/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.gamma/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 65 double x_skew = 2 / std::sqrt(d.alpha()); 99 double dev = std::sqrt(var); 105 double x_skew = 2 / std::sqrt(d.alpha()); 139 double dev = std::sqrt(var); 145 double x_skew = 2 / std::sqrt(d.alpha());
|
eval_param.pass.cpp | 60 double dev = std::sqrt(var); 66 double x_skew = 2 / std::sqrt(p.alpha()); 101 double dev = std::sqrt(var); 107 double x_skew = 2 / std::sqrt(p.alpha()); 142 double dev = std::sqrt(var); 148 double x_skew = 2 / std::sqrt(p.alpha());
|
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.poisson/ |
eval.pass.cpp | 58 double dev = std::sqrt(var); 64 double x_skew = 1 / std::sqrt(x_var); 97 double dev = std::sqrt(var); 103 double x_skew = 1 / std::sqrt(x_var); 136 double dev = std::sqrt(var); 142 double x_skew = 1 / std::sqrt(x_var);
|
eval_param.pass.cpp | 60 double dev = std::sqrt(var); 66 double x_skew = 1 / std::sqrt(x_var); 101 double dev = std::sqrt(var); 107 double x_skew = 1 / std::sqrt(x_var); 142 double dev = std::sqrt(var); 148 double x_skew = 1 / std::sqrt(x_var);
|
/external/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.lognormal/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 66 std::sqrt((std::exp(sqr(d.s())) - 1)); 101 double dev = std::sqrt(var); 108 std::sqrt((std::exp(sqr(d.s())) - 1)); 143 double dev = std::sqrt(var); 150 std::sqrt((std::exp(sqr(d.s())) - 1)); 185 double dev = std::sqrt(var); 192 std::sqrt((std::exp(sqr(d.s())) - 1)); 227 double dev = std::sqrt(var); 234 std::sqrt((std::exp(sqr(d.s())) - 1)) [all...] |
eval_param.pass.cpp | 61 double dev = std::sqrt(var); 68 std::sqrt((std::exp(sqr(p.s())) - 1)); 104 double dev = std::sqrt(var); 111 std::sqrt((std::exp(sqr(p.s())) - 1)); 147 double dev = std::sqrt(var); 154 std::sqrt((std::exp(sqr(p.s())) - 1)); 190 double dev = std::sqrt(var); 197 std::sqrt((std::exp(sqr(p.s())) - 1)); 233 double dev = std::sqrt(var); 240 std::sqrt((std::exp(sqr(p.s())) - 1)) [all...] |
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.lognormal/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 66 std::sqrt((std::exp(sqr(d.s())) - 1)); 101 double dev = std::sqrt(var); 108 std::sqrt((std::exp(sqr(d.s())) - 1)); 143 double dev = std::sqrt(var); 150 std::sqrt((std::exp(sqr(d.s())) - 1)); 185 double dev = std::sqrt(var); 192 std::sqrt((std::exp(sqr(d.s())) - 1)); 227 double dev = std::sqrt(var); 234 std::sqrt((std::exp(sqr(d.s())) - 1)) [all...] |
eval_param.pass.cpp | 61 double dev = std::sqrt(var); 68 std::sqrt((std::exp(sqr(p.s())) - 1)); 104 double dev = std::sqrt(var); 111 std::sqrt((std::exp(sqr(p.s())) - 1)); 147 double dev = std::sqrt(var); 154 std::sqrt((std::exp(sqr(p.s())) - 1)); 190 double dev = std::sqrt(var); 197 std::sqrt((std::exp(sqr(p.s())) - 1)); 233 double dev = std::sqrt(var); 240 std::sqrt((std::exp(sqr(p.s())) - 1)) [all...] |
/external/eigen/bench/ |
bench_norm.cpp | 46 return scale * internal::sqrt(ssq); 76 return internal::sqrt(v(0)); 129 relerr = internal::sqrt(eps); // tolerance for neglecting asml 173 abig = internal::sqrt(abig); 182 amed = internal::sqrt(amed); 194 abig = internal::sqrt(amed); 195 amed = internal::sqrt(asml) / s1m; 199 return internal::sqrt(asml)/s1m; 204 return internal::sqrt(amed); 211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)) [all...] |
/bionic/libm/upstream-freebsd/lib/msun/src/ |
s_log1p.c | 21 * where sqrt(2)/2 < 1+f < sqrt(2) . 111 if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ 124 k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ 142 * The approximation to sqrt(2) used in thresholds is not 148 if(hu<0x6a09e) { /* u ~< sqrt(2) */
|
e_asin.c | 28 * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) 29 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; 35 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) 99 s = sqrt(t);
|
s_log1pf.c | 49 if (hx < 0x3ed413d0) { /* 1+x < sqrt(2)+ */ 62 k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ 81 * The approximation to sqrt(2) used in thresholds is not 87 if(hu<0x3504f4) { /* u < sqrt(2) */
