to overdo it.
   2258   trace_count_++;
   2259   if (FLAG_regexp_optimization &&
   2260       trace_count_ < kMaxCopiesCodeGenerated &&
   2261       compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
   2262     return CONTINUE;
   2263   }
   2264 
   2265   // If we get here code has been generated for this node too many times or
   2266   // recursion is too deep.  Time to switch to a generic version.  The code for
   2267   // generic versions above can handle deep recursion properly.
   2268   trace->Flush(compiler, this);
   2269   return DONE;
   2270 }
   2271 
   2272 
   2273 int ActionNode::EatsAtLeast(int still_to_find,
   2274                             int budget,
   2275                             bool not_at_start) {
   2276   if (budget <= 0) return 0;
   2277   if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
   2278   return on_success()->EatsAtLeast(still_to_find,
   2279                                    budget - 1,
   2280                                    not_at_start);
   2281 }
   2282 
   2283 
   2284 void ActionNode::FillInBMInfo(int offset,
   2285                               int budget,
   2286                               BoyerMooreLookahead* bm,
   2287                               bool not_at_start) {
   2288   if (action_type_ == BEGIN_SUBMATCH) {
   2289     bm->SetRest(offset);
   2290   } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
   2291     on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
   2292   }
   2293   SaveBMInfo(bm, not_at_start, offset);
   2294 }
   2295 
   2296 
   2297 int AssertionNode::EatsAtLeast(int still_to_find,
   2298                                int budget,
   2299                                bool not_at_start) {
   2300   if (budget <= 0) return 0;
   2301   // If we know we are not at the start and we are asked "how many characters
   2302   // will you match if you succeed?" then we can answer anything since false
   2303   // implies false.  So lets just return the max answer (still_to_find) since
   2304   // that won't prevent us from preloading a lot of characters for the other
   2305   // branches in the node graph.
   2306   if (assertion_type() == AT_START && not_at_start) return still_to_find;
   2307   return on_success()->EatsAtLeast(still_to_find,
   2308                                    budget - 1,
   2309                                    not_at_start);
   2310 }
   2311 
   2312 
   2313 void AssertionNode::FillInBMInfo(int offset,
   2314                                  int budget,
   2315                                  BoyerMooreLookahead* bm,
   2316                                  bool not_at_start) {
   2317   // Match the behaviour of EatsAtLeast on this node.
   2318   if (assertion_type() == AT_START && not_at_start) return;
   2319   on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
   2320   SaveBMInfo(bm, not_at_start, offset);
   2321 }
   2322 
   2323 
   2324 int BackReferenceNode::EatsAtLeast(int still_to_find,
   2325                                    int budget,
   2326                                    bool not_at_start) {
   2327   if (budget <= 0) return 0;
   2328   return on_success()->EatsAtLeast(still_to_find,
   2329                                    budget - 1,
   2330                                    not_at_start);
   2331 }
   2332 
   2333 
   2334 int TextNode::EatsAtLeast(int still_to_find,
   2335                           int budget,
   2336                           bool not_at_start) {
   2337   int answer = Length();
   2338   if (answer >= still_to_find) return answer;
   2339   if (budget <= 0) return answer;
   2340   // We are not at start after this node so we set the last argument to 'true'.
   2341   return answer + on_success()->EatsAtLeast(still_to_find - answer,
   2342                                             budget - 1,
   2343                                             true);
   2344 }
   2345 
   2346 
   2347 int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
   2348                                              int budget,
   2349                                              bool not_at_start) {
   2350   if (budget <= 0) return 0;
   2351   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2352   // afterwards.
   2353   RegExpNode* node = alternatives_->at(1).node();
   2354   return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
   2355 }
   2356 
   2357 
   2358 void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
   2359     QuickCheckDetails* details,
   2360     RegExpCompiler* compiler,
   2361     int filled_in,
   2362     bool not_at_start) {
   2363   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2364   // afterwards.
   2365   RegExpNode* node = alternatives_->at(1).node();
   2366   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
   2367 }
   2368 
   2369 
   2370 int ChoiceNode::EatsAtLeastHelper(int still_to_find,
   2371                                   int budget,
   2372                                   RegExpNode* ignore_this_node,
   2373                                   bool not_at_start) {
   2374   if (budget <= 0) return 0;
   2375   int min = 100;
   2376   int choice_count = alternatives_->length();
   2377   budget = (budget - 1) / choice_count;
   2378   for (int i = 0; i < choice_count; i++) {
   2379     RegExpNode* node = alternatives_->at(i).node();
   2380     if (node == ignore_this_node) continue;
   2381     int node_eats_at_least =
   2382         node->EatsAtLeast(still_to_find, budget, not_at_start);
   2383     if (node_eats_at_least < min) min = node_eats_at_least;
   2384     if (min == 0) return 0;
   2385   }
   2386   return min;
   2387 }
   2388 
   2389 
   2390 int LoopChoiceNode::EatsAtLeast(int still_to_find,
   2391                                 int budget,
   2392                                 bool not_at_start) {
   2393   return EatsAtLeastHelper(still_to_find,
   2394                            budget - 1,
   2395                            loop_node_,
   2396                            not_at_start);
   2397 }
   2398 
   2399 
   2400 int ChoiceNode::EatsAtLeast(int still_to_find,
   2401                             int budget,
   2402                             bool not_at_start) {
   2403   return EatsAtLeastHelper(still_to_find,
   2404                            budget,
   2405                            NULL,
   2406                            not_at_start);
   2407 }
   2408 
   2409 
   2410 // Takes the left-most 1-bit and smears it out, setting all bits to its right.
   2411 static inline uint32_t SmearBitsRight(uint32_t v) {
   2412   v |= v >> 1;
   2413   v |= v >> 2;
   2414   v |= v >> 4;
   2415   v |= v >> 8;
   2416   v |= v >> 16;
   2417   return v;
   2418 }
   2419 
   2420 
   2421 bool QuickCheckDetails::Rationalize(bool asc) {
   2422   bool found_useful_op = false;
   2423   uint32_t char_mask;
   2424   if (asc) {
   2425     char_mask = String::kMaxOneByteCharCode;
   2426   } else {
   2427     char_mask = String::kMaxUtf16CodeUnit;
   2428   }
   2429   mask_ = 0;
   2430   value_ = 0;
   2431   int char_shift = 0;
   2432   for (int i = 0; i < characters_; i++) {
   2433     Position* pos = &positions_[i];
   2434     if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
   2435       found_useful_op = true;
   2436     }
   2437     mask_ |= (pos->mask & char_mask) << char_shift;
   2438     value_ |= (pos->value & char_mask) << char_shift;
   2439     char_shift += asc ? 8 : 16;
   2440   }
   2441   return found_useful_op;
   2442 }
   2443 
   2444 
   2445 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
   2446                                 Trace* bounds_check_trace,
   2447                                 Trace* trace,
   2448                                 bool preload_has_checked_bounds,
   2449                                 Label* on_possible_success,
   2450                                 QuickCheckDetails* details,
   2451                                 bool fall_through_on_failure) {
   2452   if (details->characters() == 0) return false;
   2453   GetQuickCheckDetails(
   2454       details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
   2455   if (details->cannot_match()) return false;
   2456   if (!details->Rationalize(compiler->one_byte())) return false;
   2457   DCHECK(details->characters() == 1 ||
   2458          compiler->macro_assembler()->CanReadUnaligned());
   2459   uint32_t mask = details->mask();
   2460   uint32_t value = details->value();
   2461 
   2462   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2463 
   2464   if (trace->characters_preloaded() != details->characters()) {
   2465     DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
   2466     // We are attempting to preload the minimum number of characters
   2467     // any choice would eat, so if the bounds check fails, then none of the
   2468     // choices can succeed, so we can just immediately backtrack, rather
   2469     // than go to the next choice.
   2470     assembler->LoadCurrentCharacter(trace->cp_offset(),
   2471                                     bounds_check_trace->backtrack(),
   2472                                     !preload_has_checked_bounds,
   2473                                     details->characters());
   2474   }
   2475 
   2476 
   2477   bool need_mask = true;
   2478 
   2479   if (details->characters() == 1) {
   2480     // If number of characters preloaded is 1 then we used a byte or 16 bit
   2481     // load so the value is already masked down.
   2482     uint32_t char_mask;
   2483     if (compiler->one_byte()) {
   2484       char_mask = String::kMaxOneByteCharCode;
   2485     } else {
   2486       char_mask = String::kMaxUtf16CodeUnit;
   2487     }
   2488     if ((mask & char_mask) == char_mask) need_mask = false;
   2489     mask &= char_mask;
   2490   } else {
   2491     // For 2-character preloads in one-byte mode or 1-character preloads in
   2492     // two-byte mode we also use a 16 bit load with zero extend.
   2493     if (details->characters() == 2 && compiler->one_byte()) {
   2494       if ((mask & 0xffff) == 0xffff) need_mask = false;
   2495     } else if (details->characters() == 1 && !compiler->one_byte()) {
   2496       if ((mask & 0xffff) == 0xffff) need_mask = false;
   2497     } else {
   2498       if (mask == 0xffffffff) need_mask = false;
   2499     }
   2500   }
   2501 
   2502   if (fall_through_on_failure) {
   2503     if (need_mask) {
   2504       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
   2505     } else {
   2506       assembler->CheckCharacter(value, on_possible_success);
   2507     }
   2508   } else {
   2509     if (need_mask) {
   2510       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
   2511     } else {
   2512       assembler->CheckNotCharacter(value, trace->backtrack());
   2513     }
   2514   }
   2515   return true;
   2516 }
   2517 
   2518 
   2519 // Here is the meat of GetQuickCheckDetails (see also the comment on the
   2520 // super-class in the .h file).
   2521 //
   2522 // We iterate along the text object, building up for each character a
   2523 // mask and value that can be used to test for a quick failure to match.
   2524 // The masks and values for the positions will be combined into a single
   2525 // machine word for the current character width in order to be used in
   2526 // generating a quick check.
   2527 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2528                                     RegExpCompiler* compiler,
   2529                                     int characters_filled_in,
   2530                                     bool not_at_start) {
   2531   Isolate* isolate = compiler->macro_assembler()->zone()->isolate();
   2532   DCHECK(characters_filled_in < details->characters());
   2533   int characters = details->characters();
   2534   int char_mask;
   2535   if (compiler->one_byte()) {
   2536     char_mask = String::kMaxOneByteCharCode;
   2537   } else {
   2538     char_mask = String::kMaxUtf16CodeUnit;
   2539   }
   2540   for (int k = 0; k < elms_->length(); k++) {
   2541     TextElement elm = elms_->at(k);
   2542     if (elm.text_type() == TextElement::ATOM) {
   2543       Vector<const uc16> quarks = elm.atom()->data();
   2544       for (int i = 0; i < characters && i < quarks.length(); i++) {
   2545         QuickCheckDetails::Position* pos =
   2546             details->positions(characters_filled_in);
   2547         uc16 c = quarks[i];
   2548         if (c > char_mask) {
   2549           // If we expect a non-Latin1 character from an one-byte string,
   2550           // there is no way we can match. Not even case-independent
   2551           // matching can turn an Latin1 character into non-Latin1 or
   2552           // vice versa.
   2553           // TODO(dcarney): issue 3550.  Verify that this works as expected.
   2554           // For example, \u0178 is uppercase of \u00ff (y-umlaut).
   2555           details->set_cannot_match();
   2556           pos->determines_perfectly = false;
   2557           return;
   2558         }
   2559         if (compiler->ignore_case()) {
   2560           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   2561           int length = GetCaseIndependentLetters(isolate, c,
   2562                                                  compiler->one_byte(), chars);
   2563           DCHECK(length != 0);  // Can only happen if c > char_mask (see above).
   2564           if (length == 1) {
   2565             // This letter has no case equivalents, so it's nice and simple
   2566             // and the mask-compare will determine definitely whether we have
   2567             // a match at this character position.
   2568             pos->mask = char_mask;
   2569             pos->value = c;
   2570             pos->determines_perfectly = true;
   2571           } else {
   2572             uint32_t common_bits = char_mask;
   2573             uint32_t bits = chars[0];
   2574             for (int j = 1; j < length; j++) {
   2575               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
   2576               common_bits ^= differing_bits;
   2577               bits &= common_bits;
   2578             }
   2579             // If length is 2 and common bits has only one zero in it then
   2580             // our mask and compare instruction will determine definitely
   2581             // whether we have a match at this character position.  Otherwise
   2582             // it can only be an approximate check.
   2583             uint32_t one_zero = (common_bits | ~char_mask);
   2584             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
   2585               pos->determines_perfectly = true;
   2586             }
   2587             pos->mask = common_bits;
   2588             pos->value = bits;
   2589           }
   2590         } else {
   2591           // Don't ignore case.  Nice simple case where the mask-compare will
   2592           // determine definitely whether we have a match at this character
   2593           // position.
   2594           pos->mask = char_mask;
   2595           pos->value = c;
   2596           pos->determines_perfectly = true;
   2597         }
   2598         characters_filled_in++;
   2599         DCHECK(characters_filled_in <= details->characters());
   2600         if (characters_filled_in == details->characters()) {
   2601           return;
   2602         }
   2603       }
   2604     } else {
   2605       QuickCheckDetails::Position* pos =
   2606           details->positions(characters_filled_in);
   2607       RegExpCharacterClass* tree = elm.char_class();
   2608       ZoneList<CharacterRange>* ranges = tree->ranges(zone());
   2609       if (tree->is_negated()) {
   2610         // A quick check uses multi-character mask and compare.  There is no
   2611         // useful way to incorporate a negative char class into this scheme
   2612         // so we just conservatively create a mask and value that will always
   2613         // succeed.
   2614         pos->mask = 0;
   2615         pos->value = 0;
   2616       } else {
   2617         int first_range = 0;
   2618         while (ranges->at(first_range).from() > char_mask) {
   2619           first_range++;
   2620           if (first_range == ranges->length()) {
   2621             details->set_cannot_match();
   2622             pos->determines_perfectly = false;
   2623             return;
   2624           }
   2625         }
   2626         CharacterRange range = ranges->at(first_range);
   2627         uc16 from = range.from();
   2628         uc16 to = range.to();
   2629         if (to > char_mask) {
   2630           to = char_mask;
   2631         }
   2632         uint32_t differing_bits = (from ^ to);
   2633         // A mask and compare is only perfect if the differing bits form a
   2634         // number like 00011111 with one single block of trailing 1s.
   2635         if ((differing_bits & (differing_bits + 1)) == 0 &&
   2636              from + differing_bits == to) {
   2637           pos->determines_perfectly = true;
   2638         }
   2639         uint32_t common_bits = ~SmearBitsRight(differing_bits);
   2640         uint32_t bits = (from & common_bits);
   2641         for (int i = first_range + 1; i < ranges->length(); i++) {
   2642           CharacterRange range = ranges->at(i);
   2643           uc16 from = range.from();
   2644           uc16 to = range.to();
   2645           if (from > char_mask) continue;
   2646           if (to > char_mask) to = char_mask;
   2647           // Here we are combining more ranges into the mask and compare
   2648           // value.  With each new range the mask becomes more sparse and
   2649           // so the chances of a false positive rise.  A character class
   2650           // with multiple ranges is assumed never to be equivalent to a
   2651           // mask and compare operation.
   2652           pos->determines_perfectly = false;
   2653           uint32_t new_common_bits = (from ^ to);
   2654           new_common_bits = ~SmearBitsRight(new_common_bits);
   2655           common_bits &= new_common_bits;
   2656           bits &= new_common_bits;
   2657           uint32_t differing_bits = (from & common_bits) ^ bits;
   2658           common_bits ^= differing_bits;
   2659           bits &= common_bits;
   2660         }
   2661         pos->mask = common_bits;
   2662         pos->value = bits;
   2663       }
   2664       characters_filled_in++;
   2665       DCHECK(characters_filled_in <= details->characters());
   2666       if (characters_filled_in == details->characters()) {
   2667         return;
   2668       }
   2669     }
   2670   }
   2671   DCHECK(characters_filled_in != details->characters());
   2672   if (!details->cannot_match()) {
   2673     on_success()-> GetQuickCheckDetails(details,
   2674                                         compiler,
   2675                                         characters_filled_in,
   2676                                         true);
   2677   }
   2678 }
   2679 
   2680 
   2681 void QuickCheckDetails::Clear() {
   2682   for (int i = 0; i < characters_; i++) {
   2683     positions_[i].mask = 0;
   2684     positions_[i].value = 0;
   2685     positions_[i].determines_perfectly = false;
   2686   }
   2687   characters_ = 0;
   2688 }
   2689 
   2690 
   2691 void QuickCheckDetails::Advance(int by, bool one_byte) {
   2692   DCHECK(by >= 0);
   2693   if (by >= characters_) {
   2694     Clear();
   2695     return;
   2696   }
   2697   for (int i = 0; i < characters_ - by; i++) {
   2698     positions_[i] = positions_[by + i];
   2699   }
   2700   for (int i = characters_ - by; i < characters_; i++) {
   2701     positions_[i].mask = 0;
   2702     positions_[i].value = 0;
   2703     positions_[i].determines_perfectly = false;
   2704   }
   2705   characters_ -= by;
   2706   // We could change mask_ and value_ here but we would never advance unless
   2707   // they had already been used in a check and they won't be used again because
   2708   // it would gain us nothing.  So there's no point.
   2709 }
   2710 
   2711 
   2712 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
   2713   DCHECK(characters_ == other->characters_);
   2714   if (other->cannot_match_) {
   2715     return;
   2716   }
   2717   if (cannot_match_) {
   2718     *this = *other;
   2719     return;
   2720   }
   2721   for (int i = from_index; i < characters_; i++) {
   2722     QuickCheckDetails::Position* pos = positions(i);
   2723     QuickCheckDetails::Position* other_pos = other->positions(i);
   2724     if (pos->mask != other_pos->mask ||
   2725         pos->value != other_pos->value ||
   2726         !other_pos->determines_perfectly) {
   2727       // Our mask-compare operation will be approximate unless we have the
   2728       // exact same operation on both sides of the alternation.
