HomeSort by relevance Sort by last modified time
    Searched full:sqrt (Results 201 - 225 of 2838) sorted by null

1 2 3 4 5 6 7 891011>>

  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.gamma/
eval.pass.cpp 59 double dev = std::sqrt(var);
65 double x_skew = 2 / std::sqrt(d.alpha());
99 double dev = std::sqrt(var);
105 double x_skew = 2 / std::sqrt(d.alpha());
139 double dev = std::sqrt(var);
145 double x_skew = 2 / std::sqrt(d.alpha());
eval_param.pass.cpp 60 double dev = std::sqrt(var);
66 double x_skew = 2 / std::sqrt(p.alpha());
101 double dev = std::sqrt(var);
107 double x_skew = 2 / std::sqrt(p.alpha());
142 double dev = std::sqrt(var);
148 double x_skew = 2 / std::sqrt(p.alpha());
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.poisson/
eval.pass.cpp 58 double dev = std::sqrt(var);
64 double x_skew = 1 / std::sqrt(x_var);
97 double dev = std::sqrt(var);
103 double x_skew = 1 / std::sqrt(x_var);
136 double dev = std::sqrt(var);
142 double x_skew = 1 / std::sqrt(x_var);
eval_param.pass.cpp 60 double dev = std::sqrt(var);
66 double x_skew = 1 / std::sqrt(x_var);
101 double dev = std::sqrt(var);
107 double x_skew = 1 / std::sqrt(x_var);
142 double dev = std::sqrt(var);
148 double x_skew = 1 / std::sqrt(x_var);
  /external/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.lognormal/
eval.pass.cpp 59 double dev = std::sqrt(var);
66 std::sqrt((std::exp(sqr(d.s())) - 1));
101 double dev = std::sqrt(var);
108 std::sqrt((std::exp(sqr(d.s())) - 1));
143 double dev = std::sqrt(var);
150 std::sqrt((std::exp(sqr(d.s())) - 1));
185 double dev = std::sqrt(var);
192 std::sqrt((std::exp(sqr(d.s())) - 1));
227 double dev = std::sqrt(var);
234 std::sqrt((std::exp(sqr(d.s())) - 1))
    [all...]
eval_param.pass.cpp 61 double dev = std::sqrt(var);
68 std::sqrt((std::exp(sqr(p.s())) - 1));
104 double dev = std::sqrt(var);
111 std::sqrt((std::exp(sqr(p.s())) - 1));
147 double dev = std::sqrt(var);
154 std::sqrt((std::exp(sqr(p.s())) - 1));
190 double dev = std::sqrt(var);
197 std::sqrt((std::exp(sqr(p.s())) - 1));
233 double dev = std::sqrt(var);
240 std::sqrt((std::exp(sqr(p.s())) - 1))
    [all...]
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.lognormal/
eval.pass.cpp 59 double dev = std::sqrt(var);
66 std::sqrt((std::exp(sqr(d.s())) - 1));
101 double dev = std::sqrt(var);
108 std::sqrt((std::exp(sqr(d.s())) - 1));
143 double dev = std::sqrt(var);
150 std::sqrt((std::exp(sqr(d.s())) - 1));
185 double dev = std::sqrt(var);
192 std::sqrt((std::exp(sqr(d.s())) - 1));
227 double dev = std::sqrt(var);
234 std::sqrt((std::exp(sqr(d.s())) - 1))
    [all...]
eval_param.pass.cpp 61 double dev = std::sqrt(var);
68 std::sqrt((std::exp(sqr(p.s())) - 1));
104 double dev = std::sqrt(var);
111 std::sqrt((std::exp(sqr(p.s())) - 1));
147 double dev = std::sqrt(var);
154 std::sqrt((std::exp(sqr(p.s())) - 1));
190 double dev = std::sqrt(var);
197 std::sqrt((std::exp(sqr(p.s())) - 1));
233 double dev = std::sqrt(var);
240 std::sqrt((std::exp(sqr(p.s())) - 1))
    [all...]
  /external/eigen/bench/
bench_norm.cpp 46 return scale * internal::sqrt(ssq);
76 return internal::sqrt(v(0));
129 relerr = internal::sqrt(eps); // tolerance for neglecting asml
173 abig = internal::sqrt(abig);
182 amed = internal::sqrt(amed);
194 abig = internal::sqrt(amed);
195 amed = internal::sqrt(asml) / s1m;
199 return internal::sqrt(asml)/s1m;
204 return internal::sqrt(amed);
211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig))
    [all...]
  /bionic/libm/upstream-freebsd/lib/msun/src/
s_log1p.c 21 * where sqrt(2)/2 < 1+f < sqrt(2) .
111 if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
124 k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
142 * The approximation to sqrt(2) used in thresholds is not
148 if(hu<0x6a09e) { /* u ~< sqrt(2) */
e_asin.c 28 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
29 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
35 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
99 s = sqrt(t);
s_log1pf.c 49 if (hx < 0x3ed413d0) { /* 1+x < sqrt(2)+ */
62 k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
