Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGOpenMPRuntime.h"
     19 #include "CodeGenModule.h"
     20 #include "CodeGenPGO.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/Decl.h"
     24 #include "clang/AST/DeclCXX.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/CodeGen/CGFunctionInfo.h"
     28 #include "clang/Frontend/CodeGenOptions.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/MDBuilder.h"
     32 #include "llvm/IR/Operator.h"
     33 using namespace clang;
     34 using namespace CodeGen;
     35 
     36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
     37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
     38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
     39               CGBuilderInserterTy(this)), CapturedStmtInfo(nullptr),
     40       SanOpts(&CGM.getLangOpts().Sanitize), AutoreleaseResult(false), BlockInfo(nullptr),
     41       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
     42       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
     43       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
     44       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
     45       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
     46       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
     47       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
     48       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
     49       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
     50       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
     51       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
     52       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
     53       TerminateHandler(nullptr), TrapBB(nullptr) {
     54   if (!suppressNewContext)
     55     CGM.getCXXABI().getMangleContext().startNewFunction();
     56 
     57   llvm::FastMathFlags FMF;
     58   if (CGM.getLangOpts().FastMath)
     59     FMF.setUnsafeAlgebra();
     60   if (CGM.getLangOpts().FiniteMathOnly) {
     61     FMF.setNoNaNs();
     62     FMF.setNoInfs();
     63   }
     64   Builder.SetFastMathFlags(FMF);
     65 }
     66 
     67 CodeGenFunction::~CodeGenFunction() {
     68   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
     69 
     70   // If there are any unclaimed block infos, go ahead and destroy them
     71   // now.  This can happen if IR-gen gets clever and skips evaluating
     72   // something.
     73   if (FirstBlockInfo)
     74     destroyBlockInfos(FirstBlockInfo);
     75 
     76   if (getLangOpts().OpenMP) {
     77     CGM.getOpenMPRuntime().FunctionFinished(*this);
     78   }
     79 }
     80 
     81 
     82 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     83   return CGM.getTypes().ConvertTypeForMem(T);
     84 }
     85 
     86 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     87   return CGM.getTypes().ConvertType(T);
     88 }
     89 
     90 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
     91   type = type.getCanonicalType();
     92   while (true) {
     93     switch (type->getTypeClass()) {
     94 #define TYPE(name, parent)
     95 #define ABSTRACT_TYPE(name, parent)
     96 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     97 #define DEPENDENT_TYPE(name, parent) case Type::name:
     98 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     99 #include "clang/AST/TypeNodes.def"
    100       llvm_unreachable("non-canonical or dependent type in IR-generation");
    101 
    102     case Type::Auto:
    103       llvm_unreachable("undeduced auto type in IR-generation");
    104 
    105     // Various scalar types.
    106     case Type::Builtin:
    107     case Type::Pointer:
    108     case Type::BlockPointer:
    109     case Type::LValueReference:
    110     case Type::RValueReference:
    111     case Type::MemberPointer:
    112     case Type::Vector:
    113     case Type::ExtVector:
    114     case Type::FunctionProto:
    115     case Type::FunctionNoProto:
    116     case Type::Enum:
    117     case Type::ObjCObjectPointer:
    118       return TEK_Scalar;
    119 
    120     // Complexes.
    121     case Type::Complex:
    122       return TEK_Complex;
    123 
    124     // Arrays, records, and Objective-C objects.
    125     case Type::ConstantArray:
    126     case Type::IncompleteArray:
    127     case Type::VariableArray:
    128     case Type::Record:
    129     case Type::ObjCObject:
    130     case Type::ObjCInterface:
    131       return TEK_Aggregate;
    132 
    133     // We operate on atomic values according to their underlying type.
    134     case Type::Atomic:
    135       type = cast<AtomicType>(type)->getValueType();
    136       continue;
    137     }
    138     llvm_unreachable("unknown type kind!");
    139   }
    140 }
    141 
    142 void CodeGenFunction::EmitReturnBlock() {
    143   // For cleanliness, we try to avoid emitting the return block for
    144   // simple cases.
    145   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    146 
    147   if (CurBB) {
    148     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    149 
    150     // We have a valid insert point, reuse it if it is empty or there are no
    151     // explicit jumps to the return block.
    152     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    153       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    154       delete ReturnBlock.getBlock();
    155     } else
    156       EmitBlock(ReturnBlock.getBlock());
    157     return;
    158   }
    159 
    160   // Otherwise, if the return block is the target of a single direct
    161   // branch then we can just put the code in that block instead. This
    162   // cleans up functions which started with a unified return block.
    163   if (ReturnBlock.getBlock()->hasOneUse()) {
    164     llvm::BranchInst *BI =
    165       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
    166     if (BI && BI->isUnconditional() &&
    167         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    168       // Reset insertion point, including debug location, and delete the
    169       // branch.  This is really subtle and only works because the next change
    170       // in location will hit the caching in CGDebugInfo::EmitLocation and not
    171       // override this.
    172       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
    173       Builder.SetInsertPoint(BI->getParent());
    174       BI->eraseFromParent();
    175       delete ReturnBlock.getBlock();
    176       return;
    177     }
    178   }
    179 
    180   // FIXME: We are at an unreachable point, there is no reason to emit the block
    181   // unless it has uses. However, we still need a place to put the debug
    182   // region.end for now.
    183 
    184   EmitBlock(ReturnBlock.getBlock());
    185 }
    186 
    187 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    188   if (!BB) return;
    189   if (!BB->use_empty())
    190     return CGF.CurFn->getBasicBlockList().push_back(BB);
    191   delete BB;
    192 }
    193 
    194 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    195   assert(BreakContinueStack.empty() &&
    196          "mismatched push/pop in break/continue stack!");
    197 
    198   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
    199     && NumSimpleReturnExprs == NumReturnExprs
    200     && ReturnBlock.getBlock()->use_empty();
    201   // Usually the return expression is evaluated before the cleanup
    202   // code.  If the function contains only a simple return statement,
    203   // such as a constant, the location before the cleanup code becomes
    204   // the last useful breakpoint in the function, because the simple
    205   // return expression will be evaluated after the cleanup code. To be
    206   // safe, set the debug location for cleanup code to the location of
    207   // the return statement.  Otherwise the cleanup code should be at the
    208   // end of the function's lexical scope.
    209   //
    210   // If there are multiple branches to the return block, the branch
    211   // instructions will get the location of the return statements and
    212   // all will be fine.
    213   if (CGDebugInfo *DI = getDebugInfo()) {
    214     if (OnlySimpleReturnStmts)
    215       DI->EmitLocation(Builder, LastStopPoint);
    216     else
    217       DI->EmitLocation(Builder, EndLoc);
    218   }
    219 
    220   // Pop any cleanups that might have been associated with the
    221   // parameters.  Do this in whatever block we're currently in; it's
    222   // important to do this before we enter the return block or return
    223   // edges will be *really* confused.
