Home | History | Annotate | Download | only in fpu
      1 /*
      2  * QEMU float support
      3  *
      4  * Derived from SoftFloat.
      5  */
      6 
      7 /*============================================================================
      8 
      9 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
     10 Arithmetic Package, Release 2b.
     11 
     12 Written by John R. Hauser.  This work was made possible in part by the
     13 International Computer Science Institute, located at Suite 600, 1947 Center
     14 Street, Berkeley, California 94704.  Funding was partially provided by the
     15 National Science Foundation under grant MIP-9311980.  The original version
     16 of this code was written as part of a project to build a fixed-point vector
     17 processor in collaboration with the University of California at Berkeley,
     18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
     20 arithmetic/SoftFloat.html'.
     21 
     22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
     23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
     24 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
     25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
     26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
     27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
     28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
     29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
     30 
     31 Derivative works are acceptable, even for commercial purposes, so long as
     32 (1) the source code for the derivative work includes prominent notice that
     33 the work is derivative, and (2) the source code includes prominent notice with
     34 these four paragraphs for those parts of this code that are retained.
     35 
     36 =============================================================================*/
     37 
     38 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
     39 #define SNAN_BIT_IS_ONE		1
     40 #else
     41 #define SNAN_BIT_IS_ONE		0
     42 #endif
     43 
     44 #if defined(TARGET_XTENSA)
     45 /* Define for architectures which deviate from IEEE in not supporting
     46  * signaling NaNs (so all NaNs are treated as quiet).
     47  */
     48 #define NO_SIGNALING_NANS 1
     49 #endif
     50 
     51 /*----------------------------------------------------------------------------
     52 | The pattern for a default generated half-precision NaN.
     53 *----------------------------------------------------------------------------*/
     54 #if defined(TARGET_ARM)
     55 const float16 float16_default_nan = const_float16(0x7E00);
     56 #elif SNAN_BIT_IS_ONE
     57 const float16 float16_default_nan = const_float16(0x7DFF);
     58 #else
     59 const float16 float16_default_nan = const_float16(0xFE00);
     60 #endif
     61 
     62 /*----------------------------------------------------------------------------
     63 | The pattern for a default generated single-precision NaN.
     64 *----------------------------------------------------------------------------*/
     65 #if defined(TARGET_SPARC)
     66 const float32 float32_default_nan = const_float32(0x7FFFFFFF);
     67 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
     68       defined(TARGET_XTENSA)
     69 const float32 float32_default_nan = const_float32(0x7FC00000);
     70 #elif SNAN_BIT_IS_ONE
     71 const float32 float32_default_nan = const_float32(0x7FBFFFFF);
     72 #else
     73 const float32 float32_default_nan = const_float32(0xFFC00000);
     74 #endif
     75 
     76 /*----------------------------------------------------------------------------
     77 | The pattern for a default generated double-precision NaN.
     78 *----------------------------------------------------------------------------*/
     79 #if defined(TARGET_SPARC)
     80 const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
     81 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
     82 const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
     83 #elif SNAN_BIT_IS_ONE
     84 const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
     85 #else
     86 const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
     87 #endif
     88 
     89 /*----------------------------------------------------------------------------
     90 | The pattern for a default generated extended double-precision NaN.
     91 *----------------------------------------------------------------------------*/
     92 #if SNAN_BIT_IS_ONE
     93 #define floatx80_default_nan_high 0x7FFF
     94 #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
     95 #else
     96 #define floatx80_default_nan_high 0xFFFF
     97 #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
     98 #endif
     99 
    100 const floatx80 floatx80_default_nan
    101     = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
    102 
    103 /*----------------------------------------------------------------------------
    104 | The pattern for a default generated quadruple-precision NaN.  The `high' and
    105 | `low' values hold the most- and least-significant bits, respectively.
    106 *----------------------------------------------------------------------------*/
    107 #if SNAN_BIT_IS_ONE
    108 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
    109 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    110 #else
    111 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
    112 #define float128_default_nan_low  LIT64( 0x0000000000000000 )
    113 #endif
    114 
    115 const float128 float128_default_nan
    116     = make_float128_init(float128_default_nan_high, float128_default_nan_low);
    117 
    118 /*----------------------------------------------------------------------------
    119 | Raises the exceptions specified by `flags'.  Floating-point traps can be
    120 | defined here if desired.  It is currently not possible for such a trap
    121 | to substitute a result value.  If traps are not implemented, this routine
    122 | should be simply `float_exception_flags |= flags;'.
    123 *----------------------------------------------------------------------------*/
    124 
    125 void float_raise( int8 flags STATUS_PARAM )
    126 {
    127     STATUS(float_exception_flags) |= flags;
    128 }
    129 
    130 /*----------------------------------------------------------------------------
    131 | Internal canonical NaN format.