   2729       pos->determines_perfectly = false;
   2730     }
   2731     pos->mask &= other_pos->mask;
   2732     pos->value &= pos->mask;
   2733     other_pos->value &= pos->mask;
   2734     uc16 differing_bits = (pos->value ^ other_pos->value);
   2735     pos->mask &= ~differing_bits;
   2736     pos->value &= pos->mask;
   2737   }
   2738 }
   2739 
   2740 
   2741 class VisitMarker {
   2742  public:
   2743   explicit VisitMarker(NodeInfo* info) : info_(info) {
   2744     DCHECK(!info->visited);
   2745     info->visited = true;
   2746   }
   2747   ~VisitMarker() {
   2748     info_->visited = false;
   2749   }
   2750  private:
   2751   NodeInfo* info_;
   2752 };
   2753 
   2754 
   2755 RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
   2756   if (info()->replacement_calculated) return replacement();
   2757   if (depth < 0) return this;
   2758   DCHECK(!info()->visited);
   2759   VisitMarker marker(info());
   2760   return FilterSuccessor(depth - 1, ignore_case);
   2761 }
   2762 
   2763 
   2764 RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
   2765   RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
   2766   if (next == NULL) return set_replacement(NULL);
   2767   on_success_ = next;
   2768   return set_replacement(this);
   2769 }
   2770 
   2771 
   2772 // We need to check for the following characters: 0x39c 0x3bc 0x178.
   2773 static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
   2774   // TODO(dcarney): this could be a lot more efficient.
   2775   return range.Contains(0x39c) ||
   2776       range.Contains(0x3bc) || range.Contains(0x178);
   2777 }
   2778 
   2779 
   2780 static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
   2781   for (int i = 0; i < ranges->length(); i++) {
   2782     // TODO(dcarney): this could be a lot more efficient.
   2783     if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
   2784   }
   2785   return false;
   2786 }
   2787 
   2788 
   2789 RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
   2790   if (info()->replacement_calculated) return replacement();
   2791   if (depth < 0) return this;
   2792   DCHECK(!info()->visited);
   2793   VisitMarker marker(info());
   2794   int element_count = elms_->length();
   2795   for (int i = 0; i < element_count; i++) {
   2796     TextElement elm = elms_->at(i);
   2797     if (elm.text_type() == TextElement::ATOM) {
   2798       Vector<const uc16> quarks = elm.atom()->data();
   2799       for (int j = 0; j < quarks.length(); j++) {
   2800         uint16_t c = quarks[j];
   2801         if (c <= String::kMaxOneByteCharCode) continue;
   2802         if (!ignore_case) return set_replacement(NULL);
   2803         // Here, we need to check for characters whose upper and lower cases
   2804         // are outside the Latin-1 range.
   2805         uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
   2806         // Character is outside Latin-1 completely
   2807         if (converted == 0) return set_replacement(NULL);
   2808         // Convert quark to Latin-1 in place.
   2809         uint16_t* copy = const_cast<uint16_t*>(quarks.start());
   2810         copy[j] = converted;
   2811       }
   2812     } else {
   2813       DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
   2814       RegExpCharacterClass* cc = elm.char_class();
   2815       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   2816       if (!CharacterRange::IsCanonical(ranges)) {
   2817         CharacterRange::Canonicalize(ranges);
   2818       }
   2819       // Now they are in order so we only need to look at the first.
   2820       int range_count = ranges->length();
   2821       if (cc->is_negated()) {
   2822         if (range_count != 0 &&
   2823             ranges->at(0).from() == 0 &&
   2824             ranges->at(0).to() >= String::kMaxOneByteCharCode) {
   2825           // This will be handled in a later filter.
   2826           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2827           return set_replacement(NULL);
   2828         }
   2829       } else {
   2830         if (range_count == 0 ||
   2831             ranges->at(0).from() > String::kMaxOneByteCharCode) {
   2832           // This will be handled in a later filter.
   2833           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2834           return set_replacement(NULL);
   2835         }
   2836       }
   2837     }
   2838   }
   2839   return FilterSuccessor(depth - 1, ignore_case);
   2840 }
   2841 
   2842 
   2843 RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2844   if (info()->replacement_calculated) return replacement();
   2845   if (depth < 0) return this;
   2846   if (info()->visited) return this;
   2847   {
   2848     VisitMarker marker(info());
   2849 
   2850     RegExpNode* continue_replacement =
   2851         continue_node_->FilterOneByte(depth - 1, ignore_case);
   2852     // If we can't continue after the loop then there is no sense in doing the
   2853     // loop.
   2854     if (continue_replacement == NULL) return set_replacement(NULL);
   2855   }
   2856 
   2857   return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
   2858 }
   2859 
   2860 
   2861 RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2862   if (info()->replacement_calculated) return replacement();
   2863   if (depth < 0) return this;
   2864   if (info()->visited) return this;
   2865   VisitMarker marker(info());
   2866   int choice_count = alternatives_->length();
   2867 
   2868   for (int i = 0; i < choice_count; i++) {
   2869     GuardedAlternative alternative = alternatives_->at(i);
   2870     if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
   2871       set_replacement(this);
   2872       return this;
   2873     }
   2874   }
   2875 
   2876   int surviving = 0;
   2877   RegExpNode* survivor = NULL;
   2878   for (int i = 0; i < choice_count; i++) {
   2879     GuardedAlternative alternative = alternatives_->at(i);
   2880     RegExpNode* replacement =
   2881         alternative.node()->FilterOneByte(depth - 1, ignore_case);
   2882     DCHECK(replacement != this);  // No missing EMPTY_MATCH_CHECK.
   2883     if (replacement != NULL) {
   2884       alternatives_->at(i).set_node(replacement);
   2885       surviving++;
   2886       survivor = replacement;
   2887     }
   2888   }
   2889   if (surviving < 2) return set_replacement(survivor);
   2890 
   2891   set_replacement(this);
   2892   if (surviving == choice_count) {
   2893     return this;
   2894   }
   2895   // Only some of the nodes survived the filtering.  We need to rebuild the
   2896   // alternatives list.
   2897   ZoneList<GuardedAlternative>* new_alternatives =
   2898       new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
   2899   for (int i = 0; i < choice_count; i++) {
   2900     RegExpNode* replacement =
   2901         alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
   2902     if (replacement != NULL) {
   2903       alternatives_->at(i).set_node(replacement);
   2904       new_alternatives->Add(alternatives_->at(i), zone());
   2905     }
   2906   }
   2907   alternatives_ = new_alternatives;
   2908   return this;
   2909 }
   2910 
   2911 
   2912 RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
   2913                                                        bool ignore_case) {
   2914   if (info()->replacement_calculated) return replacement();
   2915   if (depth < 0) return this;
   2916   if (info()->visited) return this;
   2917   VisitMarker marker(info());
   2918   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2919   // afterwards.
   2920   RegExpNode* node = alternatives_->at(1).node();
   2921   RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
   2922   if (replacement == NULL) return set_replacement(NULL);
   2923   alternatives_->at(1).set_node(replacement);
   2924 
   2925   RegExpNode* neg_node = alternatives_->at(0).node();
   2926   RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
   2927   // If the negative lookahead is always going to fail then
   2928   // we don't need to check it.
   2929   if (neg_replacement == NULL) return set_replacement(replacement);
   2930   alternatives_->at(0).set_node(neg_replacement);
   2931   return set_replacement(this);
   2932 }
   2933 
   2934 
   2935 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2936                                           RegExpCompiler* compiler,
   2937                                           int characters_filled_in,
   2938                                           bool not_at_start) {
   2939   if (body_can_be_zero_length_ || info()->visited) return;
   2940   VisitMarker marker(info());
   2941   return ChoiceNode::GetQuickCheckDetails(details,
   2942                                           compiler,
   2943                                           characters_filled_in,
   2944                                           not_at_start);
   2945 }
   2946 
   2947 
   2948 void LoopChoiceNode::FillInBMInfo(int offset,
   2949                                   int budget,
   2950                                   BoyerMooreLookahead* bm,
   2951                                   bool not_at_start) {
   2952   if (body_can_be_zero_length_ || budget <= 0) {
   2953     bm->SetRest(offset);
   2954     SaveBMInfo(bm, not_at_start, offset);
   2955     return;
   2956   }
   2957   ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start);
   2958   SaveBMInfo(bm, not_at_start, offset);
   2959 }
   2960 
   2961 
   2962 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2963                                       RegExpCompiler* compiler,
   2964                                       int characters_filled_in,
   2965                                       bool not_at_start) {
   2966   not_at_start = (not_at_start || not_at_start_);
   2967   int choice_count = alternatives_->length();
   2968   DCHECK(choice_count > 0);
   2969   alternatives_->at(0).node()->GetQuickCheckDetails(details,
   2970                                                     compiler,
   2971                                                     characters_filled_in,
   2972                                                     not_at_start);
   2973   for (int i = 1; i < choice_count; i++) {
   2974     QuickCheckDetails new_details(details->characters());
   2975     RegExpNode* node = alternatives_->at(i).node();
   2976     node->GetQuickCheckDetails(&new_details, compiler,
   2977                                characters_filled_in,
   2978                                not_at_start);
   2979     // Here we merge the quick match details of the two branches.
   2980     details->Merge(&new_details, characters_filled_in);
   2981   }
   2982 }
   2983 
   2984 
   2985 // Check for [0-9A-Z_a-z].
   2986 static void EmitWordCheck(RegExpMacroAssembler* assembler,
   2987                           Label* word,
   2988                           Label* non_word,
   2989                           bool fall_through_on_word) {
   2990   if (assembler->CheckSpecialCharacterClass(
   2991           fall_through_on_word ? 'w' : 'W',
   2992           fall_through_on_word ? non_word : word)) {
   2993     // Optimized implementation available.
   2994     return;
   2995   }
   2996   assembler->CheckCharacterGT('z', non_word);
   2997   assembler->CheckCharacterLT('0', non_word);
   2998   assembler->CheckCharacterGT('a' - 1, word);
   2999   assembler->CheckCharacterLT('9' + 1, word);
   3000   assembler->CheckCharacterLT('A', non_word);
   3001   assembler->CheckCharacterLT('Z' + 1, word);
   3002   if (fall_through_on_word) {
   3003     assembler->CheckNotCharacter('_', non_word);
   3004   } else {
   3005     assembler->CheckCharacter('_', word);
   3006   }
   3007 }
   3008 
   3009 
   3010 // Emit the code to check for a ^ in multiline mode (1-character lookbehind
   3011 // that matches newline or the start of input).
   3012 static void EmitHat(RegExpCompiler* compiler,
   3013                     RegExpNode* on_success,
   3014                     Trace* trace) {
   3015   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3016   // We will be loading the previous character into the current character
   3017   // register.
   3018   Trace new_trace(*trace);
   3019   new_trace.InvalidateCurrentCharacter();
   3020 
   3021   Label ok;
   3022   if (new_trace.cp_offset() == 0) {
   3023     // The start of input counts as a newline in this context, so skip to
   3024     // ok if we are at the start.
   3025     assembler->CheckAtStart(&ok);
   3026   }
   3027   // We already checked that we are not at the start of input so it must be
   3028   // OK to load the previous character.
   3029   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
   3030                                   new_trace.backtrack(),
   3031                                   false);
   3032   if (!assembler->CheckSpecialCharacterClass('n',
   3033                                              new_trace.backtrack())) {
   3034     // Newline means \n, \r, 0x2028 or 0x2029.
   3035     if (!compiler->one_byte()) {
   3036       assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
   3037     }
   3038     assembler->CheckCharacter('\n', &ok);
   3039     assembler->CheckNotCharacter('\r', new_trace.backtrack());
   3040   }
   3041   assembler->Bind(&ok);
   3042   on_success->Emit(compiler, &new_trace);
   3043 }
   3044 
   3045 
   3046 // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
   3047 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
   3048   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3049   Trace::TriBool next_is_word_character = Trace::UNKNOWN;
   3050   bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
   3051   BoyerMooreLookahead* lookahead = bm_info(not_at_start);
   3052   if (lookahead == NULL) {
   3053     int eats_at_least =
   3054         Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
   3055                                                     kRecursionBudget,
   3056                                                     not_at_start));
   3057     if (eats_at_least >= 1) {
   3058       BoyerMooreLookahead* bm =
   3059           new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
   3060       FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
   3061       if (bm->at(0)->is_non_word())
   3062         next_is_word_character = Trace::FALSE_VALUE;
   3063       if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
   3064     }
   3065   } else {
   3066     if (lookahead->at(0)->is_non_word())
   3067       next_is_word_character = Trace::FALSE_VALUE;
   3068     if (lookahead->at(0)->is_word())
   3069       next_is_word_character = Trace::TRUE_VALUE;
   3070   }
   3071   bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
   3072   if (next_is_word_character == Trace::UNKNOWN) {
   3073     Label before_non_word;
   3074     Label before_word;
   3075     if (trace->characters_preloaded() != 1) {
   3076       assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
   3077     }
   3078     // Fall through on non-word.
   3079     EmitWordCheck(assembler, &before_word, &before_non_word, false);
   3080     // Next character is not a word character.
   3081     assembler->Bind(&before_non_word);
   3082     Label ok;
   3083     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3084     assembler->GoTo(&ok);
   3085 
   3086     assembler->Bind(&before_word);
   3087     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3088     assembler->Bind(&ok);
   3089   } else if (next_is_word_character == Trace::TRUE_VALUE) {
   3090     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3091   } else {
   3092     DCHECK(next_is_word_character == Trace::FALSE_VALUE);
   3093     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3094   }
   3095 }
   3096 
   3097 
   3098 void AssertionNode::BacktrackIfPrevious(
   3099     RegExpCompiler* compiler,
   3100     Trace* trace,
   3101     AssertionNode::IfPrevious backtrack_if_previous) {
   3102   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3103   Trace new_trace(*trace);
   3104   new_trace.InvalidateCurrentCharacter();
   3105 
   3106   Label fall_through, dummy;
   3107 
   3108   Label* non_word = backtrack_if_previous == kIsNonWord ?
   3109                     new_trace.backtrack() :
   3110                     &fall_through;
   3111   Label* word = backtrack_if_previous == kIsNonWord ?
   3112                 &fall_through :
   3113                 new_trace.backtrack();
   3114 
   3115   if (new_trace.cp_offset() == 0) {
   3116     // The start of input counts as a non-word character, so the question is
   3117     // decided if we are at the start.
   3118     assembler->CheckAtStart(non_word);
   3119   }
   3120   // We already checked that we are not at the start of input so it must be
   3121   // OK to load the previous character.
   3122   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
   3123   EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
   3124 
   3125   assembler->Bind(&fall_through);
   3126   on_success()->Emit(compiler, &new_trace);
   3127 }
   3128 
   3129 
   3130 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
   3131                                          RegExpCompiler* compiler,
   3132                                          int filled_in,
   3133                                          bool not_at_start) {
   3134   if (assertion_type_ == AT_START && not_at_start) {
   3135     details->set_cannot_match();
   3136     return;
   3137   }
   3138   return on_success()->GetQuickCheckDetails(details,
   3139                                             compiler,
   3140                                             filled_in,
   3141                                             not_at_start);
   3142 }
   3143 
   3144 
   3145 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3146   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3147   switch (assertion_type_) {
   3148     case AT_END: {
   3149       Label ok;
   3150       assembler->CheckPosition(trace->cp_offset(), &ok);
   3151       assembler->GoTo(trace->backtrack());
   3152       assembler->Bind(&ok);
   3153       break;
   3154     }
   3155     case AT_START: {
   3156       if (trace->at_start() == Trace::FALSE_VALUE) {
   3157         assembler->GoTo(trace->backtrack());
   3158         return;
   3159       }
   3160       if (trace->at_start() == Trace::UNKNOWN) {
   3161         assembler->CheckNotAtStart(trace->backtrack());
   3162         Trace at_start_trace = *trace;
   3163         at_start_trace.set_at_start(true);
   3164         on_success()->Emit(compiler, &at_start_trace);
   3165         return;
   3166       }
   3167     }
   3168     break;
   3169     case AFTER_NEWLINE:
   3170       EmitHat(compiler, on_success(), trace);
   3171       return;
   3172     case AT_BOUNDARY:
   3173     case AT_NON_BOUNDARY: {
   3174       EmitBoundaryCheck(compiler, trace);
   3175       return;
   3176     }
   3177   }
   3178   on_success()->Emit(compiler, trace);
   3179 }
   3180 
   3181 
   3182 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
   3183   if (quick_check == NULL) return false;
   3184   if (offset >= quick_check->characters()) return false;
   3185   return quick_check->positions(offset)->determines_perfectly;
   3186 }
   3187 
   3188 
   3189 static void UpdateBoundsCheck(int index, int* checked_up_to) {
   3190   if (index > *checked_up_to) {
   3191     *checked_up_to = index;
   3192   }
   3193 }
   3194 
   3195 
   3196 // We call this repeatedly to generate code for each pass over the text node.
   3197 // The passes are in increasing order of difficulty because we hope one
   3198 // of the first passes will fail in which case we are saved the work of the
   3199 // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
   3200 // we will check the '%' in the first pass, the case independent 'a' in the
   3201 // second pass and the character class in the last pass.
   3202 //
   3203 // The passes are done from right to left, so for example to test for /bar/
   3204 // we will first test for an 'r' with offset 2, then an 'a' with offset 1
   3205 // and then a 'b' with offset 0.  This means we can avoid the end-of-input
   3206 // bounds check most of the time.  In the example we only need to check for
   3207 // end-of-input when loading the putative 'r'.
   3208 //
   3209 // A slight complication involves the fact that the first character may already
   3210 // be fetched into a register by the previous node.  In this case we want to
   3211 // do the test for that character first.  We do this in separate passes.  The
   3212 // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
   3213 // pass has been performed then subsequent passes will have true in
   3214 // first_element_checked to indicate that that character does not need to be
   3215 // checked again.