    224   bool EmitRetDbgLoc = true;
    225   if (EHStack.stable_begin() != PrologueCleanupDepth) {
    226     PopCleanupBlocks(PrologueCleanupDepth);
    227 
    228     // Make sure the line table doesn't jump back into the body for
    229     // the ret after it's been at EndLoc.
    230     EmitRetDbgLoc = false;
    231 
    232     if (CGDebugInfo *DI = getDebugInfo())
    233       if (OnlySimpleReturnStmts)
    234         DI->EmitLocation(Builder, EndLoc);
    235   }
    236 
    237   // Emit function epilog (to return).
    238   EmitReturnBlock();
    239 
    240   if (ShouldInstrumentFunction())
    241     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    242 
    243   // Emit debug descriptor for function end.
    244   if (CGDebugInfo *DI = getDebugInfo()) {
    245     DI->EmitFunctionEnd(Builder);
    246   }
    247 
    248   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
    249   EmitEndEHSpec(CurCodeDecl);
    250 
    251   assert(EHStack.empty() &&
    252          "did not remove all scopes from cleanup stack!");
    253 
    254   // If someone did an indirect goto, emit the indirect goto block at the end of
    255   // the function.
    256   if (IndirectBranch) {
    257     EmitBlock(IndirectBranch->getParent());
    258     Builder.ClearInsertionPoint();
    259   }
    260 
    261   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    262   llvm::Instruction *Ptr = AllocaInsertPt;
    263   AllocaInsertPt = nullptr;
    264   Ptr->eraseFromParent();
    265 
    266   // If someone took the address of a label but never did an indirect goto, we
    267   // made a zero entry PHI node, which is illegal, zap it now.
    268   if (IndirectBranch) {
    269     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    270     if (PN->getNumIncomingValues() == 0) {
    271       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    272       PN->eraseFromParent();
    273     }
    274   }
    275 
    276   EmitIfUsed(*this, EHResumeBlock);
    277   EmitIfUsed(*this, TerminateLandingPad);
    278   EmitIfUsed(*this, TerminateHandler);
    279   EmitIfUsed(*this, UnreachableBlock);
    280 
    281   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    282     EmitDeclMetadata();
    283 
    284   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
    285            I = DeferredReplacements.begin(),
    286            E = DeferredReplacements.end();
    287        I != E; ++I) {
    288     I->first->replaceAllUsesWith(I->second);
    289     I->first->eraseFromParent();
    290   }
    291 }
    292 
    293 /// ShouldInstrumentFunction - Return true if the current function should be
    294 /// instrumented with __cyg_profile_func_* calls
    295 bool CodeGenFunction::ShouldInstrumentFunction() {
    296   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    297     return false;
    298   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    299     return false;
    300   return true;
    301 }
    302 
    303 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    304 /// instrumentation function with the current function and the call site, if
    305 /// function instrumentation is enabled.
    306 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    307   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    308   llvm::PointerType *PointerTy = Int8PtrTy;
    309   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    310   llvm::FunctionType *FunctionTy =
    311     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    312 
    313   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    314   llvm::CallInst *CallSite = Builder.CreateCall(
    315     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    316     llvm::ConstantInt::get(Int32Ty, 0),
    317     "callsite");
    318 
    319   llvm::Value *args[] = {
    320     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    321     CallSite
    322   };
    323 
    324   EmitNounwindRuntimeCall(F, args);
    325 }
    326 
    327 void CodeGenFunction::EmitMCountInstrumentation() {
    328   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    329 
    330   llvm::Constant *MCountFn =
    331     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
    332   EmitNounwindRuntimeCall(MCountFn);
    333 }
    334 
    335 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
    336 // information in the program executable. The argument information stored
    337 // includes the argument name, its type, the address and access qualifiers used.
    338 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
    339                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
    340                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
    341                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
    342   // Create MDNodes that represent the kernel arg metadata.
    343   // Each MDNode is a list in the form of "key", N number of values which is
    344   // the same number of values as their are kernel arguments.
    345 
    346   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
    347 
    348   // MDNode for the kernel argument address space qualifiers.
    349   SmallVector<llvm::Value*, 8> addressQuals;
    350   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
    351 
    352   // MDNode for the kernel argument access qualifiers (images only).
    353   SmallVector<llvm::Value*, 8> accessQuals;
    354   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
    355 
    356   // MDNode for the kernel argument type names.
    357   SmallVector<llvm::Value*, 8> argTypeNames;
    358   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
    359 
    360   // MDNode for the kernel argument type qualifiers.
    361   SmallVector<llvm::Value*, 8> argTypeQuals;
    362   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
    363 
    364   // MDNode for the kernel argument names.
    365   SmallVector<llvm::Value*, 8> argNames;
    366   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
    367 
    368   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    369     const ParmVarDecl *parm = FD->getParamDecl(i);
    370     QualType ty = parm->getType();
    371     std::string typeQuals;
    372 
    373     if (ty->isPointerType()) {
    374       QualType pointeeTy = ty->getPointeeType();
    375 
    376       // Get address qualifier.
    377       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
    378         pointeeTy.getAddressSpace())));
    379 
    380       // Get argument type name.
    381       std::string typeName =
    382           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
    383 
    384       // Turn "unsigned type" to "utype"
    385       std::string::size_type pos = typeName.find("unsigned");
    386       if (pos != std::string::npos)
    387         typeName.erase(pos+1, 8);
    388 
    389       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    390 
    391       // Get argument type qualifiers:
    392       if (ty.isRestrictQualified())
    393         typeQuals = "restrict";
    394       if (pointeeTy.isConstQualified() ||
    395           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
    396         typeQuals += typeQuals.empty() ? "const" : " const";
    397       if (pointeeTy.isVolatileQualified())
    398         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    399     } else {
    400       uint32_t AddrSpc = 0;
    401       if (ty->isImageType())
    402         AddrSpc =
    403           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
    404 
    405       addressQuals.push_back(Builder.getInt32(AddrSpc));
    406 
    407       // Get argument type name.
    408       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
    409 
    410       // Turn "unsigned type" to "utype"
    411       std::string::size_type pos = typeName.find("unsigned");
    412       if (pos != std::string::npos)
    413         typeName.erase(pos+1, 8);
    414 
    415       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    416 
    417       // Get argument type qualifiers:
    418       if (ty.isConstQualified())
    419         typeQuals = "const";
    420       if (ty.isVolatileQualified())
    421         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    422     }
    423 
    424     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
    425 
    426     // Get image access qualifier:
    427     if (ty->isImageType()) {
    428       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
    429       if (A && A->isWriteOnly())
    430         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
    431       else
    432         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
    433       // FIXME: what about read_write?
    434     } else
    435       accessQuals.push_back(llvm::MDString::get(Context, "none"));
    436 
    437     // Get argument name.