    132 *----------------------------------------------------------------------------*/
    133 typedef struct {
    134     flag sign;
    135     uint64_t high, low;
    136 } commonNaNT;
    137 
    138 #ifdef NO_SIGNALING_NANS
    139 int float16_is_quiet_nan(float16 a_)
    140 {
    141     return float16_is_any_nan(a_);
    142 }
    143 
    144 int float16_is_signaling_nan(float16 a_)
    145 {
    146     return 0;
    147 }
    148 #else
    149 /*----------------------------------------------------------------------------
    150 | Returns 1 if the half-precision floating-point value `a' is a quiet
    151 | NaN; otherwise returns 0.
    152 *----------------------------------------------------------------------------*/
    153 
    154 int float16_is_quiet_nan(float16 a_)
    155 {
    156     uint16_t a = float16_val(a_);
    157 #if SNAN_BIT_IS_ONE
    158     return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
    159 #else
    160     return ((a & ~0x8000) >= 0x7c80);
    161 #endif
    162 }
    163 
    164 /*----------------------------------------------------------------------------
    165 | Returns 1 if the half-precision floating-point value `a' is a signaling
    166 | NaN; otherwise returns 0.
    167 *----------------------------------------------------------------------------*/
    168 
    169 int float16_is_signaling_nan(float16 a_)
    170 {
    171     uint16_t a = float16_val(a_);
    172 #if SNAN_BIT_IS_ONE
    173     return ((a & ~0x8000) >= 0x7c80);
    174 #else
    175     return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
    176 #endif
    177 }
    178 #endif
    179 
    180 /*----------------------------------------------------------------------------
    181 | Returns a quiet NaN if the half-precision floating point value `a' is a
    182 | signaling NaN; otherwise returns `a'.
    183 *----------------------------------------------------------------------------*/
    184 float16 float16_maybe_silence_nan(float16 a_)
    185 {
    186     if (float16_is_signaling_nan(a_)) {
    187 #if SNAN_BIT_IS_ONE
    188 #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
    189         return float16_default_nan;
    190 #  else
    191 #    error Rules for silencing a signaling NaN are target-specific
    192 #  endif
    193 #else
    194         uint16_t a = float16_val(a_);
    195         a |= (1 << 9);
    196         return make_float16(a);
    197 #endif
    198     }
    199     return a_;
    200 }
    201 
    202 /*----------------------------------------------------------------------------
    203 | Returns the result of converting the half-precision floating-point NaN
    204 | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    205 | exception is raised.
    206 *----------------------------------------------------------------------------*/
    207 
    208 static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
    209 {
    210     commonNaNT z;
    211 
    212     if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
    213     z.sign = float16_val(a) >> 15;
    214     z.low = 0;
    215     z.high = ((uint64_t) float16_val(a))<<54;
    216     return z;
    217 }
    218 
    219 /*----------------------------------------------------------------------------
    220 | Returns the result of converting the canonical NaN `a' to the half-
    221 | precision floating-point format.
    222 *----------------------------------------------------------------------------*/
    223 
    224 static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
    225 {
    226     uint16_t mantissa = a.high>>54;
    227 
    228     if (STATUS(default_nan_mode)) {
    229         return float16_default_nan;
    230     }
    231 
    232     if (mantissa) {
    233         return make_float16(((((uint16_t) a.sign) << 15)
    234                              | (0x1F << 10) | mantissa));
    235     } else {
    236         return float16_default_nan;
    237     }
    238 }
    239 
    240 #ifdef NO_SIGNALING_NANS
    241 int float32_is_quiet_nan(float32 a_)
    242 {
    243     return float32_is_any_nan(a_);
    244 }
    245 
    246 int float32_is_signaling_nan(float32 a_)
    247 {
    248     return 0;
    249 }
    250 #else
    251 /*----------------------------------------------------------------------------
    252 | Returns 1 if the single-precision floating-point value `a' is a quiet
    253 | NaN; otherwise returns 0.
    254 *----------------------------------------------------------------------------*/
    255 
    256 int float32_is_quiet_nan( float32 a_ )
    257 {
    258     uint32_t a = float32_val(a_);
    259 #if SNAN_BIT_IS_ONE
    260     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    261 #else
    262     return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
    263 #endif
    264 }
    265 
    266 /*----------------------------------------------------------------------------
    267 | Returns 1 if the single-precision floating-point value `a' is a signaling
    268 | NaN; otherwise returns 0.