   3216 //
   3217 // In addition to all this we are passed a Trace, which can
   3218 // contain an AlternativeGeneration object.  In this AlternativeGeneration
   3219 // object we can see details of any quick check that was already passed in
   3220 // order to get to the code we are now generating.  The quick check can involve
   3221 // loading characters, which means we do not need to recheck the bounds
   3222 // up to the limit the quick check already checked.  In addition the quick
   3223 // check can have involved a mask and compare operation which may simplify
   3224 // or obviate the need for further checks at some character positions.
   3225 void TextNode::TextEmitPass(RegExpCompiler* compiler,
   3226                             TextEmitPassType pass,
   3227                             bool preloaded,
   3228                             Trace* trace,
   3229                             bool first_element_checked,
   3230                             int* checked_up_to) {
   3231   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3232   Isolate* isolate = assembler->zone()->isolate();
   3233   bool one_byte = compiler->one_byte();
   3234   Label* backtrack = trace->backtrack();
   3235   QuickCheckDetails* quick_check = trace->quick_check_performed();
   3236   int element_count = elms_->length();
   3237   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
   3238     TextElement elm = elms_->at(i);
   3239     int cp_offset = trace->cp_offset() + elm.cp_offset();
   3240     if (elm.text_type() == TextElement::ATOM) {
   3241       Vector<const uc16> quarks = elm.atom()->data();
   3242       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
   3243         if (first_element_checked && i == 0 && j == 0) continue;
   3244         if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
   3245         EmitCharacterFunction* emit_function = NULL;
   3246         switch (pass) {
   3247           case NON_LATIN1_MATCH:
   3248             DCHECK(one_byte);
   3249             if (quarks[j] > String::kMaxOneByteCharCode) {
   3250               assembler->GoTo(backtrack);
   3251               return;
   3252             }
   3253             break;
   3254           case NON_LETTER_CHARACTER_MATCH:
   3255             emit_function = &EmitAtomNonLetter;
   3256             break;
   3257           case SIMPLE_CHARACTER_MATCH:
   3258             emit_function = &EmitSimpleCharacter;
   3259             break;
   3260           case CASE_CHARACTER_MATCH:
   3261             emit_function = &EmitAtomLetter;
   3262             break;
   3263           default:
   3264             break;
   3265         }
   3266         if (emit_function != NULL) {
   3267           bool bound_checked = emit_function(isolate,
   3268                                              compiler,
   3269                                              quarks[j],
   3270                                              backtrack,
   3271                                              cp_offset + j,
   3272                                              *checked_up_to < cp_offset + j,
   3273                                              preloaded);
   3274           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
   3275         }
   3276       }
   3277     } else {
   3278       DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
   3279       if (pass == CHARACTER_CLASS_MATCH) {
   3280         if (first_element_checked && i == 0) continue;
   3281         if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
   3282         RegExpCharacterClass* cc = elm.char_class();
   3283         EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
   3284                       *checked_up_to < cp_offset, preloaded, zone());
   3285         UpdateBoundsCheck(cp_offset, checked_up_to);
   3286       }
   3287     }
   3288   }
   3289 }
   3290 
   3291 
   3292 int TextNode::Length() {
   3293   TextElement elm = elms_->last();
   3294   DCHECK(elm.cp_offset() >= 0);
   3295   return elm.cp_offset() + elm.length();
   3296 }
   3297 
   3298 
   3299 bool TextNode::SkipPass(int int_pass, bool ignore_case) {
   3300   TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
   3301   if (ignore_case) {
   3302     return pass == SIMPLE_CHARACTER_MATCH;
   3303   } else {
   3304     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
   3305   }
   3306 }
   3307 
   3308 
   3309 // This generates the code to match a text node.  A text node can contain
   3310 // straight character sequences (possibly to be matched in a case-independent
   3311 // way) and character classes.  For efficiency we do not do this in a single
   3312 // pass from left to right.  Instead we pass over the text node several times,
   3313 // emitting code for some character positions every time.  See the comment on
   3314 // TextEmitPass for details.
   3315 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3316   LimitResult limit_result = LimitVersions(compiler, trace);
   3317   if (limit_result == DONE) return;
   3318   DCHECK(limit_result == CONTINUE);
   3319 
   3320   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
   3321     compiler->SetRegExpTooBig();
   3322     return;
   3323   }
   3324 
   3325   if (compiler->one_byte()) {
   3326     int dummy = 0;
   3327     TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
   3328   }
   3329 
   3330   bool first_elt_done = false;
   3331   int bound_checked_to = trace->cp_offset() - 1;
   3332   bound_checked_to += trace->bound_checked_up_to();
   3333 
   3334   // If a character is preloaded into the current character register then
   3335   // check that now.
   3336   if (trace->characters_preloaded() == 1) {
   3337     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3338       if (!SkipPass(pass, compiler->ignore_case())) {
   3339         TextEmitPass(compiler,
   3340                      static_cast<TextEmitPassType>(pass),
   3341                      true,
   3342                      trace,
   3343                      false,
   3344                      &bound_checked_to);
   3345       }
   3346     }
   3347     first_elt_done = true;
   3348   }
   3349 
   3350   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3351     if (!SkipPass(pass, compiler->ignore_case())) {
   3352       TextEmitPass(compiler,
   3353                    static_cast<TextEmitPassType>(pass),
   3354                    false,
   3355                    trace,
   3356                    first_elt_done,
   3357                    &bound_checked_to);
   3358     }
   3359   }
   3360 
   3361   Trace successor_trace(*trace);
   3362   successor_trace.set_at_start(false);
   3363   successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
   3364   RecursionCheck rc(compiler);
   3365   on_success()->Emit(compiler, &successor_trace);
   3366 }
   3367 
   3368 
   3369 void Trace::InvalidateCurrentCharacter() {
   3370   characters_preloaded_ = 0;
   3371 }
   3372 
   3373 
   3374 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
   3375   DCHECK(by > 0);
   3376   // We don't have an instruction for shifting the current character register
   3377   // down or for using a shifted value for anything so lets just forget that
   3378   // we preloaded any characters into it.
   3379   characters_preloaded_ = 0;
   3380   // Adjust the offsets of the quick check performed information.  This
   3381   // information is used to find out what we already determined about the
   3382   // characters by means of mask and compare.
   3383   quick_check_performed_.Advance(by, compiler->one_byte());
   3384   cp_offset_ += by;
   3385   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
   3386     compiler->SetRegExpTooBig();
   3387     cp_offset_ = 0;
   3388   }
   3389   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
   3390 }
   3391 
   3392 
   3393 void TextNode::MakeCaseIndependent(bool is_one_byte) {
   3394   int element_count = elms_->length();
   3395   for (int i = 0; i < element_count; i++) {
   3396     TextElement elm = elms_->at(i);
   3397     if (elm.text_type() == TextElement::CHAR_CLASS) {
   3398       RegExpCharacterClass* cc = elm.char_class();
   3399       // None of the standard character classes is different in the case
   3400       // independent case and it slows us down if we don't know that.
   3401       if (cc->is_standard(zone())) continue;
   3402       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   3403       int range_count = ranges->length();
   3404       for (int j = 0; j < range_count; j++) {
   3405         ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone());
   3406       }
   3407     }
   3408   }
   3409 }
   3410 
   3411 
   3412 int TextNode::GreedyLoopTextLength() {
   3413   TextElement elm = elms_->at(elms_->length() - 1);
   3414   return elm.cp_offset() + elm.length();
   3415 }
   3416 
   3417 
   3418 RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
   3419     RegExpCompiler* compiler) {
   3420   if (elms_->length() != 1) return NULL;
   3421   TextElement elm = elms_->at(0);
   3422   if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
   3423   RegExpCharacterClass* node = elm.char_class();
   3424   ZoneList<CharacterRange>* ranges = node->ranges(zone());
   3425   if (!CharacterRange::IsCanonical(ranges)) {
   3426     CharacterRange::Canonicalize(ranges);
   3427   }
   3428   if (node->is_negated()) {
   3429     return ranges->length() == 0 ? on_success() : NULL;
   3430   }
   3431   if (ranges->length() != 1) return NULL;
   3432   uint32_t max_char;
   3433   if (compiler->one_byte()) {
   3434     max_char = String::kMaxOneByteCharCode;
   3435   } else {
   3436     max_char = String::kMaxUtf16CodeUnit;
   3437   }
   3438   return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
   3439 }
   3440 
   3441 
   3442 // Finds the fixed match length of a sequence of nodes that goes from
   3443 // this alternative and back to this choice node.  If there are variable
   3444 // length nodes or other complications in the way then return a sentinel
   3445 // value indicating that a greedy loop cannot be constructed.
   3446 int ChoiceNode::GreedyLoopTextLengthForAlternative(
   3447     GuardedAlternative* alternative) {
   3448   int length = 0;
   3449   RegExpNode* node = alternative->node();
   3450   // Later we will generate code for all these text nodes using recursion
   3451   // so we have to limit the max number.
   3452   int recursion_depth = 0;
   3453   while (node != this) {
   3454     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
   3455       return kNodeIsTooComplexForGreedyLoops;
   3456     }
   3457     int node_length = node->GreedyLoopTextLength();
   3458     if (node_length == kNodeIsTooComplexForGreedyLoops) {
   3459       return kNodeIsTooComplexForGreedyLoops;
   3460     }
   3461     length += node_length;
   3462     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
   3463     node = seq_node->on_success();
   3464   }
   3465   return length;
   3466 }
   3467 
   3468 
   3469 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
   3470   DCHECK_EQ(loop_node_, NULL);
   3471   AddAlternative(alt);
   3472   loop_node_ = alt.node();
   3473 }
   3474 
   3475 
   3476 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
   3477   DCHECK_EQ(continue_node_, NULL);
   3478   AddAlternative(alt);
   3479   continue_node_ = alt.node();
   3480 }
   3481 
   3482 
   3483 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3484   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   3485   if (trace->stop_node() == this) {
   3486     // Back edge of greedy optimized loop node graph.
   3487     int text_length =
   3488         GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
   3489     DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
   3490     // Update the counter-based backtracking info on the stack.  This is an
   3491     // optimization for greedy loops (see below).
   3492     DCHECK(trace->cp_offset() == text_length);
   3493     macro_assembler->AdvanceCurrentPosition(text_length);
   3494     macro_assembler->GoTo(trace->loop_label());
   3495     return;
   3496   }
   3497   DCHECK(trace->stop_node() == NULL);
   3498   if (!trace->is_trivial()) {
   3499     trace->Flush(compiler, this);
   3500     return;
   3501   }
   3502   ChoiceNode::Emit(compiler, trace);
   3503 }
   3504 
   3505 
   3506 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
   3507                                            int eats_at_least) {
   3508   int preload_characters = Min(4, eats_at_least);
   3509   if (compiler->macro_assembler()->CanReadUnaligned()) {
   3510     bool one_byte = compiler->one_byte();
   3511     if (one_byte) {
   3512       if (preload_characters > 4) preload_characters = 4;
   3513       // We can't preload 3 characters because there is no machine instruction
   3514       // to do that.  We can't just load 4 because we could be reading
   3515       // beyond the end of the string, which could cause a memory fault.
   3516       if (preload_characters == 3) preload_characters = 2;
   3517     } else {
   3518       if (preload_characters > 2) preload_characters = 2;
   3519     }
   3520   } else {
   3521     if (preload_characters > 1) preload_characters = 1;
   3522   }
   3523   return preload_characters;
   3524 }
   3525 
   3526 
   3527 // This class is used when generating the alternatives in a choice node.  It
   3528 // records the way the alternative is being code generated.
   3529 class AlternativeGeneration: public Malloced {
   3530  public:
   3531   AlternativeGeneration()
   3532       : possible_success(),
   3533         expects_preload(false),
   3534         after(),
   3535         quick_check_details() { }
   3536   Label possible_success;
   3537   bool expects_preload;
   3538   Label after;
   3539   QuickCheckDetails quick_check_details;
   3540 };
   3541 
   3542 
   3543 // Creates a list of AlternativeGenerations.  If the list has a reasonable
   3544 // size then it is on the stack, otherwise the excess is on the heap.
   3545 class AlternativeGenerationList {
   3546  public:
   3547   AlternativeGenerationList(int count, Zone* zone)
   3548       : alt_gens_(count, zone) {
   3549     for (int i = 0; i < count && i < kAFew; i++) {
   3550       alt_gens_.Add(a_few_alt_gens_ + i, zone);
   3551     }
   3552     for (int i = kAFew; i < count; i++) {
   3553       alt_gens_.Add(new AlternativeGeneration(), zone);
   3554     }
   3555   }
   3556   ~AlternativeGenerationList() {
   3557     for (int i = kAFew; i < alt_gens_.length(); i++) {
   3558       delete alt_gens_[i];
   3559       alt_gens_[i] = NULL;
   3560     }
   3561   }
   3562 
   3563   AlternativeGeneration* at(int i) {
   3564     return alt_gens_[i];
   3565   }
   3566 
   3567  private:
   3568   static const int kAFew = 10;
   3569   ZoneList<AlternativeGeneration*> alt_gens_;
   3570   AlternativeGeneration a_few_alt_gens_[kAFew];
   3571 };
   3572 
   3573 
   3574 // The '2' variant is has inclusive from and exclusive to.
   3575 // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
   3576 // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
   3577 static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
   3578     0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
   3579     0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
   3580     0xFEFF, 0xFF00, 0x10000 };
   3581 static const int kSpaceRangeCount = arraysize(kSpaceRanges);
   3582 
   3583 static const int kWordRanges[] = {
   3584     '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
   3585 static const int kWordRangeCount = arraysize(kWordRanges);
   3586 static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
   3587 static const int kDigitRangeCount = arraysize(kDigitRanges);
   3588 static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
   3589 static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
   3590 static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
   3591     0x2028, 0x202A, 0x10000 };
   3592 static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
   3593 
   3594 
   3595 void BoyerMoorePositionInfo::Set(int character) {
   3596   SetInterval(Interval(character, character));
   3597 }
   3598 
   3599 
   3600 void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
   3601   s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
   3602   w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
   3603   d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
   3604   surrogate_ =
   3605       AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
   3606   if (interval.to() - interval.from() >= kMapSize - 1) {
   3607     if (map_count_ != kMapSize) {
   3608       map_count_ = kMapSize;
   3609       for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3610     }
   3611     return;
   3612   }
   3613   for (int i = interval.from(); i <= interval.to(); i++) {
   3614     int mod_character = (i & kMask);
   3615     if (!map_->at(mod_character)) {
   3616       map_count_++;
   3617       map_->at(mod_character) = true;
   3618     }
   3619     if (map_count_ == kMapSize) return;
   3620   }
   3621 }
   3622 
   3623 
   3624 void BoyerMoorePositionInfo::SetAll() {
   3625   s_ = w_ = d_ = kLatticeUnknown;
   3626   if (map_count_ != kMapSize) {
   3627     map_count_ = kMapSize;
   3628     for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3629   }
   3630 }
   3631 
   3632 
   3633 BoyerMooreLookahead::BoyerMooreLookahead(
   3634     int length, RegExpCompiler* compiler, Zone* zone)
   3635     : length_(length),
   3636       compiler_(compiler) {
   3637   if (compiler->one_byte()) {
   3638     max_char_ = String::kMaxOneByteCharCode;
   3639   } else {
   3640     max_char_ = String::kMaxUtf16CodeUnit;
   3641   }
   3642   bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
   3643   for (int i = 0; i < length; i++) {
   3644     bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
   3645   }
   3646 }
   3647 
   3648 
   3649 // Find the longest range of lookahead that has the fewest number of different
   3650 // characters that can occur at a given position.  Since we are optimizing two
   3651 // different parameters at once this is a tradeoff.
   3652 bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
   3653   int biggest_points = 0;
   3654   // If more than 32 characters out of 128 can occur it is unlikely that we can
   3655   // be lucky enough to step forwards much of the time.
   3656   const int kMaxMax = 32;
   3657   for (int max_number_of_chars = 4;
   3658        max_number_of_chars < kMaxMax;
   3659        max_number_of_chars *= 2) {
   3660     biggest_points =
   3661         FindBestInterval(max_number_of_chars, biggest_points, from, to);
   3662   }
   3663   if (biggest_points == 0) return false;
   3664   return true;
   3665 }
   3666 
   3667 
   3668 // Find the highest-points range between 0 and length_ where the character
   3669 // information is not too vague.  'Too vague' means that there are more than
   3670 // max_number_of_chars that can occur at this position.  Calculates the number
   3671 // of points as the product of width-of-the-range and
   3672 // probability-of-finding-one-of-the-characters, where the probability is
   3673 // calculated using the frequency distribution of the sample subject string.
   3674 int BoyerMooreLookahead::FindBestInterval(
   3675     int max_number_of_chars, int old_biggest_points, int* from, int* to) {
   3676   int biggest_points = old_biggest_points;
   3677   static const int kSize = RegExpMacroAssembler::kTableSize;
   3678   for (int i = 0; i < length_; ) {
   3679     while (i < length_ && Count(i) > max_number_of_chars) i++;
   3680     if (i == length_) break;
   3681     int remembered_from = i;
   3682     bool union_map[kSize];
   3683     for (int j = 0; j < kSize; j++) union_map[j] = false;
   3684     while (i < length_ && Count(i) <= max_number_of_chars) {
   3685       BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3686       for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
   3687       i++;
   3688     }
   3689     int frequency = 0;
   3690     for (int j = 0; j < kSize; j++) {
   3691       if (union_map[j]) {
   3692         // Add 1 to the frequency to give a small per-character boost for
   3693         // the cases where our sampling is not good enough and many
   3694         // characters have a frequency of zero.  This means the frequency
   3695         // can theoretically be up to 2*kSize though we treat it mostly as
   3696         // a fraction of kSize.
   3697         frequency += compiler_->frequency_collator()->Frequency(j) + 1;
   3698       }
   3699     }
   3700     // We use the probability of skipping times the distance we are skipping to
   3701     // judge the effectiveness of this.  Actually we have a cut-off:  By
   3702     // dividing by 2 we switch off the skipping if the probability of skipping
   3703     // is less than 50%.  This is because the multibyte mask-and-compare
   3704     // skipping in quickcheck is more likely to do well on this case.