    438     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
    439   }
    440 
    441   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
    442   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
    443   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
    444   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
    445   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
    446 }
    447 
    448 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
    449                                                llvm::Function *Fn)
    450 {
    451   if (!FD->hasAttr<OpenCLKernelAttr>())
    452     return;
    453 
    454   llvm::LLVMContext &Context = getLLVMContext();
    455 
    456   SmallVector <llvm::Value*, 5> kernelMDArgs;
    457   kernelMDArgs.push_back(Fn);
    458 
    459   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    460     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
    461                          Builder, getContext());
    462 
    463   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
    464     QualType hintQTy = A->getTypeHint();
    465     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
    466     bool isSignedInteger =
    467         hintQTy->isSignedIntegerType() ||
    468         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
    469     llvm::Value *attrMDArgs[] = {
    470       llvm::MDString::get(Context, "vec_type_hint"),
    471       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
    472       llvm::ConstantInt::get(
    473           llvm::IntegerType::get(Context, 32),
    474           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
    475     };
    476     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    477   }
    478 
    479   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
    480     llvm::Value *attrMDArgs[] = {
    481       llvm::MDString::get(Context, "work_group_size_hint"),
    482       Builder.getInt32(A->getXDim()),
    483       Builder.getInt32(A->getYDim()),
    484       Builder.getInt32(A->getZDim())
    485     };
    486     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    487   }
    488 
    489   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
    490     llvm::Value *attrMDArgs[] = {
    491       llvm::MDString::get(Context, "reqd_work_group_size"),
    492       Builder.getInt32(A->getXDim()),
    493       Builder.getInt32(A->getYDim()),
    494       Builder.getInt32(A->getZDim())
    495     };
    496     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    497   }
    498 
    499   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
    500   llvm::NamedMDNode *OpenCLKernelMetadata =
    501     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    502   OpenCLKernelMetadata->addOperand(kernelMDNode);
    503 }
    504 
    505 /// Determine whether the function F ends with a return stmt.
    506 static bool endsWithReturn(const Decl* F) {
    507   const Stmt *Body = nullptr;
    508   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
    509     Body = FD->getBody();
    510   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
    511     Body = OMD->getBody();
    512 
    513   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
    514     auto LastStmt = CS->body_rbegin();
    515     if (LastStmt != CS->body_rend())
    516       return isa<ReturnStmt>(*LastStmt);
    517   }
    518   return false;
    519 }
    520 
    521 void CodeGenFunction::StartFunction(GlobalDecl GD,
    522                                     QualType RetTy,
    523                                     llvm::Function *Fn,
    524                                     const CGFunctionInfo &FnInfo,
    525                                     const FunctionArgList &Args,
    526                                     SourceLocation Loc,
    527                                     SourceLocation StartLoc) {
    528   const Decl *D = GD.getDecl();
    529 
    530   DidCallStackSave = false;
    531   CurCodeDecl = D;
    532   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
    533   FnRetTy = RetTy;
    534   CurFn = Fn;
    535   CurFnInfo = &FnInfo;
    536   assert(CurFn->isDeclaration() && "Function already has body?");
    537 
    538   if (CGM.getSanitizerBlacklist().isIn(*Fn))
    539     SanOpts = &SanitizerOptions::Disabled;
    540 
    541   // Pass inline keyword to optimizer if it appears explicitly on any
    542   // declaration. Also, in the case of -fno-inline attach NoInline
    543   // attribute to all function that are not marked AlwaysInline.
    544   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    545     if (!CGM.getCodeGenOpts().NoInline) {
    546       for (auto RI : FD->redecls())
    547         if (RI->isInlineSpecified()) {
    548           Fn->addFnAttr(llvm::Attribute::InlineHint);
    549           break;
    550         }
    551     } else if (!FD->hasAttr<AlwaysInlineAttr>())
    552       Fn->addFnAttr(llvm::Attribute::NoInline);
    553   }
    554 
    555   if (getLangOpts().OpenCL) {
    556     // Add metadata for a kernel function.
    557     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    558       EmitOpenCLKernelMetadata(FD, Fn);
    559   }
    560 
    561   // If we are checking function types, emit a function type signature as
    562   // prefix data.
    563   if (getLangOpts().CPlusPlus && SanOpts->Function) {
    564     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    565       if (llvm::Constant *PrefixSig =
    566               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
    567         llvm::Constant *FTRTTIConst =
    568             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
    569         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
    570         llvm::Constant *PrefixStructConst =
    571             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
    572         Fn->setPrefixData(PrefixStructConst);
    573       }
    574     }
    575   }
    576 
    577   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    578 
    579   // Create a marker to make it easy to insert allocas into the entryblock
    580   // later.  Don't create this with the builder, because we don't want it
    581   // folded.
    582   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    583   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    584   if (Builder.isNamePreserving())
    585     AllocaInsertPt->setName("allocapt");
    586 
    587   ReturnBlock = getJumpDestInCurrentScope("return");
    588 
    589   Builder.SetInsertPoint(EntryBB);
    590 
    591   // Emit subprogram debug descriptor.
    592   if (CGDebugInfo *DI = getDebugInfo()) {
    593     SmallVector<QualType, 16> ArgTypes;
    594     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    595 	 i != e; ++i) {
    596       ArgTypes.push_back((*i)->getType());
    597     }
    598 
    599     QualType FnType =
    600       getContext().getFunctionType(RetTy, ArgTypes,
    601                                    FunctionProtoType::ExtProtoInfo());
    602     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
    603   }
    604 
    605   if (ShouldInstrumentFunction())
    606     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    607 
    608   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    609     EmitMCountInstrumentation();
    610 
    611   if (RetTy->isVoidType()) {
    612     // Void type; nothing to return.
    613     ReturnValue = nullptr;
    614 
    615     // Count the implicit return.
    616     if (!endsWithReturn(D))
    617       ++NumReturnExprs;
    618   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    619              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    620     // Indirect aggregate return; emit returned value directly into sret slot.
    621     // This reduces code size, and affects correctness in C++.
    622     auto AI = CurFn->arg_begin();
    623     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
    624       ++AI;
    625     ReturnValue = AI;
    626   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
    627              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    628     // Load the sret pointer from the argument struct and return into that.
    629     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
    630     llvm::Function::arg_iterator EI = CurFn->arg_end();
    631     --EI;
    632     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
    633     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
    634   } else {
    635     ReturnValue = CreateIRTemp(RetTy, "retval");
    636 
    637     // Tell the epilog emitter to autorelease the result.  We do this
    638     // now so that various specialized functions can suppress it
    639     // during their IR-generation.
    640     if (getLangOpts().ObjCAutoRefCount &&
    641         !CurFnInfo->isReturnsRetained() &&
    642         RetTy->isObjCRetainableType())
    643       AutoreleaseResult = true;
    644   }
    645 
    646   EmitStartEHSpec(CurCodeDecl);
    647 
    648   PrologueCleanupDepth = EHStack.stable_begin();
    649   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    650 
    651   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    652     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    653     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    654     if (MD->getParent()->isLambda() &&
    655         MD->getOverloadedOperator() == OO_Call) {
    656       // We're in a lambda; figure out the captures.
    657       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    658                                         LambdaThisCaptureField);
    659       if (LambdaThisCaptureField) {
    660         // If this lambda captures this, load it.