    269 *----------------------------------------------------------------------------*/
    270 
    271 int float32_is_signaling_nan( float32 a_ )
    272 {
    273     uint32_t a = float32_val(a_);
    274 #if SNAN_BIT_IS_ONE
    275     return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
    276 #else
    277     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    278 #endif
    279 }
    280 #endif
    281 
    282 /*----------------------------------------------------------------------------
    283 | Returns a quiet NaN if the single-precision floating point value `a' is a
    284 | signaling NaN; otherwise returns `a'.
    285 *----------------------------------------------------------------------------*/
    286 
    287 float32 float32_maybe_silence_nan( float32 a_ )
    288 {
    289     if (float32_is_signaling_nan(a_)) {
    290 #if SNAN_BIT_IS_ONE
    291 #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
    292         return float32_default_nan;
    293 #  else
    294 #    error Rules for silencing a signaling NaN are target-specific
    295 #  endif
    296 #else
    297         uint32_t a = float32_val(a_);
    298         a |= (1 << 22);
    299         return make_float32(a);
    300 #endif
    301     }
    302     return a_;
    303 }
    304 
    305 /*----------------------------------------------------------------------------
    306 | Returns the result of converting the single-precision floating-point NaN
    307 | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    308 | exception is raised.
    309 *----------------------------------------------------------------------------*/
    310 
    311 static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
    312 {
    313     commonNaNT z;
    314 
    315     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
    316     z.sign = float32_val(a)>>31;
    317     z.low = 0;
    318     z.high = ( (uint64_t) float32_val(a) )<<41;
    319     return z;
    320 }
    321 
    322 /*----------------------------------------------------------------------------
    323 | Returns the result of converting the canonical NaN `a' to the single-
    324 | precision floating-point format.
    325 *----------------------------------------------------------------------------*/
    326 
    327 static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
    328 {
    329     uint32_t mantissa = a.high>>41;
    330 
    331     if ( STATUS(default_nan_mode) ) {
    332         return float32_default_nan;
    333     }
    334 
    335     if ( mantissa )
    336         return make_float32(
    337             ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
    338     else
    339         return float32_default_nan;
    340 }
    341 
    342 /*----------------------------------------------------------------------------
    343 | Select which NaN to propagate for a two-input operation.
    344 | IEEE754 doesn't specify all the details of this, so the
    345 | algorithm is target-specific.
    346 | The routine is passed various bits of information about the
    347 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
    348 | Note that signalling NaNs are always squashed to quiet NaNs
    349 | by the caller, by calling floatXX_maybe_silence_nan() before
    350 | returning them.
    351 |
    352 | aIsLargerSignificand is only valid if both a and b are NaNs
    353 | of some kind, and is true if a has the larger significand,
    354 | or if both a and b have the same significand but a is
    355 | positive but b is negative. It is only needed for the x87
    356 | tie-break rule.
    357 *----------------------------------------------------------------------------*/
    358 
    359 #if defined(TARGET_ARM)
    360 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    361                     flag aIsLargerSignificand)
    362 {
    363     /* ARM mandated NaN propagation rules: take the first of:
    364      *  1. A if it is signaling
    365      *  2. B if it is signaling
    366      *  3. A (quiet)
    367      *  4. B (quiet)
    368      * A signaling NaN is always quietened before returning it.
    369      */
    370     if (aIsSNaN) {
    371         return 0;
    372     } else if (bIsSNaN) {
    373         return 1;
    374     } else if (aIsQNaN) {
    375         return 0;
    376     } else {
    377         return 1;
    378     }
    379 }
    380 #elif defined(TARGET_MIPS)
    381 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    382                     flag aIsLargerSignificand)
    383 {
    384     /* According to MIPS specifications, if one of the two operands is
    385      * a sNaN, a new qNaN has to be generated. This is done in
    386      * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
    387      * says: "When possible, this QNaN result is one of the operand QNaN
    388      * values." In practice it seems that most implementations choose
    389      * the first operand if both operands are qNaN. In short this gives
    390      * the following rules:
    391      *  1. A if it is signaling
    392      *  2. B if it is signaling
    393      *  3. A (quiet)
    394      *  4. B (quiet)
    395      * A signaling NaN is always silenced before returning it.
    396      */
    397     if (aIsSNaN) {
    398         return 0;
    399     } else if (bIsSNaN) {
    400         return 1;
    401     } else if (aIsQNaN) {
    402         return 0;
    403     } else {
    404         return 1;
    405     }
    406 }
    407 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
    408 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    409                    flag aIsLargerSignificand)
    410 {
    411     /* PowerPC propagation rules:
    412      *  1. A if it sNaN or qNaN
    413      *  2. B if it sNaN or qNaN
    414      * A signaling NaN is always silenced before returning it.