   3705     bool in_quickcheck_range =
   3706         ((i - remembered_from < 4) ||
   3707          (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
   3708     // Called 'probability' but it is only a rough estimate and can actually
   3709     // be outside the 0-kSize range.
   3710     int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
   3711     int points = (i - remembered_from) * probability;
   3712     if (points > biggest_points) {
   3713       *from = remembered_from;
   3714       *to = i - 1;
   3715       biggest_points = points;
   3716     }
   3717   }
   3718   return biggest_points;
   3719 }
   3720 
   3721 
   3722 // Take all the characters that will not prevent a successful match if they
   3723 // occur in the subject string in the range between min_lookahead and
   3724 // max_lookahead (inclusive) measured from the current position.  If the
   3725 // character at max_lookahead offset is not one of these characters, then we
   3726 // can safely skip forwards by the number of characters in the range.
   3727 int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
   3728                                       int max_lookahead,
   3729                                       Handle<ByteArray> boolean_skip_table) {
   3730   const int kSize = RegExpMacroAssembler::kTableSize;
   3731 
   3732   const int kSkipArrayEntry = 0;
   3733   const int kDontSkipArrayEntry = 1;
   3734 
   3735   for (int i = 0; i < kSize; i++) {
   3736     boolean_skip_table->set(i, kSkipArrayEntry);
   3737   }
   3738   int skip = max_lookahead + 1 - min_lookahead;
   3739 
   3740   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3741     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3742     for (int j = 0; j < kSize; j++) {
   3743       if (map->at(j)) {
   3744         boolean_skip_table->set(j, kDontSkipArrayEntry);
   3745       }
   3746     }
   3747   }
   3748 
   3749   return skip;
   3750 }
   3751 
   3752 
   3753 // See comment above on the implementation of GetSkipTable.
   3754 void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
   3755   const int kSize = RegExpMacroAssembler::kTableSize;
   3756 
   3757   int min_lookahead = 0;
   3758   int max_lookahead = 0;
   3759 
   3760   if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
   3761 
   3762   bool found_single_character = false;
   3763   int single_character = 0;
   3764   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3765     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3766     if (map->map_count() > 1 ||
   3767         (found_single_character && map->map_count() != 0)) {
   3768       found_single_character = false;
   3769       break;
   3770     }
   3771     for (int j = 0; j < kSize; j++) {
   3772       if (map->at(j)) {
   3773         found_single_character = true;
   3774         single_character = j;
   3775         break;
   3776       }
   3777     }
   3778   }
   3779 
   3780   int lookahead_width = max_lookahead + 1 - min_lookahead;
   3781 
   3782   if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
   3783     // The mask-compare can probably handle this better.
   3784     return;
   3785   }
   3786 
   3787   if (found_single_character) {
   3788     Label cont, again;
   3789     masm->Bind(&again);
   3790     masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3791     if (max_char_ > kSize) {
   3792       masm->CheckCharacterAfterAnd(single_character,
   3793                                    RegExpMacroAssembler::kTableMask,
   3794                                    &cont);
   3795     } else {
   3796       masm->CheckCharacter(single_character, &cont);
   3797     }
   3798     masm->AdvanceCurrentPosition(lookahead_width);
   3799     masm->GoTo(&again);
   3800     masm->Bind(&cont);
   3801     return;
   3802   }
   3803 
   3804   Factory* factory = masm->zone()->isolate()->factory();
   3805   Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
   3806   int skip_distance = GetSkipTable(
   3807       min_lookahead, max_lookahead, boolean_skip_table);
   3808   DCHECK(skip_distance != 0);
   3809 
   3810   Label cont, again;
   3811   masm->Bind(&again);
   3812   masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3813   masm->CheckBitInTable(boolean_skip_table, &cont);
   3814   masm->AdvanceCurrentPosition(skip_distance);
   3815   masm->GoTo(&again);
   3816   masm->Bind(&cont);
   3817 }
   3818 
   3819 
   3820 /* Code generation for choice nodes.
   3821  *
   3822  * We generate quick checks that do a mask and compare to eliminate a
   3823  * choice.  If the quick check succeeds then it jumps to the continuation to
   3824  * do slow checks and check subsequent nodes.  If it fails (the common case)
   3825  * it falls through to the next choice.
   3826  *
   3827  * Here is the desired flow graph.  Nodes directly below each other imply
   3828  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
   3829  * 3 doesn't have a quick check so we have to call the slow check.
   3830  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
   3831  * regexp continuation is generated directly after the Sn node, up to the
   3832  * next GoTo if we decide to reuse some already generated code.  Some
   3833  * nodes expect preload_characters to be preloaded into the current
   3834  * character register.  R nodes do this preloading.  Vertices are marked
   3835  * F for failures and S for success (possible success in the case of quick
   3836  * nodes).  L, V, < and > are used as arrow heads.
   3837  *
   3838  * ----------> R
   3839  *             |
   3840  *             V
   3841  *            Q1 -----> S1
   3842  *             |   S   /
   3843  *            F|      /
   3844  *             |    F/
   3845  *             |    /
   3846  *             |   R
   3847  *             |  /
   3848  *             V L
   3849  *            Q2 -----> S2
   3850  *             |   S   /
   3851  *            F|      /
   3852  *             |    F/
   3853  *             |    /
   3854  *             |   R
   3855  *             |  /
   3856  *             V L
   3857  *            S3
   3858  *             |
   3859  *            F|
   3860  *             |
   3861  *             R
   3862  *             |
   3863  * backtrack   V
   3864  * <----------Q4
   3865  *   \    F    |
   3866  *    \        |S
   3867  *     \   F   V
   3868  *      \-----S4
   3869  *
   3870  * For greedy loops we push the current position, then generate the code that
   3871  * eats the input specially in EmitGreedyLoop.  The other choice (the
   3872  * continuation) is generated by the normal code in EmitChoices, and steps back
   3873  * in the input to the starting position when it fails to match.  The loop code
   3874  * looks like this (U is the unwind code that steps back in the greedy loop).
   3875  *
   3876  *              _____
   3877  *             /     \
   3878  *             V     |
   3879  * ----------> S1    |
   3880  *            /|     |
   3881  *           / |S    |
   3882  *         F/  \_____/
   3883  *         /
   3884  *        |<-----
   3885  *        |      \
   3886  *        V       |S
   3887  *        Q2 ---> U----->backtrack
   3888  *        |  F   /
   3889  *       S|     /
   3890  *        V  F /
   3891  *        S2--/
   3892  */
   3893 
   3894 GreedyLoopState::GreedyLoopState(bool not_at_start) {
   3895   counter_backtrack_trace_.set_backtrack(&label_);
   3896   if (not_at_start) counter_backtrack_trace_.set_at_start(false);
   3897 }
   3898 
   3899 
   3900 void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
   3901 #ifdef DEBUG
   3902   int choice_count = alternatives_->length();
   3903   for (int i = 0; i < choice_count - 1; i++) {
   3904     GuardedAlternative alternative = alternatives_->at(i);
   3905     ZoneList<Guard*>* guards = alternative.guards();
   3906     int guard_count = (guards == NULL) ? 0 : guards->length();
   3907     for (int j = 0; j < guard_count; j++) {
   3908       DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
   3909     }
   3910   }
   3911 #endif
   3912 }
   3913 
   3914 
   3915 void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
   3916                               Trace* current_trace,
   3917                               PreloadState* state) {
   3918     if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
   3919       // Save some time by looking at most one machine word ahead.
   3920       state->eats_at_least_ =
   3921           EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
   3922                       current_trace->at_start() == Trace::FALSE_VALUE);
   3923     }
   3924     state->preload_characters_ =
   3925         CalculatePreloadCharacters(compiler, state->eats_at_least_);
   3926 
   3927     state->preload_is_current_ =
   3928         (current_trace->characters_preloaded() == state->preload_characters_);
   3929     state->preload_has_checked_bounds_ = state->preload_is_current_;
   3930 }
   3931 
   3932 
   3933 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3934   int choice_count = alternatives_->length();
   3935 
   3936   AssertGuardsMentionRegisters(trace);
   3937 
   3938   LimitResult limit_result = LimitVersions(compiler, trace);
   3939   if (limit_result == DONE) return;
   3940   DCHECK(limit_result == CONTINUE);
   3941 
   3942   // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
   3943   // other choice nodes we only flush if we are out of code size budget.
   3944   if (trace->flush_budget() == 0 && trace->actions() != NULL) {
   3945     trace->Flush(compiler, this);
   3946     return;
   3947   }
   3948 
   3949   RecursionCheck rc(compiler);
   3950 
   3951   PreloadState preload;
   3952   preload.init();
   3953   GreedyLoopState greedy_loop_state(not_at_start());
   3954 
   3955   int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
   3956   AlternativeGenerationList alt_gens(choice_count, zone());
   3957 
   3958   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
   3959     trace = EmitGreedyLoop(compiler,
   3960                            trace,
   3961                            &alt_gens,
   3962                            &preload,
   3963                            &greedy_loop_state,
   3964                            text_length);
   3965   } else {
   3966     // TODO(erikcorry): Delete this.  We don't need this label, but it makes us
   3967     // match the traces produced pre-cleanup.
   3968     Label second_choice;
   3969     compiler->macro_assembler()->Bind(&second_choice);
   3970 
   3971     preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
   3972 
   3973     EmitChoices(compiler,
   3974                 &alt_gens,
   3975                 0,
   3976                 trace,
   3977                 &preload);
   3978   }
   3979 
   3980   // At this point we need to generate slow checks for the alternatives where
   3981   // the quick check was inlined.  We can recognize these because the associated
   3982   // label was bound.
   3983   int new_flush_budget = trace->flush_budget() / choice_count;
   3984   for (int i = 0; i < choice_count; i++) {
   3985     AlternativeGeneration* alt_gen = alt_gens.at(i);
   3986     Trace new_trace(*trace);
   3987     // If there are actions to be flushed we have to limit how many times
   3988     // they are flushed.  Take the budget of the parent trace and distribute
   3989     // it fairly amongst the children.
   3990     if (new_trace.actions() != NULL) {
   3991       new_trace.set_flush_budget(new_flush_budget);
   3992     }
   3993     bool next_expects_preload =
   3994         i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
   3995     EmitOutOfLineContinuation(compiler,
   3996                               &new_trace,
   3997                               alternatives_->at(i),
   3998                               alt_gen,
   3999                               preload.preload_characters_,
   4000                               next_expects_preload);
   4001   }
   4002 }
   4003 
   4004 
   4005 Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
   4006                                   Trace* trace,
   4007                                   AlternativeGenerationList* alt_gens,
   4008                                   PreloadState* preload,
   4009                                   GreedyLoopState* greedy_loop_state,
   4010                                   int text_length) {
   4011   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4012   // Here we have special handling for greedy loops containing only text nodes
   4013   // and other simple nodes.  These are handled by pushing the current
   4014   // position on the stack and then incrementing the current position each
   4015   // time around the switch.  On backtrack we decrement the current position
   4016   // and check it against the pushed value.  This avoids pushing backtrack
   4017   // information for each iteration of the loop, which could take up a lot of
   4018   // space.
   4019   DCHECK(trace->stop_node() == NULL);
   4020   macro_assembler->PushCurrentPosition();
   4021   Label greedy_match_failed;
   4022   Trace greedy_match_trace;
   4023   if (not_at_start()) greedy_match_trace.set_at_start(false);
   4024   greedy_match_trace.set_backtrack(&greedy_match_failed);
   4025   Label loop_label;
   4026   macro_assembler->Bind(&loop_label);
   4027   greedy_match_trace.set_stop_node(this);
   4028   greedy_match_trace.set_loop_label(&loop_label);
   4029   alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
   4030   macro_assembler->Bind(&greedy_match_failed);
   4031 
   4032   Label second_choice;  // For use in greedy matches.
   4033   macro_assembler->Bind(&second_choice);
   4034 
   4035   Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
   4036 
   4037   EmitChoices(compiler,
   4038               alt_gens,
   4039               1,
   4040               new_trace,
   4041               preload);
   4042 
   4043   macro_assembler->Bind(greedy_loop_state->label());
   4044   // If we have unwound to the bottom then backtrack.
   4045   macro_assembler->CheckGreedyLoop(trace->backtrack());
   4046   // Otherwise try the second priority at an earlier position.
   4047   macro_assembler->AdvanceCurrentPosition(-text_length);
   4048   macro_assembler->GoTo(&second_choice);
   4049   return new_trace;
   4050 }
   4051 
   4052 int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
   4053                                               Trace* trace) {
   4054   int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
   4055   if (alternatives_->length() != 2) return eats_at_least;
   4056 
   4057   GuardedAlternative alt1 = alternatives_->at(1);
   4058   if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
   4059     return eats_at_least;
   4060   }
   4061   RegExpNode* eats_anything_node = alt1.node();
   4062   if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
   4063     return eats_at_least;
   4064   }
   4065 
   4066   // Really we should be creating a new trace when we execute this function,
   4067   // but there is no need, because the code it generates cannot backtrack, and
   4068   // we always arrive here with a trivial trace (since it's the entry to a
   4069   // loop.  That also implies that there are no preloaded characters, which is
   4070   // good, because it means we won't be violating any assumptions by
   4071   // overwriting those characters with new load instructions.
   4072   DCHECK(trace->is_trivial());
   4073 
   4074   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4075   // At this point we know that we are at a non-greedy loop that will eat
   4076   // any character one at a time.  Any non-anchored regexp has such a
   4077   // loop prepended to it in order to find where it starts.  We look for
   4078   // a pattern of the form ...abc... where we can look 6 characters ahead
   4079   // and step forwards 3 if the character is not one of abc.  Abc need
   4080   // not be atoms, they can be any reasonably limited character class or
   4081   // small alternation.
   4082   BoyerMooreLookahead* bm = bm_info(false);
   4083   if (bm == NULL) {
   4084     eats_at_least = Min(kMaxLookaheadForBoyerMoore,
   4085                         EatsAtLeast(kMaxLookaheadForBoyerMoore,
   4086                                     kRecursionBudget,
   4087                                     false));
   4088     if (eats_at_least >= 1) {
   4089       bm = new(zone()) BoyerMooreLookahead(eats_at_least,
   4090                                            compiler,
   4091                                            zone());
   4092       GuardedAlternative alt0 = alternatives_->at(0);
   4093       alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
   4094     }
   4095   }
   4096   if (bm != NULL) {
   4097     bm->EmitSkipInstructions(macro_assembler);
   4098   }
   4099   return eats_at_least;
   4100 }
   4101 
   4102 
   4103 void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
   4104                              AlternativeGenerationList* alt_gens,
   4105                              int first_choice,
   4106                              Trace* trace,
   4107                              PreloadState* preload) {
   4108   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4109   SetUpPreLoad(compiler, trace, preload);
   4110 
   4111   // For now we just call all choices one after the other.  The idea ultimately
   4112   // is to use the Dispatch table to try only the relevant ones.
   4113   int choice_count = alternatives_->length();
   4114 
   4115   int new_flush_budget = trace->flush_budget() / choice_count;
   4116 
   4117   for (int i = first_choice; i < choice_count; i++) {
   4118     bool is_last = i == choice_count - 1;
   4119     bool fall_through_on_failure = !is_last;
   4120     GuardedAlternative alternative = alternatives_->at(i);
   4121     AlternativeGeneration* alt_gen = alt_gens->at(i);
   4122     alt_gen->quick_check_details.set_characters(preload->preload_characters_);
   4123     ZoneList<Guard*>* guards = alternative.guards();
   4124     int guard_count = (guards == NULL) ? 0 : guards->length();
   4125     Trace new_trace(*trace);
   4126     new_trace.set_characters_preloaded(preload->preload_is_current_ ?
   4127                                          preload->preload_characters_ :
   4128                                          0);
   4129     if (preload->preload_has_checked_bounds_) {
   4130       new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4131     }
   4132     new_trace.quick_check_performed()->Clear();
   4133     if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
   4134     if (!is_last) {
   4135       new_trace.set_backtrack(&alt_gen->after);
   4136     }
   4137     alt_gen->expects_preload = preload->preload_is_current_;
   4138     bool generate_full_check_inline = false;
   4139     if (FLAG_regexp_optimization &&
   4140         try_to_emit_quick_check_for_alternative(i == 0) &&
   4141         alternative.node()->EmitQuickCheck(compiler,
   4142                                            trace,
   4143                                            &new_trace,
   4144                                            preload->preload_has_checked_bounds_,
   4145                                            &alt_gen->possible_success,
   4146                                            &alt_gen->quick_check_details,
   4147                                            fall_through_on_failure)) {
   4148       // Quick check was generated for this choice.
   4149       preload->preload_is_current_ = true;
   4150       preload->preload_has_checked_bounds_ = true;
   4151       // If we generated the quick check to fall through on possible success,
   4152       // we now need to generate the full check inline.
   4153       if (!fall_through_on_failure) {
   4154         macro_assembler->Bind(&alt_gen->possible_success);
   4155         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4156         new_trace.set_characters_preloaded(preload->preload_characters_);
   4157         new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4158         generate_full_check_inline = true;
   4159       }
   4160     } else if (alt_gen->quick_check_details.cannot_match()) {
   4161       if (!fall_through_on_failure) {
   4162         macro_assembler->GoTo(trace->backtrack());
   4163       }
   4164       continue;
   4165     } else {
   4166       // No quick check was generated.  Put the full code here.
   4167       // If this is not the first choice then there could be slow checks from
   4168       // previous cases that go here when they fail.  There's no reason to
   4169       // insist that they preload characters since the slow check we are about
   4170       // to generate probably can't use it.