    661         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
    662         CXXThisValue = EmitLoadOfLValue(ThisLValue,
    663                                         SourceLocation()).getScalarVal();
    664       }
    665     } else {
    666       // Not in a lambda; just use 'this' from the method.
    667       // FIXME: Should we generate a new load for each use of 'this'?  The
    668       // fast register allocator would be happier...
    669       CXXThisValue = CXXABIThisValue;
    670     }
    671   }
    672 
    673   // If any of the arguments have a variably modified type, make sure to
    674   // emit the type size.
    675   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    676        i != e; ++i) {
    677     const VarDecl *VD = *i;
    678 
    679     // Dig out the type as written from ParmVarDecls; it's unclear whether
    680     // the standard (C99 6.9.1p10) requires this, but we're following the
    681     // precedent set by gcc.
    682     QualType Ty;
    683     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
    684       Ty = PVD->getOriginalType();
    685     else
    686       Ty = VD->getType();
    687 
    688     if (Ty->isVariablyModifiedType())
    689       EmitVariablyModifiedType(Ty);
    690   }
    691   // Emit a location at the end of the prologue.
    692   if (CGDebugInfo *DI = getDebugInfo())
    693     DI->EmitLocation(Builder, StartLoc);
    694 }
    695 
    696 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
    697                                        const Stmt *Body) {
    698   RegionCounter Cnt = getPGORegionCounter(Body);
    699   Cnt.beginRegion(Builder);
    700   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
    701     EmitCompoundStmtWithoutScope(*S);
    702   else
    703     EmitStmt(Body);
    704 }
    705 
    706 /// When instrumenting to collect profile data, the counts for some blocks
    707 /// such as switch cases need to not include the fall-through counts, so
    708 /// emit a branch around the instrumentation code. When not instrumenting,
    709 /// this just calls EmitBlock().
    710 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
    711                                                RegionCounter &Cnt) {
    712   llvm::BasicBlock *SkipCountBB = nullptr;
    713   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
    714     // When instrumenting for profiling, the fallthrough to certain
    715     // statements needs to skip over the instrumentation code so that we
    716     // get an accurate count.
    717     SkipCountBB = createBasicBlock("skipcount");
    718     EmitBranch(SkipCountBB);
    719   }
    720   EmitBlock(BB);
    721   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
    722   if (SkipCountBB)
    723     EmitBlock(SkipCountBB);
    724 }
    725 
    726 /// Tries to mark the given function nounwind based on the
    727 /// non-existence of any throwing calls within it.  We believe this is
    728 /// lightweight enough to do at -O0.
    729 static void TryMarkNoThrow(llvm::Function *F) {
    730   // LLVM treats 'nounwind' on a function as part of the type, so we
    731   // can't do this on functions that can be overwritten.
    732   if (F->mayBeOverridden()) return;
    733 
    734   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    735     for (llvm::BasicBlock::iterator
    736            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    737       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    738         if (!Call->doesNotThrow())
    739           return;
    740       } else if (isa<llvm::ResumeInst>(&*BI)) {
    741         return;
    742       }
    743   F->setDoesNotThrow();
    744 }
    745 
    746 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
    747                                           const FunctionDecl *UnsizedDealloc) {
    748   // This is a weak discardable definition of the sized deallocation function.
    749   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
    750 
    751   // Call the unsized deallocation function and forward the first argument
    752   // unchanged.
    753   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
    754   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
    755 }
    756 
    757 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    758                                    const CGFunctionInfo &FnInfo) {
    759   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    760 
    761   // Check if we should generate debug info for this function.
    762   if (FD->hasAttr<NoDebugAttr>())
    763     DebugInfo = nullptr; // disable debug info indefinitely for this function
    764 
    765   FunctionArgList Args;
    766   QualType ResTy = FD->getReturnType();
    767 
    768   CurGD = GD;
    769   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
    770   if (MD && MD->isInstance()) {
    771     if (CGM.getCXXABI().HasThisReturn(GD))
    772       ResTy = MD->getThisType(getContext());
    773     CGM.getCXXABI().buildThisParam(*this, Args);
    774   }
    775 
    776   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    777     Args.push_back(FD->getParamDecl(i));
    778 
    779   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
    780     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
    781 
    782   SourceRange BodyRange;
    783   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    784   CurEHLocation = BodyRange.getEnd();
    785 
    786   // Use the location of the start of the function to determine where
    787   // the function definition is located. By default use the location
    788   // of the declaration as the location for the subprogram. A function
    789   // may lack a declaration in the source code if it is created by code
    790   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
    791   SourceLocation Loc = FD->getLocation();
    792 
    793   // If this is a function specialization then use the pattern body
    794   // as the location for the function.
    795   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
    796     if (SpecDecl->hasBody(SpecDecl))
    797       Loc = SpecDecl->getLocation();
    798 
    799   // Emit the standard function prologue.
    800   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
    801 
    802   // Generate the body of the function.
    803   PGO.assignRegionCounters(GD.getDecl(), CurFn);
    804   if (isa<CXXDestructorDecl>(FD))
    805     EmitDestructorBody(Args);
    806   else if (isa<CXXConstructorDecl>(FD))
    807     EmitConstructorBody(Args);
    808   else if (getLangOpts().CUDA &&
    809            !CGM.getCodeGenOpts().CUDAIsDevice &&
    810            FD->hasAttr<CUDAGlobalAttr>())
    811     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    812   else if (isa<CXXConversionDecl>(FD) &&
    813            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    814     // The lambda conversion to block pointer is special; the semantics can't be
    815     // expressed in the AST, so IRGen needs to special-case it.
    816     EmitLambdaToBlockPointerBody(Args);
    817   } else if (isa<CXXMethodDecl>(FD) &&
    818              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    819     // The lambda static invoker function is special, because it forwards or
    820     // clones the body of the function call operator (but is actually static).
    821     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    822   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
    823              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
    824               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
    825     // Implicit copy-assignment gets the same special treatment as implicit
    826     // copy-constructors.
    827     emitImplicitAssignmentOperatorBody(Args);
    828   } else if (Stmt *Body = FD->getBody()) {
    829     EmitFunctionBody(Args, Body);
    830   } else if (FunctionDecl *UnsizedDealloc =
    831                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
    832     // Global sized deallocation functions get an implicit weak definition if
    833     // they don't have an explicit definition.
    834     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
    835   } else
    836     llvm_unreachable("no definition for emitted function");
    837 
    838   // C++11 [stmt.return]p2:
    839   //   Flowing off the end of a function [...] results in undefined behavior in
    840   //   a value-returning function.
    841   // C11 6.9.1p12:
    842   //   If the '}' that terminates a function is reached, and the value of the
    843   //   function call is used by the caller, the behavior is undefined.
    844   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
    845       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
    846     if (SanOpts->Return)
    847       EmitCheck(Builder.getFalse(), "missing_return",
    848                 EmitCheckSourceLocation(FD->getLocation()),
    849                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
    850     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    851       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
    852     Builder.CreateUnreachable();
    853     Builder.ClearInsertionPoint();
    854   }
    855 
    856   // Emit the standard function epilogue.