    415      */
    416     if (aIsSNaN || aIsQNaN) {
    417         return 0;
    418     } else {
    419         return 1;
    420     }
    421 }
    422 #else
    423 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    424                     flag aIsLargerSignificand)
    425 {
    426     /* This implements x87 NaN propagation rules:
    427      * SNaN + QNaN => return the QNaN
    428      * two SNaNs => return the one with the larger significand, silenced
    429      * two QNaNs => return the one with the larger significand
    430      * SNaN and a non-NaN => return the SNaN, silenced
    431      * QNaN and a non-NaN => return the QNaN
    432      *
    433      * If we get down to comparing significands and they are the same,
    434      * return the NaN with the positive sign bit (if any).
    435      */
    436     if (aIsSNaN) {
    437         if (bIsSNaN) {
    438             return aIsLargerSignificand ? 0 : 1;
    439         }
    440         return bIsQNaN ? 1 : 0;
    441     }
    442     else if (aIsQNaN) {
    443         if (bIsSNaN || !bIsQNaN)
    444             return 0;
    445         else {
    446             return aIsLargerSignificand ? 0 : 1;
    447         }
    448     } else {
    449         return 1;
    450     }
    451 }
    452 #endif
    453 
    454 /*----------------------------------------------------------------------------
    455 | Select which NaN to propagate for a three-input operation.
    456 | For the moment we assume that no CPU needs the 'larger significand'
    457 | information.
    458 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
    459 *----------------------------------------------------------------------------*/
    460 #if defined(TARGET_ARM)
    461 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    462                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
    463 {
    464     /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
    465      * the default NaN
    466      */
    467     if (infzero && cIsQNaN) {
    468         float_raise(float_flag_invalid STATUS_VAR);
    469         return 3;
    470     }
    471 
    472     /* This looks different from the ARM ARM pseudocode, because the ARM ARM
    473      * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
    474      */
    475     if (cIsSNaN) {
    476         return 2;
    477     } else if (aIsSNaN) {
    478         return 0;
    479     } else if (bIsSNaN) {
    480         return 1;
    481     } else if (cIsQNaN) {
    482         return 2;
    483     } else if (aIsQNaN) {
    484         return 0;
    485     } else {
    486         return 1;
    487     }
    488 }
    489 #elif defined(TARGET_MIPS)
    490 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    491                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
    492 {
    493     /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
    494      * the default NaN
    495      */
    496     if (infzero) {
    497         float_raise(float_flag_invalid STATUS_VAR);
    498         return 3;
    499     }
    500 
    501     /* Prefer sNaN over qNaN, in the a, b, c order. */
    502     if (aIsSNaN) {
    503         return 0;
    504     } else if (bIsSNaN) {
    505         return 1;
    506     } else if (cIsSNaN) {
    507         return 2;
    508     } else if (aIsQNaN) {
    509         return 0;
    510     } else if (bIsQNaN) {
    511         return 1;
    512     } else {
    513         return 2;
    514     }
    515 }
    516 #elif defined(TARGET_PPC)
    517 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    518                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
    519 {
    520     /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
    521      * to return an input NaN if we have one (ie c) rather than generating
    522      * a default NaN
    523      */
    524     if (infzero) {
    525         float_raise(float_flag_invalid STATUS_VAR);
    526         return 2;
    527     }
    528 
    529     /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
    530      * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
    531      */
    532     if (aIsSNaN || aIsQNaN) {
    533         return 0;
    534     } else if (cIsSNaN || cIsQNaN) {
    535         return 2;
    536     } else {
    537         return 1;
    538     }
    539 }
    540 #else
    541 /* A default implementation: prefer a to b to c.
    542  * This is unlikely to actually match any real implementation.
    543  */
    544 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
    545                          flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
    546 {
    547     if (aIsSNaN || aIsQNaN) {
    548         return 0;
    549     } else if (bIsSNaN || bIsQNaN) {
    550         return 1;
    551     } else {
    552         return 2;
    553     }
    554 }
    555 #endif
    556 
    557 /*----------------------------------------------------------------------------
    558 | Takes two single-precision floating-point values `a' and `b', one of which
    559 | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    560 | signaling NaN, the invalid exception is raised.
    561 *----------------------------------------------------------------------------*/
    562 
    563 static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
    564 {
    565     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    566     flag aIsLargerSignificand;
    567     uint32_t av, bv;
    568 
    569     aIsQuietNaN = float32_is_quiet_nan( a );
    570     aIsSignalingNaN = float32_is_signaling_nan( a );
    571     bIsQuietNaN = float32_is_quiet_nan( b );
    572     bIsSignalingNaN = float32_is_signaling_nan( b );
    573     av = float32_val(a);
    574     bv = float32_val(b);
    575 
    576     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
    577 
    578     if ( STATUS(default_nan_mode) )
    579         return float32_default_nan;
    580 
    581     if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
    582         aIsLargerSignificand = 0;
    583     } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
    584         aIsLargerSignificand = 1;
    585     } else {
    586         aIsLargerSignificand = (av < bv) ? 1 : 0;
    587     }
    588 
    589     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
    590                 aIsLargerSignificand)) {
    591         return float32_maybe_silence_nan(b);
    592     } else {
    593         return float32_maybe_silence_nan(a);
    594     }
    595 }
    596 
    597 /*----------------------------------------------------------------------------
    598 | Takes three single-precision floating-point values `a', `b' and `c', one of
    599 | which is a NaN, and returns the appropriate NaN result.  If any of  `a',
    600 | `b' or `c' is a signaling NaN, the invalid exception is raised.