   4171       if (i != first_choice) {
   4172         alt_gen->expects_preload = false;
   4173         new_trace.InvalidateCurrentCharacter();
   4174       }
   4175       generate_full_check_inline = true;
   4176     }
   4177     if (generate_full_check_inline) {
   4178       if (new_trace.actions() != NULL) {
   4179         new_trace.set_flush_budget(new_flush_budget);
   4180       }
   4181       for (int j = 0; j < guard_count; j++) {
   4182         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
   4183       }
   4184       alternative.node()->Emit(compiler, &new_trace);
   4185       preload->preload_is_current_ = false;
   4186     }
   4187     macro_assembler->Bind(&alt_gen->after);
   4188   }
   4189 }
   4190 
   4191 
   4192 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
   4193                                            Trace* trace,
   4194                                            GuardedAlternative alternative,
   4195                                            AlternativeGeneration* alt_gen,
   4196                                            int preload_characters,
   4197                                            bool next_expects_preload) {
   4198   if (!alt_gen->possible_success.is_linked()) return;
   4199 
   4200   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4201   macro_assembler->Bind(&alt_gen->possible_success);
   4202   Trace out_of_line_trace(*trace);
   4203   out_of_line_trace.set_characters_preloaded(preload_characters);
   4204   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4205   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
   4206   ZoneList<Guard*>* guards = alternative.guards();
   4207   int guard_count = (guards == NULL) ? 0 : guards->length();
   4208   if (next_expects_preload) {
   4209     Label reload_current_char;
   4210     out_of_line_trace.set_backtrack(&reload_current_char);
   4211     for (int j = 0; j < guard_count; j++) {
   4212       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4213     }
   4214     alternative.node()->Emit(compiler, &out_of_line_trace);
   4215     macro_assembler->Bind(&reload_current_char);
   4216     // Reload the current character, since the next quick check expects that.
   4217     // We don't need to check bounds here because we only get into this
   4218     // code through a quick check which already did the checked load.
   4219     macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
   4220                                           NULL,
   4221                                           false,
   4222                                           preload_characters);
   4223     macro_assembler->GoTo(&(alt_gen->after));
   4224   } else {
   4225     out_of_line_trace.set_backtrack(&(alt_gen->after));
   4226     for (int j = 0; j < guard_count; j++) {
   4227       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4228     }
   4229     alternative.node()->Emit(compiler, &out_of_line_trace);
   4230   }
   4231 }
   4232 
   4233 
   4234 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4235   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4236   LimitResult limit_result = LimitVersions(compiler, trace);
   4237   if (limit_result == DONE) return;
   4238   DCHECK(limit_result == CONTINUE);
   4239 
   4240   RecursionCheck rc(compiler);
   4241 
   4242   switch (action_type_) {
   4243     case STORE_POSITION: {
   4244       Trace::DeferredCapture
   4245           new_capture(data_.u_position_register.reg,
   4246                       data_.u_position_register.is_capture,
   4247                       trace);
   4248       Trace new_trace = *trace;
   4249       new_trace.add_action(&new_capture);
   4250       on_success()->Emit(compiler, &new_trace);
   4251       break;
   4252     }
   4253     case INCREMENT_REGISTER: {
   4254       Trace::DeferredIncrementRegister
   4255           new_increment(data_.u_increment_register.reg);
   4256       Trace new_trace = *trace;
   4257       new_trace.add_action(&new_increment);
   4258       on_success()->Emit(compiler, &new_trace);
   4259       break;
   4260     }
   4261     case SET_REGISTER: {
   4262       Trace::DeferredSetRegister
   4263           new_set(data_.u_store_register.reg, data_.u_store_register.value);
   4264       Trace new_trace = *trace;
   4265       new_trace.add_action(&new_set);
   4266       on_success()->Emit(compiler, &new_trace);
   4267       break;
   4268     }
   4269     case CLEAR_CAPTURES: {
   4270       Trace::DeferredClearCaptures
   4271         new_capture(Interval(data_.u_clear_captures.range_from,
   4272                              data_.u_clear_captures.range_to));
   4273       Trace new_trace = *trace;
   4274       new_trace.add_action(&new_capture);
   4275       on_success()->Emit(compiler, &new_trace);
   4276       break;
   4277     }
   4278     case BEGIN_SUBMATCH:
   4279       if (!trace->is_trivial()) {
   4280         trace->Flush(compiler, this);
   4281       } else {
   4282         assembler->WriteCurrentPositionToRegister(
   4283             data_.u_submatch.current_position_register, 0);
   4284         assembler->WriteStackPointerToRegister(
   4285             data_.u_submatch.stack_pointer_register);
   4286         on_success()->Emit(compiler, trace);
   4287       }
   4288       break;
   4289     case EMPTY_MATCH_CHECK: {
   4290       int start_pos_reg = data_.u_empty_match_check.start_register;
   4291       int stored_pos = 0;
   4292       int rep_reg = data_.u_empty_match_check.repetition_register;
   4293       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
   4294       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
   4295       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
   4296         // If we know we haven't advanced and there is no minimum we
   4297         // can just backtrack immediately.
   4298         assembler->GoTo(trace->backtrack());
   4299       } else if (know_dist && stored_pos < trace->cp_offset()) {
   4300         // If we know we've advanced we can generate the continuation
   4301         // immediately.
   4302         on_success()->Emit(compiler, trace);
   4303       } else if (!trace->is_trivial()) {
   4304         trace->Flush(compiler, this);
   4305       } else {
   4306         Label skip_empty_check;
   4307         // If we have a minimum number of repetitions we check the current
   4308         // number first and skip the empty check if it's not enough.
   4309         if (has_minimum) {
   4310           int limit = data_.u_empty_match_check.repetition_limit;
   4311           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
   4312         }
   4313         // If the match is empty we bail out, otherwise we fall through
   4314         // to the on-success continuation.
   4315         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
   4316                                    trace->backtrack());
   4317         assembler->Bind(&skip_empty_check);
   4318         on_success()->Emit(compiler, trace);
   4319       }
   4320       break;
   4321     }
   4322     case POSITIVE_SUBMATCH_SUCCESS: {
   4323       if (!trace->is_trivial()) {
   4324         trace->Flush(compiler, this);
   4325         return;
   4326       }
   4327       assembler->ReadCurrentPositionFromRegister(
   4328           data_.u_submatch.current_position_register);
   4329       assembler->ReadStackPointerFromRegister(
   4330           data_.u_submatch.stack_pointer_register);
   4331       int clear_register_count = data_.u_submatch.clear_register_count;
   4332       if (clear_register_count == 0) {
   4333         on_success()->Emit(compiler, trace);
   4334         return;
   4335       }
   4336       int clear_registers_from = data_.u_submatch.clear_register_from;
   4337       Label clear_registers_backtrack;
   4338       Trace new_trace = *trace;
   4339       new_trace.set_backtrack(&clear_registers_backtrack);
   4340       on_success()->Emit(compiler, &new_trace);
   4341 
   4342       assembler->Bind(&clear_registers_backtrack);
   4343       int clear_registers_to = clear_registers_from + clear_register_count - 1;
   4344       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
   4345 
   4346       DCHECK(trace->backtrack() == NULL);
   4347       assembler->Backtrack();
   4348       return;
   4349     }
   4350     default:
   4351       UNREACHABLE();
   4352   }
   4353 }
   4354 
   4355 
   4356 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4357   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4358   if (!trace->is_trivial()) {
   4359     trace->Flush(compiler, this);
   4360     return;
   4361   }
   4362 
   4363   LimitResult limit_result = LimitVersions(compiler, trace);
   4364   if (limit_result == DONE) return;
   4365   DCHECK(limit_result == CONTINUE);
   4366 
   4367   RecursionCheck rc(compiler);
   4368 
   4369   DCHECK_EQ(start_reg_ + 1, end_reg_);
   4370   if (compiler->ignore_case()) {
   4371     assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
   4372                                                trace->backtrack());
   4373   } else {
   4374     assembler->CheckNotBackReference(start_reg_, trace->backtrack());
   4375   }
   4376   on_success()->Emit(compiler, trace);
   4377 }
   4378 
   4379 
   4380 // -------------------------------------------------------------------
   4381 // Dot/dotty output
   4382 
   4383 
   4384 #ifdef DEBUG
   4385 
   4386 
   4387 class DotPrinter: public NodeVisitor {
   4388  public:
   4389   DotPrinter(OStream& os, bool ignore_case)  // NOLINT
   4390       : os_(os),
   4391         ignore_case_(ignore_case) {}
   4392   void PrintNode(const char* label, RegExpNode* node);
   4393   void Visit(RegExpNode* node);
   4394   void PrintAttributes(RegExpNode* from);
   4395   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
   4396 #define DECLARE_VISIT(Type)                                          \
   4397   virtual void Visit##Type(Type##Node* that);
   4398 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   4399 #undef DECLARE_VISIT
   4400  private:
   4401   OStream& os_;
   4402   bool ignore_case_;
   4403 };
   4404 
   4405 
   4406 void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
   4407   os_ << "digraph G {\n  graph [label=\"";
   4408   for (int i = 0; label[i]; i++) {
   4409     switch (label[i]) {
   4410       case '\\':
   4411         os_ << "\\\\";
   4412         break;
   4413       case '"':
   4414         os_ << "\"";
   4415         break;
   4416       default:
   4417         os_ << label[i];
   4418         break;
   4419     }
   4420   }
   4421   os_ << "\"];\n";
   4422   Visit(node);
   4423   os_ << "}" << endl;
   4424 }
   4425 
   4426 
   4427 void DotPrinter::Visit(RegExpNode* node) {
   4428   if (node->info()->visited) return;
   4429   node->info()->visited = true;
   4430   node->Accept(this);
   4431 }
   4432 
   4433 
   4434 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
   4435   os_ << "  n" << from << " -> n" << on_failure << " [style=dotted];\n";
   4436   Visit(on_failure);
   4437 }
   4438 
   4439 
   4440 class TableEntryBodyPrinter {
   4441  public:
   4442   TableEntryBodyPrinter(OStream& os, ChoiceNode* choice)  // NOLINT
   4443       : os_(os),
   4444         choice_(choice) {}
   4445   void Call(uc16 from, DispatchTable::Entry entry) {
   4446     OutSet* out_set = entry.out_set();
   4447     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4448       if (out_set->Get(i)) {
   4449         os_ << "    n" << choice() << ":s" << from << "o" << i << " -> n"
   4450             << choice()->alternatives()->at(i).node() << ";\n";
   4451       }
   4452     }
   4453   }
   4454  private:
   4455   ChoiceNode* choice() { return choice_; }
   4456   OStream& os_;
   4457   ChoiceNode* choice_;
   4458 };
   4459 
   4460 
   4461 class TableEntryHeaderPrinter {
   4462  public:
   4463   explicit TableEntryHeaderPrinter(OStream& os)  // NOLINT
   4464       : first_(true),
   4465         os_(os) {}
   4466   void Call(uc16 from, DispatchTable::Entry entry) {
   4467     if (first_) {
   4468       first_ = false;
   4469     } else {
   4470       os_ << "|";
   4471     }
   4472     os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
   4473     OutSet* out_set = entry.out_set();
   4474     int priority = 0;
   4475     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4476       if (out_set->Get(i)) {
   4477         if (priority > 0) os_ << "|";
   4478         os_ << "<s" << from << "o" << i << "> " << priority;
   4479         priority++;
   4480       }
   4481     }
   4482     os_ << "}}";
   4483   }
   4484 
   4485  private:
   4486   bool first_;
   4487   OStream& os_;
   4488 };
   4489 
   4490 
   4491 class AttributePrinter {
   4492  public:
   4493   explicit AttributePrinter(OStream& os)  // NOLINT
   4494       : os_(os),
   4495         first_(true) {}
   4496   void PrintSeparator() {
   4497     if (first_) {
   4498       first_ = false;
   4499     } else {
   4500       os_ << "|";
   4501     }
   4502   }
   4503   void PrintBit(const char* name, bool value) {
   4504     if (!value) return;
   4505     PrintSeparator();
   4506     os_ << "{" << name << "}";
   4507   }
   4508   void PrintPositive(const char* name, int value) {
   4509     if (value < 0) return;
   4510     PrintSeparator();
   4511     os_ << "{" << name << "|" << value << "}";
   4512   }
   4513 
   4514  private:
   4515   OStream& os_;
   4516   bool first_;
   4517 };
   4518 
   4519 
   4520 void DotPrinter::PrintAttributes(RegExpNode* that) {
   4521   os_ << "  a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
   4522       << "margin=0.1, fontsize=10, label=\"{";
   4523   AttributePrinter printer(os_);
   4524   NodeInfo* info = that->info();
   4525   printer.PrintBit("NI", info->follows_newline_interest);
   4526   printer.PrintBit("WI", info->follows_word_interest);
   4527   printer.PrintBit("SI", info->follows_start_interest);
   4528   Label* label = that->label();
   4529   if (label->is_bound())
   4530     printer.PrintPositive("@", label->pos());
   4531   os_ << "}\"];\n"
   4532       << "  a" << that << " -> n" << that
   4533       << " [style=dashed, color=grey, arrowhead=none];\n";
   4534 }
   4535 
   4536 
   4537 static const bool kPrintDispatchTable = false;
   4538 void DotPrinter::VisitChoice(ChoiceNode* that) {
   4539   if (kPrintDispatchTable) {
   4540     os_ << "  n" << that << " [shape=Mrecord, label=\"";
   4541     TableEntryHeaderPrinter header_printer(os_);
   4542     that->GetTable(ignore_case_)->ForEach(&header_printer);
   4543     os_ << "\"]\n";
   4544     PrintAttributes(that);
   4545     TableEntryBodyPrinter body_printer(os_, that);
   4546     that->GetTable(ignore_case_)->ForEach(&body_printer);
   4547   } else {
   4548     os_ << "  n" << that << " [shape=Mrecord, label=\"?\"];\n";
   4549     for (int i = 0; i < that->alternatives()->length(); i++) {
   4550       GuardedAlternative alt = that->alternatives()->at(i);
   4551       os_ << "  n" << that << " -> n" << alt.node();
   4552     }
   4553   }
   4554   for (int i = 0; i < that->alternatives()->length(); i++) {
   4555     GuardedAlternative alt = that->alternatives()->at(i);
   4556     alt.node()->Accept(this);
   4557   }
   4558 }
   4559 
   4560 
   4561 void DotPrinter::VisitText(TextNode* that) {
   4562   Zone* zone = that->zone();
   4563   os_ << "  n" << that << " [label=\"";
   4564   for (int i = 0; i < that->elements()->length(); i++) {
   4565     if (i > 0) os_ << " ";
   4566     TextElement elm = that->elements()->at(i);
   4567     switch (elm.text_type()) {
   4568       case TextElement::ATOM: {
   4569         Vector<const uc16> data = elm.atom()->data();
   4570         for (int i = 0; i < data.length(); i++) {
   4571           os_ << static_cast<char>(data[i]);
   4572         }
   4573         break;
   4574       }
   4575       case TextElement::CHAR_CLASS: {
   4576         RegExpCharacterClass* node = elm.char_class();
   4577         os_ << "[";
   4578         if (node->is_negated()) os_ << "^";
   4579         for (int j = 0; j < node->ranges(zone)->length(); j++) {
   4580           CharacterRange range = node->ranges(zone)->at(j);
   4581           os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
   4582         }
   4583         os_ << "]";
   4584         break;
   4585       }
   4586       default:
   4587         UNREACHABLE();
   4588     }
   4589   }
   4590   os_ << "\", shape=box, peripheries=2];\n";
   4591   PrintAttributes(that);
   4592   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4593   Visit(that->on_success());
   4594 }
   4595 
   4596 
   4597 void DotPrinter::VisitBackReference(BackReferenceNode* that) {
   4598   os_ << "  n" << that << " [label=\"$" << that->start_register() << "..$"
   4599       << that->end_register() << "\", shape=doubleoctagon];\n";
   4600   PrintAttributes(that);
   4601   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4602   Visit(that->on_success());
   4603 }
   4604 
   4605 
   4606 void DotPrinter::VisitEnd(EndNode* that) {
   4607   os_ << "  n" << that << " [style=bold, shape=point];\n";
   4608   PrintAttributes(that);
   4609 }
   4610 
   4611 
   4612 void DotPrinter::VisitAssertion(AssertionNode* that) {
   4613   os_ << "  n" << that << " [";
   4614   switch (that->assertion_type()) {
   4615     case AssertionNode::AT_END:
   4616       os_ << "label=\"$\", shape=septagon";
   4617       break;
   4618     case AssertionNode::AT_START:
   4619       os_ << "label=\"^\", shape=septagon";
   4620       break;
   4621     case AssertionNode::AT_BOUNDARY:
   4622       os_ << "label=\"\\b\", shape=septagon";
   4623       break;
   4624     case AssertionNode::AT_NON_BOUNDARY:
   4625       os_ << "label=\"\\B\", shape=septagon";
   4626       break;
   4627     case AssertionNode::AFTER_NEWLINE:
   4628       os_ << "label=\"(?<=\\n)\", shape=septagon";
   4629       break;
   4630   }
   4631   os_ << "];\n";
   4632   PrintAttributes(that);
   4633   RegExpNode* successor = that->on_success();
   4634   os_ << "  n" << that << " -> n" << successor << ";\n";
   4635   Visit(successor);
   4636 }
   4637 
   4638 
   4639 void DotPrinter::VisitAction(ActionNode* that) {
   4640   os_ << "  n" << that << " [";
   4641   switch (that->action_type_) {
   4642     case ActionNode::SET_REGISTER:
   4643       os_ << "label=\"$" << that->data_.u_store_register.reg
   4644           << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
   4645       break;
   4646     case ActionNode::INCREMENT_REGISTER:
   4647       os_ << "label=\"$" << that->data_.u_increment_register.reg
   4648           << "++\", shape=octagon";
   4649       break;
   4650     case ActionNode::STORE_POSITION:
   4651       os_ << "label=\"$" << that->data_.u_position_register.reg
   4652           << ":=$pos\", shape=octagon";
   4653       break;
   4654     case ActionNode::BEGIN_SUBMATCH:
   4655       os_ << "label=\"$" << that->data_.u_submatch.current_position_register
   4656           << ":=$pos,begin\", shape=septagon";
   4657       break;
   4658     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
   4659       os_ << "label=\"escape\", shape=septagon";
   4660       break;
   4661     case ActionNode::EMPTY_MATCH_CHECK:
   4662       os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
   4663           << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
   4664           << "<" << that->data_.u_empty_match_check.repetition_limit
   4665           << "?\", shape=septagon";
   4666       break;
   4667     case ActionNode::CLEAR_CAPTURES: {
   4668       os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
   4669           << " to $" << that->data_.u_clear_captures.range_to
   4670           << "\", shape=septagon";
   4671       break;
   4672     }
   4673   }
   4674   os_ << "];\n";
   4675   PrintAttributes(that);
   4676   RegExpNode* successor = that->on_success();
   4677   os_ << "  n" << that << " -> n" << successor << ";\n";
   4678   Visit(successor);
   4679 }
   4680 
   4681 
   4682 class DispatchTableDumper {
   4683  public:
   4684   explicit DispatchTableDumper(OStream& os) : os_(os) {}
   4685   void Call(uc16 key, DispatchTable::Entry entry);
   4686  private:
   4687   OStream& os_;
   4688 };
   4689 
   4690 
   4691 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
   4692   os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
   4693   OutSet* set = entry.out_set();
   4694   bool first = true;
   4695   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4696     if (set->Get(i)) {
   4697       if (first) {
   4698         first = false;
   4699       } else {
   4700         os_ << ", ";
   4701       }
   4702       os_ << i;
   4703     }
   4704   }
   4705   os_ << "}\n";
   4706 }
   4707 
   4708 
   4709 void DispatchTable::Dump() {
   4710   OFStream os(stderr);
   4711   DispatchTableDumper dumper(os);
   4712   tree()->ForEach(&dumper);
   4713 }
   4714 
   4715 
   4716 void RegExpEngine::DotPrint(const char* label,
   4717                             RegExpNode* node,
   4718                             bool ignore_case) {
   4719   OFStream os(stdout);
   4720   DotPrinter printer(os, ignore_case);
   4721   printer.PrintNode(label, node);
   4722 }
   4723 
   4724 
   4725 #endif  // DEBUG
   4726 
   4727 
   4728 // -------------------------------------------------------------------
   4729 // Tree to graph conversion
   4730 
   4731 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
   4732                                RegExpNode* on_success) {
   4733   ZoneList<TextElement>* elms =
   4734       new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
   4735   elms->Add(TextElement::Atom(this), compiler->zone());
   4736   return new(compiler->zone()) TextNode(elms, on_success);
   4737 }
   4738 
   4739 
   4740 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
   4741                                RegExpNode* on_success) {
   4742   return new(compiler->zone()) TextNode(elements(), on_success);
   4743 }
   4744 
   4745 
   4746 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
   4747                                  const int* special_class,
   4748                                  int length) {
   4749   length--;  // Remove final 0x10000.