81 * The approximation to sqrt(2) used in thresholds is not
87 if(hu<0x3504f4) { /* u < sqrt(2) */
e_j0.c 26 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
30 * = 1/sqrt(2) * (cos(x) + sin(x))
32 * = 1/sqrt(2) * (sin(x) - cos(x))
56 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
105 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
106 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
108 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
111 z = invsqrtpi*(u*cc-v*ss)/sqrt(x)
    [all...]
s_csqrt.c 45 /* We risk spurious overflow for components >= DBL_MAX / (1 + sqrt(2)). */
96 t = sqrt((a + hypot(a, b)) * 0.5);
99 t = sqrt((-a + hypot(a, b)) * 0.5);
  /external/ceres-solver/internal/ceres/
trust_region_minimizer_test.cc 103 const double f2 = sqrt(5.0) * (x3 - x4);
105 const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);
138 sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4);
151 sqrt(5.0),
159 -sqrt(5.0),
161 sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0);
169 gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4);
178 f2 * sqrt(5.0) + f3 * (2.0 * 2.0 * (2.0 * x3 - x2));
183 -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1)
    [all...]
corrector.h 68 // residuals *= sqrt(rho[1]) / (1 - alpha)
71 // jacobian = sqrt(rho[1]) * jacobian -
72 // sqrt(rho[1]) * alpha / sq_norm * residuals residuals' * jacobian.
  /external/chromium_org/v8/test/mjsunit/
constant-folding-2.js 148 assertEquals(1.0, Math.sqrt(1.0));
149 assertEquals("NaN", String(Math.sqrt(-1.0)));
150 assertEquals("Infinity", String(Math.sqrt(Infinity)));
151 assertEquals("NaN", String(Math.sqrt(-Infinity)));
152 assertEquals("NaN", String(Math.sqrt(NaN)));
157 assertEquals("NaN", String(Math.sqrt(-1.0)));
159 assertEquals("NaN", String(Math.sqrt(-Infinity, 0.5)));
161 assertEquals("NaN", String(Math.sqrt(-Infinity, -0.5)));
162 assertEquals("NaN", String(Math.sqrt(NaN, 0.5)));
  /external/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/
eval.pass.cpp 59 double dev = std::sqrt(var);
65 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
99 double dev = std::sqrt(var);
105 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
139 double dev = std::sqrt(var);
145 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
179 double dev = std::sqrt(var);
191 // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
225 double dev = std::sqrt(var);
237 // double x_skew = (1-2*d.p()) / std::sqrt(x_var)
    [all...]
  /external/llvm/test/CodeGen/ARM/
domain-conv-vmovs.ll 65 declare float @llvm.sqrt.f32(float)
73 %sqrt = call float @llvm.sqrt.f32(float %in)
74 %val = fadd float %sqrt, %sqrt
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/
eval.pass.cpp 59 double dev = std::sqrt(var);
65 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
99 double dev = std::sqrt(var);
105 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
139 double dev = std::sqrt(var);
145 double x_skew = (1-2*d.p()) / std::sqrt(x_var);
179 double dev = std::sqrt(var);
191 // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
225 double dev = std::sqrt(var);
237 // double x_skew = (1-2*d.p()) / std::sqrt(x_var)
    [all...]
  /external/antlr/antlr-3.4/runtime/CSharp3/Sources/Antlr3.Runtime.Debug/Misc/
Stats.cs 64 * numerical properties than the textbook summation/sqrt. To me
83 return Math.Sqrt( s2 );
99 return Math.Sqrt( s2 );
  /external/chromium_org/cc/animation/
scroll_offset_animation_curve.cc 31 (std::sqrt(MaximumDimension(delta)) / kDurationDivisor) *
39 const double x1 = std::sqrt(r2 / (v2 + 1));
40 const double y1 = std::sqrt(r2 * v2 / (v2 + 1));
  /external/eigen/lapack/
dlapy2.f 33 *> DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
87 INTRINSIC ABS, MAX, MIN, SQRT
98 DLAPY2 = W*SQRT( ONE+( Z / W )**2 )
dlapy3.f 33 *> DLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause
90 INTRINSIC ABS, MAX, SQRT
104 DLAPY3 = W*SQRT( ( XABS / W )**2+( YABS / W )**2+
slapy2.f 33 *> SLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
87 INTRINSIC ABS, MAX, MIN, SQRT
98 SLAPY2 = W*SQRT( ONE+( Z / W )**2 )

Completed in 1137 milliseconds

1 2 3 4 5 6 7 891011>>