    601 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
    602 | obviously c is a NaN, and whether to propagate c or some other NaN is
    603 | implementation defined).
    604 *----------------------------------------------------------------------------*/
    605 
    606 static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
    607                                          float32 c, flag infzero STATUS_PARAM)
    608 {
    609     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
    610         cIsQuietNaN, cIsSignalingNaN;
    611     int which;
    612 
    613     aIsQuietNaN = float32_is_quiet_nan(a);
    614     aIsSignalingNaN = float32_is_signaling_nan(a);
    615     bIsQuietNaN = float32_is_quiet_nan(b);
    616     bIsSignalingNaN = float32_is_signaling_nan(b);
    617     cIsQuietNaN = float32_is_quiet_nan(c);
    618     cIsSignalingNaN = float32_is_signaling_nan(c);
    619 
    620     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
    621         float_raise(float_flag_invalid STATUS_VAR);
    622     }
    623 
    624     which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
    625                           bIsQuietNaN, bIsSignalingNaN,
    626                           cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
    627 
    628     if (STATUS(default_nan_mode)) {
    629         /* Note that this check is after pickNaNMulAdd so that function
    630          * has an opportunity to set the Invalid flag.
    631          */
    632         return float32_default_nan;
    633     }
    634 
    635     switch (which) {
    636     case 0:
    637         return float32_maybe_silence_nan(a);
    638     case 1:
    639         return float32_maybe_silence_nan(b);
    640     case 2:
    641         return float32_maybe_silence_nan(c);
    642     case 3:
    643     default:
    644         return float32_default_nan;
    645     }
    646 }
    647 
    648 #ifdef NO_SIGNALING_NANS
    649 int float64_is_quiet_nan(float64 a_)
    650 {
    651     return float64_is_any_nan(a_);
    652 }
    653 
    654 int float64_is_signaling_nan(float64 a_)
    655 {
    656     return 0;
    657 }
    658 #else
    659 /*----------------------------------------------------------------------------
    660 | Returns 1 if the double-precision floating-point value `a' is a quiet
    661 | NaN; otherwise returns 0.
    662 *----------------------------------------------------------------------------*/
    663 
    664 int float64_is_quiet_nan( float64 a_ )
    665 {
    666     uint64_t a = float64_val(a_);
    667 #if SNAN_BIT_IS_ONE
    668     return
    669            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
    670         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
    671 #else
    672     return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
    673 #endif
    674 }
    675 
    676 /*----------------------------------------------------------------------------
    677 | Returns 1 if the double-precision floating-point value `a' is a signaling
    678 | NaN; otherwise returns 0.
    679 *----------------------------------------------------------------------------*/
    680 
    681 int float64_is_signaling_nan( float64 a_ )
    682 {
    683     uint64_t a = float64_val(a_);
    684 #if SNAN_BIT_IS_ONE
    685     return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
    686 #else
    687     return
    688            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
    689         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
    690 #endif
    691 }
    692 #endif
    693 
    694 /*----------------------------------------------------------------------------
    695 | Returns a quiet NaN if the double-precision floating point value `a' is a
    696 | signaling NaN; otherwise returns `a'.
    697 *----------------------------------------------------------------------------*/
    698 
    699 float64 float64_maybe_silence_nan( float64 a_ )
    700 {
    701     if (float64_is_signaling_nan(a_)) {
    702 #if SNAN_BIT_IS_ONE
    703 #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
    704         return float64_default_nan;
    705 #  else
    706 #    error Rules for silencing a signaling NaN are target-specific
    707 #  endif
    708 #else
    709         uint64_t a = float64_val(a_);
    710         a |= LIT64( 0x0008000000000000 );
    711         return make_float64(a);
    712 #endif
    713     }
    714     return a_;
    715 }
    716 
    717 /*----------------------------------------------------------------------------
    718 | Returns the result of converting the double-precision floating-point NaN
    719 | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    720 | exception is raised.