   4750   DCHECK(special_class[length] == 0x10000);
   4751   DCHECK(ranges->length() != 0);
   4752   DCHECK(length != 0);
   4753   DCHECK(special_class[0] != 0);
   4754   if (ranges->length() != (length >> 1) + 1) {
   4755     return false;
   4756   }
   4757   CharacterRange range = ranges->at(0);
   4758   if (range.from() != 0) {
   4759     return false;
   4760   }
   4761   for (int i = 0; i < length; i += 2) {
   4762     if (special_class[i] != (range.to() + 1)) {
   4763       return false;
   4764     }
   4765     range = ranges->at((i >> 1) + 1);
   4766     if (special_class[i+1] != range.from()) {
   4767       return false;
   4768     }
   4769   }
   4770   if (range.to() != 0xffff) {
   4771     return false;
   4772   }
   4773   return true;
   4774 }
   4775 
   4776 
   4777 static bool CompareRanges(ZoneList<CharacterRange>* ranges,
   4778                           const int* special_class,
   4779                           int length) {
   4780   length--;  // Remove final 0x10000.
   4781   DCHECK(special_class[length] == 0x10000);
   4782   if (ranges->length() * 2 != length) {
   4783     return false;
   4784   }
   4785   for (int i = 0; i < length; i += 2) {
   4786     CharacterRange range = ranges->at(i >> 1);
   4787     if (range.from() != special_class[i] ||
   4788         range.to() != special_class[i + 1] - 1) {
   4789       return false;
   4790     }
   4791   }
   4792   return true;
   4793 }
   4794 
   4795 
   4796 bool RegExpCharacterClass::is_standard(Zone* zone) {
   4797   // TODO(lrn): Remove need for this function, by not throwing away information
   4798   // along the way.
   4799   if (is_negated_) {
   4800     return false;
   4801   }
   4802   if (set_.is_standard()) {
   4803     return true;
   4804   }
   4805   if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4806     set_.set_standard_set_type('s');
   4807     return true;
   4808   }
   4809   if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4810     set_.set_standard_set_type('S');
   4811     return true;
   4812   }
   4813   if (CompareInverseRanges(set_.ranges(zone),
   4814                            kLineTerminatorRanges,
   4815                            kLineTerminatorRangeCount)) {
   4816     set_.set_standard_set_type('.');
   4817     return true;
   4818   }
   4819   if (CompareRanges(set_.ranges(zone),
   4820                     kLineTerminatorRanges,
   4821                     kLineTerminatorRangeCount)) {
   4822     set_.set_standard_set_type('n');
   4823     return true;
   4824   }
   4825   if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4826     set_.set_standard_set_type('w');
   4827     return true;
   4828   }
   4829   if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4830     set_.set_standard_set_type('W');
   4831     return true;
   4832   }
   4833   return false;
   4834 }
   4835 
   4836 
   4837 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
   4838                                          RegExpNode* on_success) {
   4839   return new(compiler->zone()) TextNode(this, on_success);
   4840 }
   4841 
   4842 
   4843 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
   4844                                       RegExpNode* on_success) {
   4845   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   4846   int length = alternatives->length();
   4847   ChoiceNode* result =
   4848       new(compiler->zone()) ChoiceNode(length, compiler->zone());
   4849   for (int i = 0; i < length; i++) {
   4850     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
   4851                                                                on_success));
   4852     result->AddAlternative(alternative);
   4853   }
   4854   return result;
   4855 }
   4856 
   4857 
   4858 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
   4859                                      RegExpNode* on_success) {
   4860   return ToNode(min(),
   4861                 max(),
   4862                 is_greedy(),
   4863                 body(),
   4864                 compiler,
   4865                 on_success);
   4866 }
   4867 
   4868 
   4869 // Scoped object to keep track of how much we unroll quantifier loops in the
   4870 // regexp graph generator.
   4871 class RegExpExpansionLimiter {
   4872  public:
   4873   static const int kMaxExpansionFactor = 6;
   4874   RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
   4875       : compiler_(compiler),
   4876         saved_expansion_factor_(compiler->current_expansion_factor()),
   4877         ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
   4878     DCHECK(factor > 0);
   4879     if (ok_to_expand_) {
   4880       if (factor > kMaxExpansionFactor) {
   4881         // Avoid integer overflow of the current expansion factor.
   4882         ok_to_expand_ = false;
   4883         compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
   4884       } else {
   4885         int new_factor = saved_expansion_factor_ * factor;
   4886         ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
   4887         compiler->set_current_expansion_factor(new_factor);
   4888       }
   4889     }
   4890   }
   4891 
   4892   ~RegExpExpansionLimiter() {
   4893     compiler_->set_current_expansion_factor(saved_expansion_factor_);
   4894   }
   4895 
   4896   bool ok_to_expand() { return ok_to_expand_; }
   4897 
   4898  private:
   4899   RegExpCompiler* compiler_;
   4900   int saved_expansion_factor_;
   4901   bool ok_to_expand_;
   4902 
   4903   DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
   4904 };
   4905 
   4906 
   4907 RegExpNode* RegExpQuantifier::ToNode(int min,
   4908                                      int max,
   4909                                      bool is_greedy,
   4910                                      RegExpTree* body,
   4911                                      RegExpCompiler* compiler,
   4912                                      RegExpNode* on_success,
   4913                                      bool not_at_start) {
   4914   // x{f, t} becomes this:
   4915   //
   4916   //             (r++)<-.
   4917   //               |     `
   4918   //               |     (x)
   4919   //               v     ^
   4920   //      (r=0)-->(?)---/ [if r < t]
   4921   //               |
   4922   //   [if r >= f] \----> ...
   4923   //
   4924 
   4925   // 15.10.2.5 RepeatMatcher algorithm.
   4926   // The parser has already eliminated the case where max is 0.  In the case
   4927   // where max_match is zero the parser has removed the quantifier if min was
   4928   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
   4929 
   4930   // If we know that we cannot match zero length then things are a little
   4931   // simpler since we don't need to make the special zero length match check
   4932   // from step 2.1.  If the min and max are small we can unroll a little in
   4933   // this case.
   4934   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
   4935   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
   4936   if (max == 0) return on_success;  // This can happen due to recursion.
   4937   bool body_can_be_empty = (body->min_match() == 0);
   4938   int body_start_reg = RegExpCompiler::kNoRegister;
   4939   Interval capture_registers = body->CaptureRegisters();
   4940   bool needs_capture_clearing = !capture_registers.is_empty();
   4941   Zone* zone = compiler->zone();
   4942 
   4943   if (body_can_be_empty) {
   4944     body_start_reg = compiler->AllocateRegister();
   4945   } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
   4946     // Only unroll if there are no captures and the body can't be
   4947     // empty.
   4948     {
   4949       RegExpExpansionLimiter limiter(
   4950           compiler, min + ((max != min) ? 1 : 0));
   4951       if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
   4952         int new_max = (max == kInfinity) ? max : max - min;
   4953         // Recurse once to get the loop or optional matches after the fixed
   4954         // ones.
   4955         RegExpNode* answer = ToNode(
   4956             0, new_max, is_greedy, body, compiler, on_success, true);
   4957         // Unroll the forced matches from 0 to min.  This can cause chains of
   4958         // TextNodes (which the parser does not generate).  These should be
   4959         // combined if it turns out they hinder good code generation.
   4960         for (int i = 0; i < min; i++) {
   4961           answer = body->ToNode(compiler, answer);
   4962         }
   4963         return answer;
   4964       }
   4965     }
   4966     if (max <= kMaxUnrolledMaxMatches && min == 0) {
   4967       DCHECK(max > 0);  // Due to the 'if' above.
   4968       RegExpExpansionLimiter limiter(compiler, max);
   4969       if (limiter.ok_to_expand()) {
   4970         // Unroll the optional matches up to max.
   4971         RegExpNode* answer = on_success;
   4972         for (int i = 0; i < max; i++) {
   4973           ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
   4974           if (is_greedy) {
   4975             alternation->AddAlternative(
   4976                 GuardedAlternative(body->ToNode(compiler, answer)));
   4977             alternation->AddAlternative(GuardedAlternative(on_success));
   4978           } else {
   4979             alternation->AddAlternative(GuardedAlternative(on_success));
   4980             alternation->AddAlternative(
   4981                 GuardedAlternative(body->ToNode(compiler, answer)));
   4982           }
   4983           answer = alternation;
   4984           if (not_at_start) alternation->set_not_at_start();
   4985         }
   4986         return answer;
   4987       }
   4988     }
   4989   }
   4990   bool has_min = min > 0;
   4991   bool has_max = max < RegExpTree::kInfinity;
   4992   bool needs_counter = has_min || has_max;
   4993   int reg_ctr = needs_counter
   4994       ? compiler->AllocateRegister()
   4995       : RegExpCompiler::kNoRegister;
   4996   LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
   4997                                                     zone);
   4998   if (not_at_start) center->set_not_at_start();
   4999   RegExpNode* loop_return = needs_counter
   5000       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
   5001       : static_cast<RegExpNode*>(center);
   5002   if (body_can_be_empty) {
   5003     // If the body can be empty we need to check if it was and then
   5004     // backtrack.
   5005     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
   5006                                               reg_ctr,
   5007                                               min,
   5008                                               loop_return);
   5009   }
   5010   RegExpNode* body_node = body->ToNode(compiler, loop_return);
   5011   if (body_can_be_empty) {
   5012     // If the body can be empty we need to store the start position
   5013     // so we can bail out if it was empty.
   5014     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
   5015   }
   5016   if (needs_capture_clearing) {
   5017     // Before entering the body of this loop we need to clear captures.
   5018     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
   5019   }
   5020   GuardedAlternative body_alt(body_node);
   5021   if (has_max) {
   5022     Guard* body_guard =
   5023         new(zone) Guard(reg_ctr, Guard::LT, max);
   5024     body_alt.AddGuard(body_guard, zone);
   5025   }
   5026   GuardedAlternative rest_alt(on_success);
   5027   if (has_min) {
   5028     Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
   5029     rest_alt.AddGuard(rest_guard, zone);
   5030   }
   5031   if (is_greedy) {
   5032     center->AddLoopAlternative(body_alt);
   5033     center->AddContinueAlternative(rest_alt);
   5034   } else {
   5035     center->AddContinueAlternative(rest_alt);
   5036     center->AddLoopAlternative(body_alt);
   5037   }
   5038   if (needs_counter) {
   5039     return ActionNode::SetRegister(reg_ctr, 0, center);
   5040   } else {
   5041     return center;
   5042   }
   5043 }
   5044 
   5045 
   5046 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
   5047                                     RegExpNode* on_success) {
   5048   NodeInfo info;
   5049   Zone* zone = compiler->zone();
   5050 
   5051   switch (assertion_type()) {
   5052     case START_OF_LINE:
   5053       return AssertionNode::AfterNewline(on_success);
   5054     case START_OF_INPUT:
   5055       return AssertionNode::AtStart(on_success);
   5056     case BOUNDARY:
   5057       return AssertionNode::AtBoundary(on_success);
   5058     case NON_BOUNDARY:
   5059       return AssertionNode::AtNonBoundary(on_success);
   5060     case END_OF_INPUT:
   5061       return AssertionNode::AtEnd(on_success);
   5062     case END_OF_LINE: {
   5063       // Compile $ in multiline regexps as an alternation with a positive
   5064       // lookahead in one side and an end-of-input on the other side.
   5065       // We need two registers for the lookahead.
   5066       int stack_pointer_register = compiler->AllocateRegister();
   5067       int position_register = compiler->AllocateRegister();
   5068       // The ChoiceNode to distinguish between a newline and end-of-input.
   5069       ChoiceNode* result = new(zone) ChoiceNode(2, zone);
   5070       // Create a newline atom.
   5071       ZoneList<CharacterRange>* newline_ranges =
   5072           new(zone) ZoneList<CharacterRange>(3, zone);
   5073       CharacterRange::AddClassEscape('n', newline_ranges, zone);
   5074       RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
   5075       TextNode* newline_matcher = new(zone) TextNode(
   5076          newline_atom,
   5077          ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
   5078                                              position_register,
   5079                                              0,  // No captures inside.
   5080                                              -1,  // Ignored if no captures.
   5081                                              on_success));
   5082       // Create an end-of-input matcher.
   5083       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
   5084           stack_pointer_register,
   5085           position_register,
   5086           newline_matcher);
   5087       // Add the two alternatives to the ChoiceNode.
   5088       GuardedAlternative eol_alternative(end_of_line);
   5089       result->AddAlternative(eol_alternative);
   5090       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
   5091       result->AddAlternative(end_alternative);
   5092       return result;
   5093     }
   5094     default:
   5095       UNREACHABLE();
   5096   }
   5097   return on_success;
   5098 }
   5099 
   5100 
   5101 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
   5102                                         RegExpNode* on_success) {
   5103   return new(compiler->zone())
   5104       BackReferenceNode(RegExpCapture::StartRegister(index()),
   5105                         RegExpCapture::EndRegister(index()),
   5106                         on_success);
   5107 }
   5108 
   5109 
   5110 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
   5111                                 RegExpNode* on_success) {
   5112   return on_success;
   5113 }
   5114 
   5115 
   5116 RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
   5117                                     RegExpNode* on_success) {
   5118   int stack_pointer_register = compiler->AllocateRegister();
   5119   int position_register = compiler->AllocateRegister();
   5120 
   5121   const int registers_per_capture = 2;
   5122   const int register_of_first_capture = 2;
   5123   int register_count = capture_count_ * registers_per_capture;
   5124   int register_start =
   5125     register_of_first_capture + capture_from_ * registers_per_capture;
   5126 
   5127   RegExpNode* success;
   5128   if (is_positive()) {
   5129     RegExpNode* node = ActionNode::BeginSubmatch(
   5130         stack_pointer_register,
   5131         position_register,
   5132         body()->ToNode(
   5133             compiler,
   5134             ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
   5135                                                 position_register,
   5136                                                 register_count,
   5137                                                 register_start,
   5138                                                 on_success)));
   5139     return node;
   5140   } else {
   5141     // We use a ChoiceNode for a negative lookahead because it has most of
   5142     // the characteristics we need.  It has the body of the lookahead as its
   5143     // first alternative and the expression after the lookahead of the second
   5144     // alternative.  If the first alternative succeeds then the
   5145     // NegativeSubmatchSuccess will unwind the stack including everything the
   5146     // choice node set up and backtrack.  If the first alternative fails then
   5147     // the second alternative is tried, which is exactly the desired result
   5148     // for a negative lookahead.  The NegativeLookaheadChoiceNode is a special
   5149     // ChoiceNode that knows to ignore the first exit when calculating quick
   5150     // checks.