|
e_j0.c | 26 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) 30 * = 1/sqrt(2) * (cos(x) + sin(x)) 32 * = 1/sqrt(2) * (sin(x) - cos(x)) 56 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 105 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 106 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 108 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); 111 z = invsqrtpi*(u*cc-v*ss)/sqrt(x) [all...] |
s_csqrt.c | 45 /* We risk spurious overflow for components >= DBL_MAX / (1 + sqrt(2)). */ 96 t = sqrt((a + hypot(a, b)) * 0.5); 99 t = sqrt((-a + hypot(a, b)) * 0.5);
|
/external/ceres-solver/internal/ceres/ |
trust_region_minimizer_test.cc | 103 const double f2 = sqrt(5.0) * (x3 - x4); 105 const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0); 138 sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4); 151 sqrt(5.0), 159 -sqrt(5.0), 161 sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0); 169 gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4); 178 f2 * sqrt(5.0) + f3 * (2.0 * 2.0 * (2.0 * x3 - x2)); 183 -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1) [all...] |
corrector.h | 68 // residuals *= sqrt(rho[1]) / (1 - alpha) 71 // jacobian = sqrt(rho[1]) * jacobian - 72 // sqrt(rho[1]) * alpha / sq_norm * residuals residuals' * jacobian.
|
/external/chromium_org/v8/test/mjsunit/ |
constant-folding-2.js | 148 assertEquals(1.0, Math.sqrt(1.0)); 149 assertEquals("NaN", String(Math.sqrt(-1.0))); 150 assertEquals("Infinity", String(Math.sqrt(Infinity))); 151 assertEquals("NaN", String(Math.sqrt(-Infinity))); 152 assertEquals("NaN", String(Math.sqrt(NaN))); 157 assertEquals("NaN", String(Math.sqrt(-1.0))); 159 assertEquals("NaN", String(Math.sqrt(-Infinity, 0.5))); 161 assertEquals("NaN", String(Math.sqrt(-Infinity, -0.5))); 162 assertEquals("NaN", String(Math.sqrt(NaN, 0.5)));
|
/external/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 65 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 99 double dev = std::sqrt(var); 105 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 139 double dev = std::sqrt(var); 145 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 179 double dev = std::sqrt(var); 191 // double x_skew = (1-2*d.p()) / std::sqrt(x_var); 225 double dev = std::sqrt(var); 237 // double x_skew = (1-2*d.p()) / std::sqrt(x_var) [all...] |
/external/llvm/test/CodeGen/ARM/ |
domain-conv-vmovs.ll | 65 declare float @llvm.sqrt.f32(float) 73 %sqrt = call float @llvm.sqrt.f32(float %in) 74 %val = fadd float %sqrt, %sqrt
|
/ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 65 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 99 double dev = std::sqrt(var); 105 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 139 double dev = std::sqrt(var); 145 double x_skew = (1-2*d.p()) / std::sqrt(x_var); 179 double dev = std::sqrt(var); 191 // double x_skew = (1-2*d.p()) / std::sqrt(x_var); 225 double dev = std::sqrt(var); 237 // double x_skew = (1-2*d.p()) / std::sqrt(x_var) [all...] |
/external/antlr/antlr-3.4/runtime/CSharp3/Sources/Antlr3.Runtime.Debug/Misc/ |
Stats.cs | 64 * numerical properties than the textbook summation/sqrt. To me 83 return Math.Sqrt( s2 ); 99 return Math.Sqrt( s2 );
|
/external/chromium_org/cc/animation/ |
scroll_offset_animation_curve.cc | 31 (std::sqrt(MaximumDimension(delta)) / kDurationDivisor) * 39 const double x1 = std::sqrt(r2 / (v2 + 1)); 40 const double y1 = std::sqrt(r2 * v2 / (v2 + 1));
|
/external/eigen/lapack/ |
dlapy2.f | 33 *> DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary 87 INTRINSIC ABS, MAX, MIN, SQRT 98 DLAPY2 = W*SQRT( ONE+( Z / W )**2 )
|
dlapy3.f | 33 *> DLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause 90 INTRINSIC ABS, MAX, SQRT 104 DLAPY3 = W*SQRT( ( XABS / W )**2+( YABS / W )**2+
|
slapy2.f | 33 *> SLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary 87 INTRINSIC ABS, MAX, MIN, SQRT 98 SLAPY2 = W*SQRT( ONE+( Z / W )**2 )
|