    721 *----------------------------------------------------------------------------*/
    722 
    723 static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
    724 {
    725     commonNaNT z;
    726 
    727     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
    728     z.sign = float64_val(a)>>63;
    729     z.low = 0;
    730     z.high = float64_val(a)<<12;
    731     return z;
    732 }
    733 
    734 /*----------------------------------------------------------------------------
    735 | Returns the result of converting the canonical NaN `a' to the double-
    736 | precision floating-point format.
    737 *----------------------------------------------------------------------------*/
    738 
    739 static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
    740 {
    741     uint64_t mantissa = a.high>>12;
    742 
    743     if ( STATUS(default_nan_mode) ) {
    744         return float64_default_nan;
    745     }
    746 
    747     if ( mantissa )
    748         return make_float64(
    749               ( ( (uint64_t) a.sign )<<63 )
    750             | LIT64( 0x7FF0000000000000 )
    751             | ( a.high>>12 ));
    752     else
    753         return float64_default_nan;
    754 }
    755 
    756 /*----------------------------------------------------------------------------
    757 | Takes two double-precision floating-point values `a' and `b', one of which
    758 | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    759 | signaling NaN, the invalid exception is raised.
    760 *----------------------------------------------------------------------------*/
    761 
    762 static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
    763 {
    764     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    765     flag aIsLargerSignificand;
    766     uint64_t av, bv;
    767 
    768     aIsQuietNaN = float64_is_quiet_nan( a );
    769     aIsSignalingNaN = float64_is_signaling_nan( a );
    770     bIsQuietNaN = float64_is_quiet_nan( b );
    771     bIsSignalingNaN = float64_is_signaling_nan( b );
    772     av = float64_val(a);
    773     bv = float64_val(b);
    774 
    775     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
    776 
    777     if ( STATUS(default_nan_mode) )
    778         return float64_default_nan;
    779 
    780     if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
    781         aIsLargerSignificand = 0;
    782     } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
    783         aIsLargerSignificand = 1;
    784     } else {
    785         aIsLargerSignificand = (av < bv) ? 1 : 0;
    786     }
    787 
    788     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
    789                 aIsLargerSignificand)) {
    790         return float64_maybe_silence_nan(b);
    791     } else {
    792         return float64_maybe_silence_nan(a);
    793     }
    794 }
    795 
    796 /*----------------------------------------------------------------------------
    797 | Takes three double-precision floating-point values `a', `b' and `c', one of
    798 | which is a NaN, and returns the appropriate NaN result.  If any of  `a',
    799 | `b' or `c' is a signaling NaN, the invalid exception is raised.
    800 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
    801 | obviously c is a NaN, and whether to propagate c or some other NaN is
    802 | implementation defined).
    803 *----------------------------------------------------------------------------*/
    804 
    805 static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
    806                                          float64 c, flag infzero STATUS_PARAM)
    807 {
    808     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
    809         cIsQuietNaN, cIsSignalingNaN;
    810     int which;
    811 
    812     aIsQuietNaN = float64_is_quiet_nan(a);
    813     aIsSignalingNaN = float64_is_signaling_nan(a);
    814     bIsQuietNaN = float64_is_quiet_nan(b);
    815     bIsSignalingNaN = float64_is_signaling_nan(b);
    816     cIsQuietNaN = float64_is_quiet_nan(c);
    817     cIsSignalingNaN = float64_is_signaling_nan(c);
    818 
    819     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
    820         float_raise(float_flag_invalid STATUS_VAR);
    821     }
    822 
    823     which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
    824                           bIsQuietNaN, bIsSignalingNaN,
    825                           cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
    826 
    827     if (STATUS(default_nan_mode)) {
    828         /* Note that this check is after pickNaNMulAdd so that function
    829          * has an opportunity to set the Invalid flag.
    830          */
    831         return float64_default_nan;
    832     }
    833 
    834     switch (which) {
    835     case 0:
    836         return float64_maybe_silence_nan(a);
    837     case 1:
    838         return float64_maybe_silence_nan(b);
    839     case 2:
    840         return float64_maybe_silence_nan(c);
    841     case 3:
    842     default:
    843         return float64_default_nan;
    844     }
    845 }
    846 
    847 #ifdef NO_SIGNALING_NANS
    848 int floatx80_is_quiet_nan(floatx80 a_)
    849 {
    850     return floatx80_is_any_nan(a_);
    851 }
    852 
    853 int floatx80_is_signaling_nan(floatx80 a_)
    854 {
    855     return 0;
    856 }
    857 #else
    858 /*----------------------------------------------------------------------------
    859 | Returns 1 if the extended double-precision floating-point value `a' is a
    860 | quiet NaN; otherwise returns 0. This slightly differs from the same
    861 | function for other types as floatx80 has an explicit bit.