   5151     Zone* zone = compiler->zone();
   5152 
   5153     GuardedAlternative body_alt(
   5154         body()->ToNode(
   5155             compiler,
   5156             success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
   5157                                                         position_register,
   5158                                                         register_count,
   5159                                                         register_start,
   5160                                                         zone)));
   5161     ChoiceNode* choice_node =
   5162         new(zone) NegativeLookaheadChoiceNode(body_alt,
   5163                                               GuardedAlternative(on_success),
   5164                                               zone);
   5165     return ActionNode::BeginSubmatch(stack_pointer_register,
   5166                                      position_register,
   5167                                      choice_node);
   5168   }
   5169 }
   5170 
   5171 
   5172 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
   5173                                   RegExpNode* on_success) {
   5174   return ToNode(body(), index(), compiler, on_success);
   5175 }
   5176 
   5177 
   5178 RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
   5179                                   int index,
   5180                                   RegExpCompiler* compiler,
   5181                                   RegExpNode* on_success) {
   5182   int start_reg = RegExpCapture::StartRegister(index);
   5183   int end_reg = RegExpCapture::EndRegister(index);
   5184   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
   5185   RegExpNode* body_node = body->ToNode(compiler, store_end);
   5186   return ActionNode::StorePosition(start_reg, true, body_node);
   5187 }
   5188 
   5189 
   5190 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
   5191                                       RegExpNode* on_success) {
   5192   ZoneList<RegExpTree*>* children = nodes();
   5193   RegExpNode* current = on_success;
   5194   for (int i = children->length() - 1; i >= 0; i--) {
   5195     current = children->at(i)->ToNode(compiler, current);
   5196   }
   5197   return current;
   5198 }
   5199 
   5200 
   5201 static void AddClass(const int* elmv,
   5202                      int elmc,
   5203                      ZoneList<CharacterRange>* ranges,
   5204                      Zone* zone) {
   5205   elmc--;
   5206   DCHECK(elmv[elmc] == 0x10000);
   5207   for (int i = 0; i < elmc; i += 2) {
   5208     DCHECK(elmv[i] < elmv[i + 1]);
   5209     ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
   5210   }
   5211 }
   5212 
   5213 
   5214 static void AddClassNegated(const int *elmv,
   5215                             int elmc,
   5216                             ZoneList<CharacterRange>* ranges,
   5217                             Zone* zone) {
   5218   elmc--;
   5219   DCHECK(elmv[elmc] == 0x10000);
   5220   DCHECK(elmv[0] != 0x0000);
   5221   DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
   5222   uc16 last = 0x0000;
   5223   for (int i = 0; i < elmc; i += 2) {
   5224     DCHECK(last <= elmv[i] - 1);
   5225     DCHECK(elmv[i] < elmv[i + 1]);
   5226     ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
   5227     last = elmv[i + 1];
   5228   }
   5229   ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
   5230 }
   5231 
   5232 
   5233 void CharacterRange::AddClassEscape(uc16 type,
   5234                                     ZoneList<CharacterRange>* ranges,
   5235                                     Zone* zone) {
   5236   switch (type) {
   5237     case 's':
   5238       AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5239       break;
   5240     case 'S':
   5241       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5242       break;
   5243     case 'w':
   5244       AddClass(kWordRanges, kWordRangeCount, ranges, zone);
   5245       break;
   5246     case 'W':
   5247       AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
   5248       break;
   5249     case 'd':
   5250       AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
   5251       break;
   5252     case 'D':
   5253       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
   5254       break;
   5255     case '.':
   5256       AddClassNegated(kLineTerminatorRanges,
   5257                       kLineTerminatorRangeCount,
   5258                       ranges,
   5259                       zone);
   5260       break;
   5261     // This is not a character range as defined by the spec but a
   5262     // convenient shorthand for a character class that matches any
   5263     // character.
   5264     case '*':
   5265       ranges->Add(CharacterRange::Everything(), zone);
   5266       break;
   5267     // This is the set of characters matched by the $ and ^ symbols
   5268     // in multiline mode.
   5269     case 'n':
   5270       AddClass(kLineTerminatorRanges,
   5271                kLineTerminatorRangeCount,
   5272                ranges,
   5273                zone);
   5274       break;
   5275     default:
   5276       UNREACHABLE();
   5277   }
   5278 }
   5279 
   5280 
   5281 Vector<const int> CharacterRange::GetWordBounds() {
   5282   return Vector<const int>(kWordRanges, kWordRangeCount - 1);
   5283 }
   5284 
   5285 
   5286 class CharacterRangeSplitter {
   5287  public:
   5288   CharacterRangeSplitter(ZoneList<CharacterRange>** included,
   5289                          ZoneList<CharacterRange>** excluded,
   5290                          Zone* zone)
   5291       : included_(included),
   5292         excluded_(excluded),
   5293         zone_(zone) { }
   5294   void Call(uc16 from, DispatchTable::Entry entry);
   5295 
   5296   static const int kInBase = 0;
   5297   static const int kInOverlay = 1;
   5298 
   5299  private:
   5300   ZoneList<CharacterRange>** included_;
   5301   ZoneList<CharacterRange>** excluded_;
   5302   Zone* zone_;
   5303 };
   5304 
   5305 
   5306 void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
   5307   if (!entry.out_set()->Get(kInBase)) return;
   5308   ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
   5309     ? included_
   5310     : excluded_;
   5311   if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
   5312   (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
   5313 }
   5314 
   5315 
   5316 void CharacterRange::Split(ZoneList<CharacterRange>* base,
   5317                            Vector<const int> overlay,
   5318                            ZoneList<CharacterRange>** included,
   5319                            ZoneList<CharacterRange>** excluded,
   5320                            Zone* zone) {
   5321   DCHECK_EQ(NULL, *included);
   5322   DCHECK_EQ(NULL, *excluded);
   5323   DispatchTable table(zone);
   5324   for (int i = 0; i < base->length(); i++)
   5325     table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
   5326   for (int i = 0; i < overlay.length(); i += 2) {
   5327     table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
   5328                    CharacterRangeSplitter::kInOverlay, zone);
   5329   }
   5330   CharacterRangeSplitter callback(included, excluded, zone);
   5331   table.ForEach(&callback);
   5332 }
   5333 
   5334 
   5335 void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
   5336                                         bool is_one_byte, Zone* zone) {
   5337   Isolate* isolate = zone->isolate();
   5338   uc16 bottom = from();
   5339   uc16 top = to();
   5340   if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
   5341     if (bottom > String::kMaxOneByteCharCode) return;
   5342     if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
   5343   }
   5344   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5345   if (top == bottom) {
   5346     // If this is a singleton we just expand the one character.
   5347     int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
   5348     for (int i = 0; i < length; i++) {
   5349       uc32 chr = chars[i];
   5350       if (chr != bottom) {
   5351         ranges->Add(CharacterRange::Singleton(chars[i]), zone);
   5352       }
   5353     }
   5354   } else {
   5355     // If this is a range we expand the characters block by block,
   5356     // expanding contiguous subranges (blocks) one at a time.
   5357     // The approach is as follows.  For a given start character we
   5358     // look up the remainder of the block that contains it (represented
   5359     // by the end point), for instance we find 'z' if the character
   5360     // is 'c'.  A block is characterized by the property
   5361     // that all characters uncanonicalize in the same way, except that
   5362     // each entry in the result is incremented by the distance from the first
   5363     // element.  So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
   5364     // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
   5365     // Once we've found the end point we look up its uncanonicalization
   5366     // and produce a range for each element.  For instance for [c-f]
   5367     // we look up ['z', 'Z'] and produce [c-f] and [C-F].  We then only
   5368     // add a range if it is not already contained in the input, so [c-f]
   5369     // will be skipped but [C-F] will be added.  If this range is not
   5370     // completely contained in a block we do this for all the blocks
   5371     // covered by the range (handling characters that is not in a block
   5372     // as a "singleton block").
   5373     unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5374     int pos = bottom;
   5375     while (pos <= top) {
   5376       int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
   5377       uc16 block_end;
   5378       if (length == 0) {
   5379         block_end = pos;
   5380       } else {
   5381         DCHECK_EQ(1, length);
   5382         block_end = range[0];
   5383       }
   5384       int end = (block_end > top) ? top : block_end;
   5385       length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
   5386       for (int i = 0; i < length; i++) {
   5387         uc32 c = range[i];
   5388         uc16 range_from = c - (block_end - pos);
   5389         uc16 range_to = c - (block_end - end);
   5390         if (!(bottom <= range_from && range_to <= top)) {
   5391           ranges->Add(CharacterRange(range_from, range_to), zone);
   5392         }
   5393       }
   5394       pos = end + 1;
   5395     }
   5396   }
   5397 }
   5398 
   5399 
   5400 bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
   5401   DCHECK_NOT_NULL(ranges);
   5402   int n = ranges->length();
   5403   if (n <= 1) return true;
   5404   int max = ranges->at(0).to();
   5405   for (int i = 1; i < n; i++) {
   5406     CharacterRange next_range = ranges->at(i);
   5407     if (next_range.from() <= max + 1) return false;
   5408     max = next_range.to();
   5409   }
   5410   return true;
   5411 }
   5412 
   5413 
   5414 ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
   5415   if (ranges_ == NULL) {
   5416     ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
   5417     CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
   5418   }
   5419   return ranges_;
   5420 }
   5421 
   5422 
   5423 // Move a number of elements in a zonelist to another position
   5424 // in the same list. Handles overlapping source and target areas.
   5425 static void MoveRanges(ZoneList<CharacterRange>* list,
   5426                        int from,
   5427                        int to,
   5428                        int count) {
   5429   // Ranges are potentially overlapping.
   5430   if (from < to) {
   5431     for (int i = count - 1; i >= 0; i--) {
   5432       list->at(to + i) = list->at(from + i);
   5433     }
   5434   } else {
   5435     for (int i = 0; i < count; i++) {
   5436       list->at(to + i) = list->at(from + i);
   5437     }
   5438   }
   5439 }
   5440 
   5441 
   5442 static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
   5443                                       int count,
   5444                                       CharacterRange insert) {
   5445   // Inserts a range into list[0..count[, which must be sorted
   5446   // by from value and non-overlapping and non-adjacent, using at most
   5447   // list[0..count] for the result. Returns the number of resulting
   5448   // canonicalized ranges. Inserting a range may collapse existing ranges into
   5449   // fewer ranges, so the return value can be anything in the range 1..count+1.
   5450   uc16 from = insert.from();
   5451   uc16 to = insert.to();
   5452   int start_pos = 0;
   5453   int end_pos = count;
   5454   for (int i = count - 1; i >= 0; i--) {
   5455     CharacterRange current = list->at(i);
   5456     if (current.from() > to + 1) {
   5457       end_pos = i;
   5458     } else if (current.to() + 1 < from) {
   5459       start_pos = i + 1;
   5460       break;
   5461     }
   5462   }
   5463 
   5464   // Inserted range overlaps, or is adjacent to, ranges at positions
   5465   // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
   5466   // not affected by the insertion.
   5467   // If start_pos == end_pos, the range must be inserted before start_pos.
   5468   // if start_pos < end_pos, the entire range from start_pos to end_pos
   5469   // must be merged with the insert range.
   5470 
   5471   if (start_pos == end_pos) {
   5472     // Insert between existing ranges at position start_pos.
   5473     if (start_pos < count) {
   5474       MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
   5475     }
   5476     list->at(start_pos) = insert;
   5477     return count + 1;
   5478   }
   5479   if (start_pos + 1 == end_pos) {
   5480     // Replace single existing range at position start_pos.
   5481     CharacterRange to_replace = list->at(start_pos);
   5482     int new_from = Min(to_replace.from(), from);
   5483     int new_to = Max(to_replace.to(), to);
   5484     list->at(start_pos) = CharacterRange(new_from, new_to);
   5485     return count;
   5486   }
   5487   // Replace a number of existing ranges from start_pos to end_pos - 1.
   5488   // Move the remaining ranges down.
   5489 
   5490   int new_from = Min(list->at(start_pos).from(), from);
   5491   int new_to = Max(list->at(end_pos - 1).to(), to);
   5492   if (end_pos < count) {
   5493     MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
   5494   }
   5495   list->at(start_pos) = CharacterRange(new_from, new_to);
   5496   return count - (end_pos - start_pos) + 1;
   5497 }
   5498 
   5499 
   5500 void CharacterSet::Canonicalize() {
   5501   // Special/default classes are always considered canonical. The result
   5502   // of calling ranges() will be sorted.
   5503   if (ranges_ == NULL) return;
   5504   CharacterRange::Canonicalize(ranges_);
   5505 }
   5506 
   5507 
   5508 void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
   5509   if (character_ranges->length() <= 1) return;
   5510   // Check whether ranges are already canonical (increasing, non-overlapping,
   5511   // non-adjacent).
   5512   int n = character_ranges->length();
   5513   int max = character_ranges->at(0).to();
   5514   int i = 1;
   5515   while (i < n) {
   5516     CharacterRange current = character_ranges->at(i);
   5517     if (current.from() <= max + 1) {
   5518       break;
   5519     }
   5520     max = current.to();
   5521     i++;
   5522   }
   5523   // Canonical until the i'th range. If that's all of them, we are done.
   5524   if (i == n) return;
   5525 
   5526   // The ranges at index i and forward are not canonicalized. Make them so by
   5527   // doing the equivalent of insertion sort (inserting each into the previous
   5528   // list, in order).
   5529   // Notice that inserting a range can reduce the number of ranges in the
   5530   // result due to combining of adjacent and overlapping ranges.
   5531   int read = i;  // Range to insert.
   5532   int num_canonical = i;  // Length of canonicalized part of list.
   5533   do {
   5534     num_canonical = InsertRangeInCanonicalList(character_ranges,
   5535                                                num_canonical,
   5536                                                character_ranges->at(read));
   5537     read++;
   5538   } while (read < n);
   5539   character_ranges->Rewind(num_canonical);
   5540 
   5541   DCHECK(CharacterRange::IsCanonical(character_ranges));
   5542 }
   5543 
   5544 
   5545 void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
   5546                             ZoneList<CharacterRange>* negated_ranges,
   5547                             Zone* zone) {
   5548   DCHECK(CharacterRange::IsCanonical(ranges));
   5549   DCHECK_EQ(0, negated_ranges->length());
   5550   int range_count = ranges->length();
   5551   uc16 from = 0;
   5552   int i = 0;
   5553   if (range_count > 0 && ranges->at(0).from() == 0) {
   5554     from = ranges->at(0).to();
   5555     i = 1;
   5556   }
   5557   while (i < range_count) {
   5558     CharacterRange range = ranges->at(i);
   5559     negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
   5560     from = range.to();
   5561     i++;
   5562   }
   5563   if (from < String::kMaxUtf16CodeUnit) {
   5564     negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
   5565                         zone);
   5566   }
   5567 }
   5568 
   5569 
   5570 // -------------------------------------------------------------------
   5571 // Splay tree
   5572 
   5573 
   5574 OutSet* OutSet::Extend(unsigned value, Zone* zone) {
   5575   if (Get(value))
   5576     return this;
   5577   if (successors(zone) != NULL) {
   5578     for (int i = 0; i < successors(zone)->length(); i++) {
   5579       OutSet* successor = successors(zone)->at(i);
   5580       if (successor->Get(value))
   5581         return successor;
   5582     }
   5583   } else {
   5584     successors_ = new(zone) ZoneList<OutSet*>(2, zone);
   5585   }
   5586   OutSet* result = new(zone) OutSet(first_, remaining_);
   5587   result->Set(value, zone);
   5588   successors(zone)->Add(result, zone);
   5589   return result;
   5590 }
   5591 
   5592 
   5593 void OutSet::Set(unsigned value, Zone *zone) {
   5594   if (value < kFirstLimit) {
   5595     first_ |= (1 << value);
   5596   } else {
   5597     if (remaining_ == NULL)
   5598       remaining_ = new(zone) ZoneList<unsigned>(1, zone);
   5599     if (remaining_->is_empty() || !remaining_->Contains(value))
   5600       remaining_->Add(value, zone);
   5601   }
   5602 }
   5603 
   5604 
   5605 bool OutSet::Get(unsigned value) const {
   5606   if (value < kFirstLimit) {
   5607     return (first_ & (1 << value)) != 0;
   5608   } else if (remaining_ == NULL) {
   5609     return false;
   5610   } else {
   5611     return remaining_->Contains(value);
   5612   }
   5613 }
   5614 
   5615 
   5616 const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
   5617 
   5618 
   5619 void DispatchTable::AddRange(CharacterRange full_range, int value,
   5620                              Zone* zone) {
   5621   CharacterRange current = full_range;
   5622   if (tree()->is_empty()) {
   5623     // If this is the first range we just insert into the table.
   5624     ZoneSplayTree<Config>::Locator loc;
   5625     DCHECK_RESULT(tree()->Insert(current.from(), &loc));
   5626     loc.set_value(Entry(current.from(), current.to(),
   5627                         empty()->Extend(value, zone)));
   5628     return;
   5629   }
   5630   // First see if there is a range to the left of this one that
   5631   // overlaps.
   5632   ZoneSplayTree<Config>::Locator loc;
   5633   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
   5634     Entry* entry = &loc.value();
   5635     // If we've found a range that overlaps with this one, and it
   5636     // starts strictly to the left of this one, we have to fix it
   5637     // because the following code only handles ranges that start on
   5638     // or after the start point of the range we're adding.
   5639     if (entry->from() < current.from() && entry->to() >= current.from()) {
   5640       // Snap the overlapping range in half around the start point of
   5641       // the range we're adding.
   5642       CharacterRange left(entry->from(), current.from() - 1);
   5643       CharacterRange right(current.from(), entry->to());
   5644       // The left part of the overlapping range doesn't overlap.
   5645       // Truncate the whole entry to be just the left part.
   5646       entry->set_to(left.to());
   5647       // The right part is the one that overlaps.  We add this part
   5648       // to the map and let the next step deal with merging it with
   5649       // the range we're adding.
   5650       ZoneSplayTree<Config>::Locator loc;
   5651       DCHECK_RESULT(tree()->Insert(right.from(), &loc));
   5652       loc.set_value(Entry(right.from(),
   5653                           right.to(),
   5654                           entry->out_set()));
   5655     }
   5656   }
   5657   while (current.is_valid()) {
   5658     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
   5659         (loc.value().from() <= current.to()) &&
   5660         (loc.value().to() >= current.from())) {
   5661       Entry* entry = &loc.value();
   5662       // We have overlap.  If there is space between the start point of
   5663       // the range we're adding and where the overlapping range starts
   5664       // then we have to add a range covering just that space.
   5665       if (current.from() < entry->from()) {
   5666         ZoneSplayTree<Config>::Locator ins;
   5667         DCHECK_RESULT(tree()->Insert(current.from(), &ins));
   5668         ins.set_value(Entry(current.from(),
   5669                             entry->from() - 1,
   5670                             empty()->Extend(value, zone)));
   5671         current.set_from(entry->from());
   5672       }
   5673       DCHECK_EQ(current.from(), entry->from());
   5674       // If the overlapping range extends beyond the one we want to add
   5675       // we have to snap the right part off and add it separately.