    857   FinishFunction(BodyRange.getEnd());
    858 
    859   // If we haven't marked the function nothrow through other means, do
    860   // a quick pass now to see if we can.
    861   if (!CurFn->doesNotThrow())
    862     TryMarkNoThrow(CurFn);
    863 
    864   PGO.emitInstrumentationData();
    865   PGO.destroyRegionCounters();
    866 }
    867 
    868 /// ContainsLabel - Return true if the statement contains a label in it.  If
    869 /// this statement is not executed normally, it not containing a label means
    870 /// that we can just remove the code.
    871 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    872   // Null statement, not a label!
    873   if (!S) return false;
    874 
    875   // If this is a label, we have to emit the code, consider something like:
    876   // if (0) {  ...  foo:  bar(); }  goto foo;
    877   //
    878   // TODO: If anyone cared, we could track __label__'s, since we know that you
    879   // can't jump to one from outside their declared region.
    880   if (isa<LabelStmt>(S))
    881     return true;
    882 
    883   // If this is a case/default statement, and we haven't seen a switch, we have
    884   // to emit the code.
    885   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    886     return true;
    887 
    888   // If this is a switch statement, we want to ignore cases below it.
    889   if (isa<SwitchStmt>(S))
    890     IgnoreCaseStmts = true;
    891 
    892   // Scan subexpressions for verboten labels.
    893   for (Stmt::const_child_range I = S->children(); I; ++I)
    894     if (ContainsLabel(*I, IgnoreCaseStmts))
    895       return true;
    896 
    897   return false;
    898 }
    899 
    900 /// containsBreak - Return true if the statement contains a break out of it.
    901 /// If the statement (recursively) contains a switch or loop with a break
    902 /// inside of it, this is fine.
    903 bool CodeGenFunction::containsBreak(const Stmt *S) {
    904   // Null statement, not a label!
    905   if (!S) return false;
    906 
    907   // If this is a switch or loop that defines its own break scope, then we can
    908   // include it and anything inside of it.
    909   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    910       isa<ForStmt>(S))
    911     return false;
    912 
    913   if (isa<BreakStmt>(S))
    914     return true;
    915 
    916   // Scan subexpressions for verboten breaks.
    917   for (Stmt::const_child_range I = S->children(); I; ++I)
    918     if (containsBreak(*I))
    919       return true;
    920 
    921   return false;
    922 }
    923 
    924 
    925 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    926 /// to a constant, or if it does but contains a label, return false.  If it
    927 /// constant folds return true and set the boolean result in Result.
    928 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    929                                                    bool &ResultBool) {
    930   llvm::APSInt ResultInt;
    931   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    932     return false;
    933 
    934   ResultBool = ResultInt.getBoolValue();
    935   return true;
    936 }
    937 
    938 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    939 /// to a constant, or if it does but contains a label, return false.  If it
    940 /// constant folds return true and set the folded value.
    941 bool CodeGenFunction::
    942 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
    943   // FIXME: Rename and handle conversion of other evaluatable things
    944   // to bool.
    945   llvm::APSInt Int;
    946   if (!Cond->EvaluateAsInt(Int, getContext()))
    947     return false;  // Not foldable, not integer or not fully evaluatable.
    948 
    949   if (CodeGenFunction::ContainsLabel(Cond))
    950     return false;  // Contains a label.
    951 
    952   ResultInt = Int;
    953   return true;
    954 }
    955 
    956 
    957 
    958 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    959 /// statement) to the specified blocks.  Based on the condition, this might try
    960 /// to simplify the codegen of the conditional based on the branch.
    961 ///
    962 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    963                                            llvm::BasicBlock *TrueBlock,
    964                                            llvm::BasicBlock *FalseBlock,
    965                                            uint64_t TrueCount) {
    966   Cond = Cond->IgnoreParens();
    967 
    968   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    969 
    970     // Handle X && Y in a condition.
    971     if (CondBOp->getOpcode() == BO_LAnd) {
    972       RegionCounter Cnt = getPGORegionCounter(CondBOp);
    973 
    974       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    975       // folded if the case was simple enough.
    976       bool ConstantBool = false;
    977       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    978           ConstantBool) {
    979         // br(1 && X) -> br(X).
    980         Cnt.beginRegion(Builder);
    981         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
    982                                     TrueCount);
    983       }
    984 
    985       // If we have "X && 1", simplify the code to use an uncond branch.
    986       // "X && 0" would have been constant folded to 0.
    987       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    988           ConstantBool) {
    989         // br(X && 1) -> br(X).
    990         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
    991                                     TrueCount);
    992       }
    993 
    994       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    995       // want to jump to the FalseBlock.
    996       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    997       // The counter tells us how often we evaluate RHS, and all of TrueCount
    998       // can be propagated to that branch.
    999       uint64_t RHSCount = Cnt.getCount();
   1000 
   1001       ConditionalEvaluation eval(*this);
   1002       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
   1003       EmitBlock(LHSTrue);
   1004 
   1005       // Any temporaries created here are conditional.
   1006       Cnt.beginRegion(Builder);
   1007       eval.begin(*this);
   1008       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
   1009       eval.end(*this);
   1010 
   1011       return;
   1012     }
   1013 
   1014     if (CondBOp->getOpcode() == BO_LOr) {
   1015       RegionCounter Cnt = getPGORegionCounter(CondBOp);
   1016 
   1017       // If we have "0 || X", simplify the code.  "1 || X" would have constant
   1018       // folded if the case was simple enough.
   1019       bool ConstantBool = false;
   1020       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
   1021           !ConstantBool) {
   1022         // br(0 || X) -> br(X).
   1023         Cnt.beginRegion(Builder);
   1024         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
   1025                                     TrueCount);
   1026       }
   1027 
   1028       // If we have "X || 0", simplify the code to use an uncond branch.
   1029       // "X || 1" would have been constant folded to 1.
   1030       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
   1031           !ConstantBool) {
   1032         // br(X || 0) -> br(X).
   1033         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
   1034                                     TrueCount);
   1035       }
   1036 
   1037       // Emit the LHS as a conditional.  If the LHS conditional is true, we
   1038       // want to jump to the TrueBlock.
   1039       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
   1040       // We have the count for entry to the RHS and for the whole expression
   1041       // being true, so we can divy up True count between the short circuit and
   1042       // the RHS.
   1043       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
   1044       uint64_t RHSCount = TrueCount - LHSCount;
   1045 
   1046       ConditionalEvaluation eval(*this);
   1047       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
   1048       EmitBlock(LHSFalse);
   1049 
   1050       // Any temporaries created here are conditional.
   1051       Cnt.beginRegion(Builder);
   1052       eval.begin(*this);
   1053       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
   1054 
   1055       eval.end(*this);
   1056 
   1057       return;
   1058     }
   1059   }
   1060 
   1061   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
   1062     // br(!x, t, f) -> br(x, f, t)
   1063     if (CondUOp->getOpcode() == UO_LNot) {
   1064       // Negate the count.
   1065       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
   1066       // Negate the condition and swap the destination blocks.