    862 *----------------------------------------------------------------------------*/
    863 
    864 int floatx80_is_quiet_nan( floatx80 a )
    865 {
    866 #if SNAN_BIT_IS_ONE
    867     uint64_t aLow;
    868 
    869     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    870     return
    871            ( ( a.high & 0x7FFF ) == 0x7FFF )
    872         && (uint64_t) ( aLow<<1 )
    873         && ( a.low == aLow );
    874 #else
    875     return ( ( a.high & 0x7FFF ) == 0x7FFF )
    876         && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
    877 #endif
    878 }
    879 
    880 /*----------------------------------------------------------------------------
    881 | Returns 1 if the extended double-precision floating-point value `a' is a
    882 | signaling NaN; otherwise returns 0. This slightly differs from the same
    883 | function for other types as floatx80 has an explicit bit.
    884 *----------------------------------------------------------------------------*/
    885 
    886 int floatx80_is_signaling_nan( floatx80 a )
    887 {
    888 #if SNAN_BIT_IS_ONE
    889     return ( ( a.high & 0x7FFF ) == 0x7FFF )
    890         && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
    891 #else
    892     uint64_t aLow;
    893 
    894     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    895     return
    896            ( ( a.high & 0x7FFF ) == 0x7FFF )
    897         && (uint64_t) ( aLow<<1 )
    898         && ( a.low == aLow );
    899 #endif
    900 }
    901 #endif
    902 
    903 /*----------------------------------------------------------------------------
    904 | Returns a quiet NaN if the extended double-precision floating point value
    905 | `a' is a signaling NaN; otherwise returns `a'.
    906 *----------------------------------------------------------------------------*/
    907 
    908 floatx80 floatx80_maybe_silence_nan( floatx80 a )
    909 {
    910     if (floatx80_is_signaling_nan(a)) {
    911 #if SNAN_BIT_IS_ONE
    912 #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
    913         a.low = floatx80_default_nan_low;
    914         a.high = floatx80_default_nan_high;
    915 #  else
    916 #    error Rules for silencing a signaling NaN are target-specific
    917 #  endif
    918 #else
    919         a.low |= LIT64( 0xC000000000000000 );
    920         return a;
    921 #endif
    922     }
    923     return a;
    924 }
    925 
    926 /*----------------------------------------------------------------------------
    927 | Returns the result of converting the extended double-precision floating-
    928 | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    929 | invalid exception is raised.
    930 *----------------------------------------------------------------------------*/
    931 
    932 static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
    933 {
    934     commonNaNT z;
    935 
    936     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
    937     if ( a.low >> 63 ) {
    938         z.sign = a.high >> 15;
    939         z.low = 0;
    940         z.high = a.low << 1;
    941     } else {
    942         z.sign = floatx80_default_nan_high >> 15;
    943         z.low = 0;
    944         z.high = floatx80_default_nan_low << 1;
    945     }
    946     return z;
    947 }
    948 
    949 /*----------------------------------------------------------------------------
    950 | Returns the result of converting the canonical NaN `a' to the extended
    951 | double-precision floating-point format.
    952 *----------------------------------------------------------------------------*/
    953 
    954 static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
    955 {
    956     floatx80 z;
    957 
    958     if ( STATUS(default_nan_mode) ) {
    959         z.low = floatx80_default_nan_low;
    960         z.high = floatx80_default_nan_high;
    961         return z;
    962     }
    963 
    964     if (a.high >> 1) {
    965         z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
    966         z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
    967     } else {
    968         z.low = floatx80_default_nan_low;
    969         z.high = floatx80_default_nan_high;
    970     }
    971 
    972     return z;
    973 }
    974 
    975 /*----------------------------------------------------------------------------
    976 | Takes two extended double-precision floating-point values `a' and `b', one
    977 | of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    978 | `b' is a signaling NaN, the invalid exception is raised.
    979 *----------------------------------------------------------------------------*/
    980 
    981 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
    982 {
    983     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    984     flag aIsLargerSignificand;
    985 
    986     aIsQuietNaN = floatx80_is_quiet_nan( a );
    987     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    988     bIsQuietNaN = floatx80_is_quiet_nan( b );
    989     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    990 
    991     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
    992 
    993     if ( STATUS(default_nan_mode) ) {
    994         a.low = floatx80_default_nan_low;
    995         a.high = floatx80_default_nan_high;
    996         return a;
    997     }
    998 
    999     if (a.low < b.low) {
   1000         aIsLargerSignificand = 0;
   1001     } else if (b.low < a.low) {
   1002         aIsLargerSignificand = 1;
   1003     } else {
   1004         aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
   1005     }
   1006 
   1007     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
   1008                 aIsLargerSignificand)) {
   1009         return floatx80_maybe_silence_nan(b);
   1010     } else {
   1011         return floatx80_maybe_silence_nan(a);
   1012     }
   1013 }
   1014 
   1015 #ifdef NO_SIGNALING_NANS
   1016 int float128_is_quiet_nan(float128 a_)
   1017 {
   1018     return float128_is_any_nan(a_);
   1019 }
   1020 
   1021 int float128_is_signaling_nan(float128 a_)
   1022 {
   1023     return 0;
   1024 }
   1025 #else
   1026 /*----------------------------------------------------------------------------
   1027 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
   1028 | NaN; otherwise returns 0.