   5676       if (entry->to() > current.to()) {
   5677         ZoneSplayTree<Config>::Locator ins;
   5678         DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins));
   5679         ins.set_value(Entry(current.to() + 1,
   5680                             entry->to(),
   5681                             entry->out_set()));
   5682         entry->set_to(current.to());
   5683       }
   5684       DCHECK(entry->to() <= current.to());
   5685       // The overlapping range is now completely contained by the range
   5686       // we're adding so we can just update it and move the start point
   5687       // of the range we're adding just past it.
   5688       entry->AddValue(value, zone);
   5689       // Bail out if the last interval ended at 0xFFFF since otherwise
   5690       // adding 1 will wrap around to 0.
   5691       if (entry->to() == String::kMaxUtf16CodeUnit)
   5692         break;
   5693       DCHECK(entry->to() + 1 > current.from());
   5694       current.set_from(entry->to() + 1);
   5695     } else {
   5696       // There is no overlap so we can just add the range
   5697       ZoneSplayTree<Config>::Locator ins;
   5698       DCHECK_RESULT(tree()->Insert(current.from(), &ins));
   5699       ins.set_value(Entry(current.from(),
   5700                           current.to(),
   5701                           empty()->Extend(value, zone)));
   5702       break;
   5703     }
   5704   }
   5705 }
   5706 
   5707 
   5708 OutSet* DispatchTable::Get(uc16 value) {
   5709   ZoneSplayTree<Config>::Locator loc;
   5710   if (!tree()->FindGreatestLessThan(value, &loc))
   5711     return empty();
   5712   Entry* entry = &loc.value();
   5713   if (value <= entry->to())
   5714     return entry->out_set();
   5715   else
   5716     return empty();
   5717 }
   5718 
   5719 
   5720 // -------------------------------------------------------------------
   5721 // Analysis
   5722 
   5723 
   5724 void Analysis::EnsureAnalyzed(RegExpNode* that) {
   5725   StackLimitCheck check(that->zone()->isolate());
   5726   if (check.HasOverflowed()) {
   5727     fail("Stack overflow");
   5728     return;
   5729   }
   5730   if (that->info()->been_analyzed || that->info()->being_analyzed)
   5731     return;
   5732   that->info()->being_analyzed = true;
   5733   that->Accept(this);
   5734   that->info()->being_analyzed = false;
   5735   that->info()->been_analyzed = true;
   5736 }
   5737 
   5738 
   5739 void Analysis::VisitEnd(EndNode* that) {
   5740   // nothing to do
   5741 }
   5742 
   5743 
   5744 void TextNode::CalculateOffsets() {
   5745   int element_count = elements()->length();
   5746   // Set up the offsets of the elements relative to the start.  This is a fixed
   5747   // quantity since a TextNode can only contain fixed-width things.
   5748   int cp_offset = 0;
   5749   for (int i = 0; i < element_count; i++) {
   5750     TextElement& elm = elements()->at(i);
   5751     elm.set_cp_offset(cp_offset);
   5752     cp_offset += elm.length();
   5753   }
   5754 }
   5755 
   5756 
   5757 void Analysis::VisitText(TextNode* that) {
   5758   if (ignore_case_) {
   5759     that->MakeCaseIndependent(is_one_byte_);
   5760   }
   5761   EnsureAnalyzed(that->on_success());
   5762   if (!has_failed()) {
   5763     that->CalculateOffsets();
   5764   }
   5765 }
   5766 
   5767 
   5768 void Analysis::VisitAction(ActionNode* that) {
   5769   RegExpNode* target = that->on_success();
   5770   EnsureAnalyzed(target);
   5771   if (!has_failed()) {
   5772     // If the next node is interested in what it follows then this node
   5773     // has to be interested too so it can pass the information on.
   5774     that->info()->AddFromFollowing(target->info());
   5775   }
   5776 }
   5777 
   5778 
   5779 void Analysis::VisitChoice(ChoiceNode* that) {
   5780   NodeInfo* info = that->info();
   5781   for (int i = 0; i < that->alternatives()->length(); i++) {
   5782     RegExpNode* node = that->alternatives()->at(i).node();
   5783     EnsureAnalyzed(node);
   5784     if (has_failed()) return;
   5785     // Anything the following nodes need to know has to be known by
   5786     // this node also, so it can pass it on.
   5787     info->AddFromFollowing(node->info());
   5788   }
   5789 }
   5790 
   5791 
   5792 void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
   5793   NodeInfo* info = that->info();
   5794   for (int i = 0; i < that->alternatives()->length(); i++) {
   5795     RegExpNode* node = that->alternatives()->at(i).node();
   5796     if (node != that->loop_node()) {
   5797       EnsureAnalyzed(node);
   5798       if (has_failed()) return;
   5799       info->AddFromFollowing(node->info());
   5800     }
   5801   }
   5802   // Check the loop last since it may need the value of this node
   5803   // to get a correct result.
   5804   EnsureAnalyzed(that->loop_node());
   5805   if (!has_failed()) {
   5806     info->AddFromFollowing(that->loop_node()->info());
   5807   }
   5808 }
   5809 
   5810 
   5811 void Analysis::VisitBackReference(BackReferenceNode* that) {
   5812   EnsureAnalyzed(that->on_success());
   5813 }
   5814 
   5815 
   5816 void Analysis::VisitAssertion(AssertionNode* that) {
   5817   EnsureAnalyzed(that->on_success());
   5818 }
   5819 
   5820 
   5821 void BackReferenceNode::FillInBMInfo(int offset,
   5822                                      int budget,
   5823                                      BoyerMooreLookahead* bm,
   5824                                      bool not_at_start) {
   5825   // Working out the set of characters that a backreference can match is too
   5826   // hard, so we just say that any character can match.
   5827   bm->SetRest(offset);
   5828   SaveBMInfo(bm, not_at_start, offset);
   5829 }
   5830 
   5831 
   5832 STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
   5833               RegExpMacroAssembler::kTableSize);
   5834 
   5835 
   5836 void ChoiceNode::FillInBMInfo(int offset,
   5837                               int budget,
   5838                               BoyerMooreLookahead* bm,
   5839                               bool not_at_start) {
   5840   ZoneList<GuardedAlternative>* alts = alternatives();
   5841   budget = (budget - 1) / alts->length();
   5842   for (int i = 0; i < alts->length(); i++) {
   5843     GuardedAlternative& alt = alts->at(i);
   5844     if (alt.guards() != NULL && alt.guards()->length() != 0) {
   5845       bm->SetRest(offset);  // Give up trying to fill in info.
   5846       SaveBMInfo(bm, not_at_start, offset);
   5847       return;
   5848     }
   5849     alt.node()->FillInBMInfo(offset, budget, bm, not_at_start);
   5850   }
   5851   SaveBMInfo(bm, not_at_start, offset);
   5852 }
   5853 
   5854 
   5855 void TextNode::FillInBMInfo(int initial_offset,
   5856                             int budget,
   5857                             BoyerMooreLookahead* bm,
   5858                             bool not_at_start) {
   5859   if (initial_offset >= bm->length()) return;
   5860   int offset = initial_offset;
   5861   int max_char = bm->max_char();
   5862   for (int i = 0; i < elements()->length(); i++) {
   5863     if (offset >= bm->length()) {
   5864       if (initial_offset == 0) set_bm_info(not_at_start, bm);
   5865       return;
   5866     }
   5867     TextElement text = elements()->at(i);
   5868     if (text.text_type() == TextElement::ATOM) {
   5869       RegExpAtom* atom = text.atom();
   5870       for (int j = 0; j < atom->length(); j++, offset++) {
   5871         if (offset >= bm->length()) {
   5872           if (initial_offset == 0) set_bm_info(not_at_start, bm);
   5873           return;
   5874         }
   5875         uc16 character = atom->data()[j];
   5876         if (bm->compiler()->ignore_case()) {
   5877           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5878           int length = GetCaseIndependentLetters(
   5879               Isolate::Current(),
   5880               character,
   5881               bm->max_char() == String::kMaxOneByteCharCode,
   5882               chars);
   5883           for (int j = 0; j < length; j++) {
   5884             bm->Set(offset, chars[j]);
   5885           }
   5886         } else {
   5887           if (character <= max_char) bm->Set(offset, character);
   5888         }
   5889       }
   5890     } else {
   5891       DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
   5892       RegExpCharacterClass* char_class = text.char_class();
   5893       ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
   5894       if (char_class->is_negated()) {
   5895         bm->SetAll(offset);
   5896       } else {
   5897         for (int k = 0; k < ranges->length(); k++) {
   5898           CharacterRange& range = ranges->at(k);
   5899           if (range.from() > max_char) continue;
   5900           int to = Min(max_char, static_cast<int>(range.to()));
   5901           bm->SetInterval(offset, Interval(range.from(), to));
   5902         }
   5903       }
   5904       offset++;
   5905     }
   5906   }
   5907   if (offset >= bm->length()) {
   5908     if (initial_offset == 0) set_bm_info(not_at_start, bm);
   5909     return;
   5910   }
   5911   on_success()->FillInBMInfo(offset,
   5912                              budget - 1,
   5913                              bm,
   5914                              true);  // Not at start after a text node.
   5915   if (initial_offset == 0) set_bm_info(not_at_start, bm);
   5916 }
   5917 
   5918 
   5919 // -------------------------------------------------------------------
   5920 // Dispatch table construction
   5921 
   5922 
   5923 void DispatchTableConstructor::VisitEnd(EndNode* that) {
   5924   AddRange(CharacterRange::Everything());
   5925 }
   5926 
   5927 
   5928 void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
   5929   node->set_being_calculated(true);
   5930   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
   5931   for (int i = 0; i < alternatives->length(); i++) {
   5932     set_choice_index(i);
   5933     alternatives->at(i).node()->Accept(this);
   5934   }
   5935   node->set_being_calculated(false);
   5936 }
   5937 
   5938 
   5939 class AddDispatchRange {
   5940  public:
   5941   explicit AddDispatchRange(DispatchTableConstructor* constructor)
   5942     : constructor_(constructor) { }
   5943   void Call(uc32 from, DispatchTable::Entry entry);
   5944  private:
   5945   DispatchTableConstructor* constructor_;
   5946 };
   5947 
   5948 
   5949 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
   5950   CharacterRange range(from, entry.to());
   5951   constructor_->AddRange(range);
   5952 }
   5953 
   5954 
   5955 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
   5956   if (node->being_calculated())
   5957     return;
   5958   DispatchTable* table = node->GetTable(ignore_case_);
   5959   AddDispatchRange adder(this);
   5960   table->ForEach(&adder);
   5961 }
   5962 
   5963 
   5964 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
   5965   // TODO(160): Find the node that we refer back to and propagate its start
   5966   // set back to here.  For now we just accept anything.
   5967   AddRange(CharacterRange::Everything());
   5968 }
   5969 
   5970 
   5971 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
   5972   RegExpNode* target = that->on_success();
   5973   target->Accept(this);
   5974 }
   5975 
   5976 
   5977 static int CompareRangeByFrom(const CharacterRange* a,
   5978                               const CharacterRange* b) {
   5979   return Compare<uc16>(a->from(), b->from());
   5980 }
   5981 
   5982 
   5983 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
   5984   ranges->Sort(CompareRangeByFrom);
   5985   uc16 last = 0;
   5986   for (int i = 0; i < ranges->length(); i++) {
   5987     CharacterRange range = ranges->at(i);
   5988     if (last < range.from())
   5989       AddRange(CharacterRange(last, range.from() - 1));
   5990     if (range.to() >= last) {
   5991       if (range.to() == String::kMaxUtf16CodeUnit) {
   5992         return;
   5993       } else {
   5994         last = range.to() + 1;
   5995       }
   5996     }
   5997   }
   5998   AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
   5999 }
   6000 
   6001 
   6002 void DispatchTableConstructor::VisitText(TextNode* that) {
   6003   TextElement elm = that->elements()->at(0);
   6004   switch (elm.text_type()) {
   6005     case TextElement::ATOM: {
   6006       uc16 c = elm.atom()->data()[0];
   6007       AddRange(CharacterRange(c, c));
   6008       break;
   6009     }
   6010     case TextElement::CHAR_CLASS: {
   6011       RegExpCharacterClass* tree = elm.char_class();
   6012       ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
   6013       if (tree->is_negated()) {
   6014         AddInverse(ranges);
   6015       } else {
   6016         for (int i = 0; i < ranges->length(); i++)
   6017           AddRange(ranges->at(i));
   6018       }
   6019       break;
   6020     }
   6021     default: {
   6022       UNIMPLEMENTED();
   6023     }
   6024   }
   6025 }
   6026 
   6027 
   6028 void DispatchTableConstructor::VisitAction(ActionNode* that) {
   6029   RegExpNode* target = that->on_success();
   6030   target->Accept(this);
   6031 }
   6032 
   6033 
   6034 RegExpEngine::CompilationResult RegExpEngine::Compile(
   6035     RegExpCompileData* data, bool ignore_case, bool is_global,
   6036     bool is_multiline, bool is_sticky, Handle<String> pattern,
   6037     Handle<String> sample_subject, bool is_one_byte, Zone* zone) {
   6038   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
   6039     return IrregexpRegExpTooBig(zone->isolate());
   6040   }
   6041   RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone);
   6042 
   6043   // Sample some characters from the middle of the string.
   6044   static const int kSampleSize = 128;
   6045 
   6046   sample_subject = String::Flatten(sample_subject);
   6047   int chars_sampled = 0;
   6048   int half_way = (sample_subject->length() - kSampleSize) / 2;
   6049   for (int i = Max(0, half_way);
   6050        i < sample_subject->length() && chars_sampled < kSampleSize;
   6051        i++, chars_sampled++) {
   6052     compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
   6053   }
   6054 
   6055   // Wrap the body of the regexp in capture #0.
   6056   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
   6057                                                     0,
   6058                                                     &compiler,
   6059                                                     compiler.accept());
   6060   RegExpNode* node = captured_body;
   6061   bool is_end_anchored = data->tree->IsAnchoredAtEnd();
   6062   bool is_start_anchored = data->tree->IsAnchoredAtStart();
   6063   int max_length = data->tree->max_match();
   6064   if (!is_start_anchored && !is_sticky) {
   6065     // Add a .*? at the beginning, outside the body capture, unless
   6066     // this expression is anchored at the beginning or sticky.
   6067     RegExpNode* loop_node =
   6068         RegExpQuantifier::ToNode(0,
   6069                                  RegExpTree::kInfinity,
   6070                                  false,
   6071                                  new(zone) RegExpCharacterClass('*'),
   6072                                  &compiler,
   6073                                  captured_body,
   6074                                  data->contains_anchor);
   6075 
   6076     if (data->contains_anchor) {
   6077       // Unroll loop once, to take care of the case that might start
   6078       // at the start of input.
   6079       ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
   6080       first_step_node->AddAlternative(GuardedAlternative(captured_body));
   6081       first_step_node->AddAlternative(GuardedAlternative(
   6082           new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
   6083       node = first_step_node;
   6084     } else {
   6085       node = loop_node;
   6086     }
   6087   }
   6088   if (is_one_byte) {
   6089     node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6090     // Do it again to propagate the new nodes to places where they were not
   6091     // put because they had not been calculated yet.
   6092     if (node != NULL) {
   6093       node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6094     }
   6095   }
   6096 
   6097   if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
   6098   data->node = node;
   6099   Analysis analysis(ignore_case, is_one_byte);
   6100   analysis.EnsureAnalyzed(node);
   6101   if (analysis.has_failed()) {
   6102     const char* error_message = analysis.error_message();
   6103     return CompilationResult(zone->isolate(), error_message);
   6104   }
   6105 
   6106   // Create the correct assembler for the architecture.
   6107 #ifndef V8_INTERPRETED_REGEXP
   6108   // Native regexp implementation.
   6109 
   6110   NativeRegExpMacroAssembler::Mode mode =
   6111       is_one_byte ? NativeRegExpMacroAssembler::LATIN1
   6112                   : NativeRegExpMacroAssembler::UC16;
   6113 
   6114 #if V8_TARGET_ARCH_IA32
   6115   RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2,
   6116                                            zone);
   6117 #elif V8_TARGET_ARCH_X64
   6118   RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2,
   6119                                           zone);
   6120 #elif V8_TARGET_ARCH_ARM
   6121   RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2,
   6122                                           zone);
   6123 #elif V8_TARGET_ARCH_ARM64
   6124   RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2,
   6125                                             zone);
   6126 #elif V8_TARGET_ARCH_MIPS
   6127   RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
   6128                                            zone);
   6129 #elif V8_TARGET_ARCH_MIPS64
   6130   RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
   6131                                            zone);
   6132 #elif V8_TARGET_ARCH_X87
   6133   RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2,
   6134                                           zone);
   6135 #else
   6136 #error "Unsupported architecture"
   6137 #endif
   6138 
   6139 #else  // V8_INTERPRETED_REGEXP
   6140   // Interpreted regexp implementation.
   6141   EmbeddedVector<byte, 1024> codes;
   6142   RegExpMacroAssemblerIrregexp macro_assembler(codes, zone);
   6143 #endif  // V8_INTERPRETED_REGEXP
   6144 
   6145   // Inserted here, instead of in Assembler, because it depends on information
   6146   // in the AST that isn't replicated in the Node structure.
   6147   static const int kMaxBacksearchLimit = 1024;
   6148   if (is_end_anchored &&
   6149       !is_start_anchored &&
   6150       max_length < kMaxBacksearchLimit) {
   6151     macro_assembler.SetCurrentPositionFromEnd(max_length);
   6152   }
   6153 
   6154   if (is_global) {
   6155     macro_assembler.set_global_mode(
   6156         (data->tree->min_match() > 0)
   6157             ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
   6158             : RegExpMacroAssembler::GLOBAL);
   6159   }
   6160 
   6161   return compiler.Assemble(&macro_assembler,
   6162                            node,
   6163                            data->capture_count,
   6164                            pattern);
   6165 }
   6166 
   6167 
   6168 }}  // namespace v8::internal
   6169