   1067       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
   1068                                   FalseCount);
   1069     }
   1070   }
   1071 
   1072   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
   1073     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
   1074     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
   1075     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
   1076 
   1077     RegionCounter Cnt = getPGORegionCounter(CondOp);
   1078     ConditionalEvaluation cond(*this);
   1079     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
   1080 
   1081     // When computing PGO branch weights, we only know the overall count for
   1082     // the true block. This code is essentially doing tail duplication of the
   1083     // naive code-gen, introducing new edges for which counts are not
   1084     // available. Divide the counts proportionally between the LHS and RHS of
   1085     // the conditional operator.
   1086     uint64_t LHSScaledTrueCount = 0;
   1087     if (TrueCount) {
   1088       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
   1089       LHSScaledTrueCount = TrueCount * LHSRatio;
   1090     }
   1091 
   1092     cond.begin(*this);
   1093     EmitBlock(LHSBlock);
   1094     Cnt.beginRegion(Builder);
   1095     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
   1096                          LHSScaledTrueCount);
   1097     cond.end(*this);
   1098 
   1099     cond.begin(*this);
   1100     EmitBlock(RHSBlock);
   1101     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
   1102                          TrueCount - LHSScaledTrueCount);
   1103     cond.end(*this);
   1104 
   1105     return;
   1106   }
   1107 
   1108   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
   1109     // Conditional operator handling can give us a throw expression as a
   1110     // condition for a case like:
   1111     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
   1112     // Fold this to:
   1113     //   br(c, throw x, br(y, t, f))
   1114     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
   1115     return;
   1116   }
   1117 
   1118   // Create branch weights based on the number of times we get here and the
   1119   // number of times the condition should be true.
   1120   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
   1121   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
   1122                                                   CurrentCount - TrueCount);
   1123 
   1124   // Emit the code with the fully general case.
   1125   llvm::Value *CondV = EvaluateExprAsBool(Cond);
   1126   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
   1127 }
   1128 
   1129 /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1130 /// specified stmt yet.
   1131 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
   1132   CGM.ErrorUnsupported(S, Type);
   1133 }
   1134 
   1135 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
   1136 /// variable-length array whose elements have a non-zero bit-pattern.
   1137 ///
   1138 /// \param baseType the inner-most element type of the array
   1139 /// \param src - a char* pointing to the bit-pattern for a single
   1140 /// base element of the array
   1141 /// \param sizeInChars - the total size of the VLA, in chars
   1142 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
   1143                                llvm::Value *dest, llvm::Value *src,
   1144                                llvm::Value *sizeInChars) {
   1145   std::pair<CharUnits,CharUnits> baseSizeAndAlign
   1146     = CGF.getContext().getTypeInfoInChars(baseType);
   1147 
   1148   CGBuilderTy &Builder = CGF.Builder;
   1149 
   1150   llvm::Value *baseSizeInChars
   1151     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
   1152 
   1153   llvm::Type *i8p = Builder.getInt8PtrTy();
   1154 
   1155   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
   1156   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
   1157 
   1158   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
   1159   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
   1160   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
   1161 
   1162   // Make a loop over the VLA.  C99 guarantees that the VLA element
   1163   // count must be nonzero.
   1164   CGF.EmitBlock(loopBB);
   1165 
   1166   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
   1167   cur->addIncoming(begin, originBB);
   1168 
   1169   // memcpy the individual element bit-pattern.
   1170   Builder.CreateMemCpy(cur, src, baseSizeInChars,
   1171                        baseSizeAndAlign.second.getQuantity(),
   1172                        /*volatile*/ false);
   1173 
   1174   // Go to the next element.
   1175   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
   1176 
   1177   // Leave if that's the end of the VLA.
   1178   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
   1179   Builder.CreateCondBr(done, contBB, loopBB);
   1180   cur->addIncoming(next, loopBB);
   1181 
   1182   CGF.EmitBlock(contBB);
   1183 }
   1184 
   1185 void
   1186 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
   1187   // Ignore empty classes in C++.
   1188   if (getLangOpts().CPlusPlus) {
   1189     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1190       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
   1191         return;
   1192     }
   1193   }
   1194 
   1195   // Cast the dest ptr to the appropriate i8 pointer type.
   1196   unsigned DestAS =
   1197     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
   1198   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
   1199   if (DestPtr->getType() != BP)
   1200     DestPtr = Builder.CreateBitCast(DestPtr, BP);
   1201 
   1202   // Get size and alignment info for this aggregate.
   1203   std::pair<CharUnits, CharUnits> TypeInfo =
   1204     getContext().getTypeInfoInChars(Ty);
   1205   CharUnits Size = TypeInfo.first;
   1206   CharUnits Align = TypeInfo.second;
   1207 
   1208   llvm::Value *SizeVal;
   1209   const VariableArrayType *vla;
   1210 
   1211   // Don't bother emitting a zero-byte memset.
   1212   if (Size.isZero()) {
   1213     // But note that getTypeInfo returns 0 for a VLA.
   1214     if (const VariableArrayType *vlaType =
   1215           dyn_cast_or_null<VariableArrayType>(
   1216                                           getContext().getAsArrayType(Ty))) {
   1217       QualType eltType;
   1218       llvm::Value *numElts;
   1219       std::tie(numElts, eltType) = getVLASize(vlaType);
   1220 
   1221       SizeVal = numElts;
   1222       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
   1223       if (!eltSize.isOne())
   1224         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
   1225       vla = vlaType;
   1226     } else {
   1227       return;
   1228     }
   1229   } else {
   1230     SizeVal = CGM.getSize(Size);
   1231     vla = nullptr;
   1232   }
   1233 
   1234   // If the type contains a pointer to data member we can't memset it to zero.
   1235   // Instead, create a null constant and copy it to the destination.
   1236   // TODO: there are other patterns besides zero that we can usefully memset,
   1237   // like -1, which happens to be the pattern used by member-pointers.
   1238   if (!CGM.getTypes().isZeroInitializable(Ty)) {
   1239     // For a VLA, emit a single element, then splat that over the VLA.
   1240     if (vla) Ty = getContext().getBaseElementType(vla);
   1241 
   1242     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
   1243 
   1244     llvm::GlobalVariable *NullVariable =
   1245       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
   1246                                /*isConstant=*/true,
   1247                                llvm::GlobalVariable::PrivateLinkage,
   1248                                NullConstant, Twine());
   1249     llvm::Value *SrcPtr =
   1250       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
   1251 
   1252     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
   1253 
   1254     // Get and call the appropriate llvm.memcpy overload.
   1255     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
   1256     return;
   1257   }
   1258 
   1259   // Otherwise, just memset the whole thing to zero.  This is legal
   1260   // because in LLVM, all default initializers (other than the ones we just
   1261   // handled above) are guaranteed to have a bit pattern of all zeros.
   1262   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
   1263                        Align.getQuantity(), false);
   1264 }
   1265 
   1266 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
   1267   // Make sure that there is a block for the indirect goto.