   1029 *----------------------------------------------------------------------------*/
   1030 
   1031 int float128_is_quiet_nan( float128 a )
   1032 {
   1033 #if SNAN_BIT_IS_ONE
   1034     return
   1035            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
   1036         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
   1037 #else
   1038     return
   1039            ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
   1040         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
   1041 #endif
   1042 }
   1043 
   1044 /*----------------------------------------------------------------------------
   1045 | Returns 1 if the quadruple-precision floating-point value `a' is a
   1046 | signaling NaN; otherwise returns 0.
   1047 *----------------------------------------------------------------------------*/
   1048 
   1049 int float128_is_signaling_nan( float128 a )
   1050 {
   1051 #if SNAN_BIT_IS_ONE
   1052     return
   1053            ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
   1054         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
   1055 #else
   1056     return
   1057            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
   1058         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
   1059 #endif
   1060 }
   1061 #endif
   1062 
   1063 /*----------------------------------------------------------------------------
   1064 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
   1065 | a signaling NaN; otherwise returns `a'.
   1066 *----------------------------------------------------------------------------*/
   1067 
   1068 float128 float128_maybe_silence_nan( float128 a )
   1069 {
   1070     if (float128_is_signaling_nan(a)) {
   1071 #if SNAN_BIT_IS_ONE
   1072 #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
   1073         a.low = float128_default_nan_low;
   1074         a.high = float128_default_nan_high;
   1075 #  else
   1076 #    error Rules for silencing a signaling NaN are target-specific
   1077 #  endif
   1078 #else
   1079         a.high |= LIT64( 0x0000800000000000 );
   1080         return a;
   1081 #endif
   1082     }
   1083     return a;
   1084 }
   1085 
   1086 /*----------------------------------------------------------------------------
   1087 | Returns the result of converting the quadruple-precision floating-point NaN
   1088 | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
   1089 | exception is raised.
   1090 *----------------------------------------------------------------------------*/
   1091 
   1092 static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
   1093 {
   1094     commonNaNT z;
   1095 
   1096     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
   1097     z.sign = a.high>>63;
   1098     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
   1099     return z;
   1100 }
   1101 
   1102 /*----------------------------------------------------------------------------
   1103 | Returns the result of converting the canonical NaN `a' to the quadruple-
   1104 | precision floating-point format.
   1105 *----------------------------------------------------------------------------*/
   1106 
   1107 static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
   1108 {
   1109     float128 z;
   1110 
   1111     if ( STATUS(default_nan_mode) ) {
   1112         z.low = float128_default_nan_low;
   1113         z.high = float128_default_nan_high;
   1114         return z;
   1115     }
   1116 
   1117     shift128Right( a.high, a.low, 16, &z.high, &z.low );
   1118     z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
   1119     return z;
   1120 }
   1121 
   1122 /*----------------------------------------------------------------------------
   1123 | Takes two quadruple-precision floating-point values `a' and `b', one of
   1124 | which is a NaN, and returns the appropriate NaN result.  If either `a' or
   1125 | `b' is a signaling NaN, the invalid exception is raised.
   1126 *----------------------------------------------------------------------------*/
   1127 
   1128 static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
   1129 {
   1130     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
   1131     flag aIsLargerSignificand;
   1132 
   1133     aIsQuietNaN = float128_is_quiet_nan( a );
   1134     aIsSignalingNaN = float128_is_signaling_nan( a );
   1135     bIsQuietNaN = float128_is_quiet_nan( b );
   1136     bIsSignalingNaN = float128_is_signaling_nan( b );
   1137 
   1138     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
   1139 
   1140     if ( STATUS(default_nan_mode) ) {
   1141         a.low = float128_default_nan_low;
   1142         a.high = float128_default_nan_high;
   1143         return a;
   1144     }
   1145 
   1146     if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
   1147         aIsLargerSignificand = 0;
   1148     } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
   1149         aIsLargerSignificand = 1;
   1150     } else {
   1151         aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
   1152     }
   1153 
   1154     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
   1155                 aIsLargerSignificand)) {
   1156         return float128_maybe_silence_nan(b);
   1157     } else {
   1158         return float128_maybe_silence_nan(a);
   1159     }
   1160 }
   1161 
   1162