   1268   if (!IndirectBranch)
   1269     GetIndirectGotoBlock();
   1270 
   1271   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
   1272 
   1273   // Make sure the indirect branch includes all of the address-taken blocks.
   1274   IndirectBranch->addDestination(BB);
   1275   return llvm::BlockAddress::get(CurFn, BB);
   1276 }
   1277 
   1278 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
   1279   // If we already made the indirect branch for indirect goto, return its block.
   1280   if (IndirectBranch) return IndirectBranch->getParent();
   1281 
   1282   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
   1283 
   1284   // Create the PHI node that indirect gotos will add entries to.
   1285   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
   1286                                               "indirect.goto.dest");
   1287 
   1288   // Create the indirect branch instruction.
   1289   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
   1290   return IndirectBranch->getParent();
   1291 }
   1292 
   1293 /// Computes the length of an array in elements, as well as the base
   1294 /// element type and a properly-typed first element pointer.
   1295 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
   1296                                               QualType &baseType,
   1297                                               llvm::Value *&addr) {
   1298   const ArrayType *arrayType = origArrayType;
   1299 
   1300   // If it's a VLA, we have to load the stored size.  Note that
   1301   // this is the size of the VLA in bytes, not its size in elements.
   1302   llvm::Value *numVLAElements = nullptr;
   1303   if (isa<VariableArrayType>(arrayType)) {
   1304     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
   1305 
   1306     // Walk into all VLAs.  This doesn't require changes to addr,
   1307     // which has type T* where T is the first non-VLA element type.
   1308     do {
   1309       QualType elementType = arrayType->getElementType();
   1310       arrayType = getContext().getAsArrayType(elementType);
   1311 
   1312       // If we only have VLA components, 'addr' requires no adjustment.
   1313       if (!arrayType) {
   1314         baseType = elementType;
   1315         return numVLAElements;
   1316       }
   1317     } while (isa<VariableArrayType>(arrayType));
   1318 
   1319     // We get out here only if we find a constant array type
   1320     // inside the VLA.
   1321   }
   1322 
   1323   // We have some number of constant-length arrays, so addr should
   1324   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
   1325   // down to the first element of addr.
   1326   SmallVector<llvm::Value*, 8> gepIndices;
   1327 
   1328   // GEP down to the array type.
   1329   llvm::ConstantInt *zero = Builder.getInt32(0);
   1330   gepIndices.push_back(zero);
   1331 
   1332   uint64_t countFromCLAs = 1;
   1333   QualType eltType;
   1334 
   1335   llvm::ArrayType *llvmArrayType =
   1336     dyn_cast<llvm::ArrayType>(
   1337       cast<llvm::PointerType>(addr->getType())->getElementType());
   1338   while (llvmArrayType) {
   1339     assert(isa<ConstantArrayType>(arrayType));
   1340     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
   1341              == llvmArrayType->getNumElements());
   1342 
   1343     gepIndices.push_back(zero);
   1344     countFromCLAs *= llvmArrayType->getNumElements();
   1345     eltType = arrayType->getElementType();
   1346 
   1347     llvmArrayType =
   1348       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
   1349     arrayType = getContext().getAsArrayType(arrayType->getElementType());
   1350     assert((!llvmArrayType || arrayType) &&
   1351            "LLVM and Clang types are out-of-synch");
   1352   }
   1353 
   1354   if (arrayType) {
   1355     // From this point onwards, the Clang array type has been emitted
   1356     // as some other type (probably a packed struct). Compute the array
   1357     // size, and just emit the 'begin' expression as a bitcast.
   1358     while (arrayType) {
   1359       countFromCLAs *=
   1360           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
   1361       eltType = arrayType->getElementType();
   1362       arrayType = getContext().getAsArrayType(eltType);
   1363     }
   1364 
   1365     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
   1366     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
   1367     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
   1368   } else {
   1369     // Create the actual GEP.
   1370     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
   1371   }
   1372 
   1373   baseType = eltType;
   1374 
   1375   llvm::Value *numElements
   1376     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
   1377 
   1378   // If we had any VLA dimensions, factor them in.
   1379   if (numVLAElements)
   1380     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
   1381 
   1382   return numElements;
   1383 }
   1384 
   1385 std::pair<llvm::Value*, QualType>
   1386 CodeGenFunction::getVLASize(QualType type) {
   1387   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
   1388   assert(vla && "type was not a variable array type!");
   1389   return getVLASize(vla);
   1390 }
   1391 
   1392 std::pair<llvm::Value*, QualType>
   1393 CodeGenFunction::getVLASize(const VariableArrayType *type) {
   1394   // The number of elements so far; always size_t.
   1395   llvm::Value *numElements = nullptr;
   1396 
   1397   QualType elementType;
   1398   do {
   1399     elementType = type->getElementType();
   1400     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
   1401     assert(vlaSize && "no size for VLA!");
   1402     assert(vlaSize->getType() == SizeTy);
   1403 
   1404     if (!numElements) {
   1405       numElements = vlaSize;
   1406     } else {
   1407       // It's undefined behavior if this wraps around, so mark it that way.
   1408       // FIXME: Teach -fsanitize=undefined to trap this.
   1409       numElements = Builder.CreateNUWMul(numElements, vlaSize);
   1410     }
   1411   } while ((type = getContext().getAsVariableArrayType(elementType)));
   1412 
   1413   return std::pair<llvm::Value*,QualType>(numElements, elementType);
   1414 }
   1415 
   1416 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
   1417   assert(type->isVariablyModifiedType() &&
   1418          "Must pass variably modified type to EmitVLASizes!");
   1419 
   1420   EnsureInsertPoint();
   1421 
   1422   // We're going to walk down into the type and look for VLA
   1423   // expressions.
   1424   do {
   1425     assert(type->isVariablyModifiedType());
   1426 
   1427     const Type *ty = type.getTypePtr();
   1428     switch (ty->getTypeClass()) {
   1429 
   1430 #define TYPE(Class, Base)
   1431 #define ABSTRACT_TYPE(Class, Base)
   1432 #define NON_CANONICAL_TYPE(Class, Base)
   1433 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1434 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   1435 #include "clang/AST/TypeNodes.def"
   1436       llvm_unreachable("unexpected dependent type!");
   1437 
   1438     // These types are never variably-modified.
   1439     case Type::Builtin:
   1440     case Type::Complex:
   1441     case Type::Vector:
   1442     case Type::ExtVector:
   1443     case Type::Record:
   1444     case Type::Enum:
   1445     case Type::Elaborated:
   1446     case Type::TemplateSpecialization:
   1447     case Type::ObjCObject:
   1448     case Type::ObjCInterface:
   1449     case Type::ObjCObjectPointer:
   1450       llvm_unreachable("type class is never variably-modified!");
   1451 
   1452     case Type::Adjusted:
   1453       type = cast<AdjustedType>(ty)->getAdjustedType();
   1454       break;
   1455 
   1456     case Type::Decayed:
   1457       type = cast<DecayedType>(ty)->getPointeeType();
   1458       break;
   1459 
   1460     case Type::Pointer:
   1461       type = cast<PointerType>(ty)->getPointeeType();
   1462       break;
   1463 
   1464     case Type::BlockPointer:
   1465       type = cast<BlockPointerType>(ty)->getPointeeType();
   1466       break;
   1467 
   1468     case Type::LValueReference:
   1469     case Type::RValueReference:
   1470       type = cast<ReferenceType>(ty)->getPointeeType();
   1471       break;
   1472 
   1473     case Type::MemberPointer:
   1474       type = cast<MemberPointerType>(ty)->getPointeeType();
   1475       break;
   1476 
   1477     case Type::ConstantArray:
   1478     case Type::IncompleteArray:
   1479       // Losing element qualification here is fine.
   1480       type = cast<ArrayType>(ty)->getElementType();
   1481       break;
   1482 
   1483     case Type::VariableArray: {
   1484       // Losing element qualification here is fine.
   1485       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1486 
   1487       // Unknown size indication requires no size computation.
   1488       // Otherwise, evaluate and record it.
   1489       if (const Expr *size = vat->getSizeExpr()) {
   1490         // It's possible that we might have emitted this already,
   1491         // e.g. with a typedef and a pointer to it.
   1492         llvm::Value *&entry = VLASizeMap[size];
   1493         if (!entry) {
   1494           llvm::Value *Size = EmitScalarExpr(size);
   1495 
   1496           // C11 6.7.6.2p5:
   1497           //   If the size is an expression that is not an integer constant
   1498           //   expression [...] each time it is evaluated it shall have a value
   1499           //   greater than zero.
   1500           if (SanOpts->VLABound &&
   1501               size->getType()->isSignedIntegerType()) {
   1502             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
   1503             llvm::Constant *StaticArgs[] = {
   1504               EmitCheckSourceLocation(size->getLocStart()),
   1505               EmitCheckTypeDescriptor(size->getType())
   1506             };
   1507             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
   1508                       "vla_bound_not_positive", StaticArgs, Size,
   1509                       CRK_Recoverable);
   1510           }
   1511 
   1512           // Always zexting here would be wrong if it weren't
   1513           // undefined behavior to have a negative bound.
   1514           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
   1515         }
   1516       }
   1517       type = vat->getElementType();
   1518       break;
   1519     }
   1520 
   1521     case Type::FunctionProto:
   1522     case Type::FunctionNoProto:
   1523       type = cast<FunctionType>(ty)->getReturnType();
   1524       break;
   1525 
   1526     case Type::Paren:
   1527     case Type::TypeOf:
   1528     case Type::UnaryTransform:
   1529     case Type::Attributed:
   1530     case Type::SubstTemplateTypeParm:
   1531     case Type::PackExpansion:
   1532       // Keep walking after single level desugaring.
   1533       type = type.getSingleStepDesugaredType(getContext());
   1534       break;
   1535 
   1536     case Type::Typedef:
   1537     case Type::Decltype:
   1538     case Type::Auto:
   1539       // Stop walking: nothing to do.
   1540       return;
   1541 
   1542     case Type::TypeOfExpr:
   1543       // Stop walking: emit typeof expression.
   1544       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1545       return;
   1546 
   1547     case Type::Atomic:
   1548       type = cast<AtomicType>(ty)->getValueType();
   1549       break;
   1550     }
   1551   } while (type->isVariablyModifiedType());
   1552 }
   1553 
   1554 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1555   if (getContext().getBuiltinVaListType()->isArrayType())
   1556     return EmitScalarExpr(E);
   1557   return EmitLValue(E).getAddress();
   1558 }
   1559 
   1560 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1561                                               llvm::Constant *Init) {
   1562   assert (Init && "Invalid DeclRefExpr initializer!");
   1563   if (CGDebugInfo *Dbg = getDebugInfo())
   1564     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
   1565       Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1566 }
   1567 
   1568 CodeGenFunction::PeepholeProtection
   1569 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1570   // At the moment, the only aggressive peephole we do in IR gen
   1571   // is trunc(zext) folding, but if we add more, we can easily
   1572   // extend this protection.
   1573 
   1574   if (!rvalue.isScalar()) return PeepholeProtection();
   1575   llvm::Value *value = rvalue.getScalarVal();
   1576   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1577 
   1578   // Just make an extra bitcast.
   1579   assert(HaveInsertPoint());
   1580   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1581                                                   Builder.GetInsertBlock());
   1582 
   1583   PeepholeProtection protection;
   1584   protection.Inst = inst;
   1585   return protection;
   1586 }
   1587 
   1588 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1589   if (!protection.Inst) return;
   1590 
   1591   // In theory, we could try to duplicate the peepholes now, but whatever.
   1592   protection.Inst->eraseFromParent();
   1593 }
   1594 
   1595 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1596                                                  llvm::Value *AnnotatedVal,
   1597                                                  StringRef AnnotationStr,
   1598                                                  SourceLocation Location) {
   1599   llvm::Value *Args[4] = {
   1600     AnnotatedVal,
   1601     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1602     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1603     CGM.EmitAnnotationLineNo(Location)
   1604   };
   1605   return Builder.CreateCall(AnnotationFn, Args);
   1606 }
   1607 
   1608 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1609   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1610   // FIXME We create a new bitcast for every annotation because that's what
   1611   // llvm-gcc was doing.
   1612   for (const auto *I : D->specific_attrs<AnnotateAttr>())
   1613     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1614                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1615                        I->getAnnotation(), D->getLocation());
   1616 }
   1617 
   1618 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1619                                                    llvm::Value *V) {
   1620   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1621   llvm::Type *VTy = V->getType();
   1622   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1623                                     CGM.Int8PtrTy);
   1624 
   1625   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
   1626     // FIXME Always emit the cast inst so we can differentiate between
   1627     // annotation on the first field of a struct and annotation on the struct
   1628     // itself.
   1629     if (VTy != CGM.Int8PtrTy)
   1630       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1631     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
   1632     V = Builder.CreateBitCast(V, VTy);
   1633   }
   1634 
   1635   return V;
   1636 }
   1637 
   1638 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
   1639 
   1640 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
   1641                                    const llvm::Twine &Name,
   1642                                    llvm::BasicBlock *BB,
   1643                                    llvm::BasicBlock::iterator InsertPt) const {
   1644   LoopStack.InsertHelper(I);
   1645 }
   1646 
   1647 template <bool PreserveNames>
   1648 void CGBuilderInserter<PreserveNames>::InsertHelper(
   1649     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1650     llvm::BasicBlock::iterator InsertPt) const {
   1651   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
   1652                                                               InsertPt);
   1653   if (CGF)
   1654     CGF->InsertHelper(I, Name, BB, InsertPt);
   1655 }
   1656 
   1657 #ifdef NDEBUG
   1658 #define PreserveNames false
   1659 #else
   1660 #define PreserveNames true
   1661 #endif
   1662 template void CGBuilderInserter<PreserveNames>::InsertHelper(
   1663     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1664     llvm::BasicBlock::iterator InsertPt) const;
   1665 #undef PreserveNames
   1666