/prebuilts/python/linux-x86/2.7.5/lib/python2.7/ctypes/test/ |
test_find.py | 76 ## sqrt = libm.sqrt 77 ## sqrt.argtypes = (c_double,) 78 ## sqrt.restype = c_double 79 ## self.assertEqual(sqrt(2), math.sqrt(2))
|
/external/llvm/test/CodeGen/X86/ |
2006-05-17-VectorArg.ll | 8 %tmp3 = tail call float @llvm.sqrt.f32( float %abs ) ; <float> [#uses=1] 14 declare float @llvm.sqrt.f32(float)
|
sqrt.ll | 11 %res = call float @llvm.sqrt.f32(float %a) 14 declare float @llvm.sqrt.f32(float) nounwind readnone 21 %res = call double @llvm.sqrt.f64(double %a) 24 declare double @llvm.sqrt.f64(double) nounwind readnone
|
sqrt-fastmath.ll | 3 ; generated using "clang -S -O2 -ffast-math -emit-llvm sqrt.c" from 7 ; return sqrt(d); 18 ; Tests conversion of sqrt function calls into sqrt instructions when 21 ; ModuleID = 'sqrt.c'
|
/frameworks/rs/driver/runtime/ll64/ |
math.ll | 4 declare float @llvm.sqrt.f32(float) 12 %1 = tail call float @llvm.sqrt.f32(float %v)
|
/external/chromium_org/third_party/flot/ |
jquery.flot.symbol.min.js | 14 */(function(e){function t(e,t,n){var r={square:function(e,t,n,r,i){var s=r*Math.sqrt(Math.PI)/2;e.rect(t-s,n-s,s+s,s+s)},diamond:function(e,t,n,r,i){var s=r*Math.sqrt(Math.PI/2);e.moveTo(t-s,n),e.lineTo(t,n-s),e.lineTo(t+s,n),e.lineTo(t,n+s),e.lineTo(t-s,n)},triangle:function(e,t,n,r,i){var s=r*Math.sqrt(2*Math.PI/Math.sin(Math.PI/3)),o=s*Math.sin(Math.PI/3);e.moveTo(t-s/2,n+o/2),e.lineTo(t+s/2,n+o/2),i||(e.lineTo(t,n-o/2),e.lineTo(t-s/2,n+o/2))},cross:function(e,t,n,r,i){var s=r*Math.sqrt(Math.PI)/2;e.moveTo(t-s,n-s),e.lineTo(t+s,n+s),e.moveTo(t-s,n+s),e.lineTo(t+s,n-s)}},i=t.points.sy (…)
|
/external/chromium_org/third_party/mesa/src/src/glsl/builtins/ir/ |
asin.ir | 10 (expression float sqrt 37 (expression vec2 sqrt 64 (expression vec3 sqrt 91 (expression vec4 sqrt
|
/external/chromium_org/third_party/webrtc/modules/video_coding/main/test/ |
plotJitterEstimate.m | 9 plot(x, slopes(x, 1).*(framestats(x, 1) - framestats(x, 2)) + 3*sqrt(randJitters(x,2)), 'b'); title('Estimate ms'); 33 plot(s, slopes(end, 1)*s + slopes(end, 2) + 3*sqrt(randJitters(end,2)), 'r'); 34 plot(s, slopes(end, 1)*s + slopes(end, 2) - 3*sqrt(randJitters(end,2)), 'r'); 42 rttStdDevs = sqrt(rttStatsVec(:, 3));
|
/external/chromium_org/v8/test/webkit/ |
dfg-proven-sqrt-backwards-propagation.js | 25 "Tests that the DFG knows that a Math.sqrt could potentially use value in arbitrary ways, and not just in a context that converts values to numbers." 30 return Math.sqrt(x); 39 Math.sqrt = bar; 46 expected = "Math.sqrt(1.5)";
|
/external/mesa3d/src/glsl/builtins/ir/ |
asin.ir | 10 (expression float sqrt 37 (expression vec2 sqrt 64 (expression vec3 sqrt 91 (expression vec4 sqrt
|
/external/valgrind/main/auxprogs/ |
primes.c | 8 int sqrt_n = sqrt(n);
|
/ndk/tests/build/mips-fp4/jni/ |
mips-fp4-test3-6.c | 17 return 1/sqrt(a);
|
/external/llvm/test/Transforms/SCCP/ |
calltest.ll | 3 ; No matter how hard you try, sqrt(1.0) is always 1.0. This allows the 6 declare double @sqrt(double) 14 %V2 = call double @sqrt( double %V ) ; <double> [#uses=1]
|
/bionic/libm/upstream-freebsd/lib/msun/src/ |
e_acosh.c | 21 * acosh(x) = log [ x + sqrt(x*x-1) ] 24 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else 25 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. 59 return __ieee754_log(2.0*x-one/(x+sqrt(t-one))); 62 return log1p(t+sqrt(2.0*t+t*t));
|
e_sqrtf.c | 37 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf 38 sqrt(-inf)=sNaN */ 42 if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */ 44 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ 58 /* generate sqrt(x) bit by bit */ 60 q = s = 0; /* q = sqrt(x) */
|
e_sqrt.c | 18 * Return correctly rounded sqrt. 20 * | Use the hardware sqrt if you have one | 27 * sqrt(x) = 2^k * sqrt(y) 29 * Let q = sqrt(y) truncated to i bit after binary point (q = 1), 78 * sqrt(+-0) = +-0 ... exact 79 * sqrt(inf) = inf 80 * sqrt(-ve) = NaN ... with invalid signal 81 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN 106 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+in [all...] |
/external/ceres-solver/internal/ceres/ |
corrector_test.cc | 59 double residuals = sqrt(3.0); 70 // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha). 72 residuals * sqrt(kRho[1]) / (1 - kAlpha); 75 // sqrt(kRho[1]) * (1 - kAlpha) * jacobian. 76 const double kExpectedJacobian = sqrt(kRho[1]) * (1 - kAlpha) * jacobian; 96 // i.e. alpha = 1.0 - sqrt(1.0). 99 // residual[i] * sqrt(kRho[1]) 100 const double kExpectedResidual = residuals * sqrt(kRho[1]); 103 // sqrt(kRho[1]) * jacobian. 104 const double kExpectedJacobian = sqrt(kRho[1]) * jacobian [all...] |
/external/chromium_org/third_party/webrtc/common_audio/signal_processing/ |
spl_sqrt_floor.c | 7 * Subject: Re: sqrt routine 19 * Subject: Fwd: sqrt routine 21 * I saw your sqrt routine from several web sites, including 22 * http://www.finesse.demon.co.uk/steven/sqrt.html. 36 * until delta < 1. If delta < 1 we have the integer part of SQRT (N).
|
/external/chromium_org/third_party/libjpeg_turbo/ |
jfdctint.c | 46 * Each 1-D DCT step produces outputs which are a factor of sqrt(N) 51 * because the y0 and y4 outputs need not be divided by sqrt(N). 150 /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 165 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 182 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 191 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 193 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 194 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 195 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) * [all...] |
jidctred.c | 176 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ 177 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ 178 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ 179 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ 181 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ 182 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ 183 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ 184 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ 235 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ 236 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) * [all...] |
/external/jpeg/ |
jfdctint.c | 46 * Each 1-D DCT step produces outputs which are a factor of sqrt(N) 51 * because the y0 and y4 outputs need not be divided by sqrt(N). 150 /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 165 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 182 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 191 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 193 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 194 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 195 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) * [all...] |
/external/pdfium/core/src/fxcodec/libjpeg/ |
fpdfapi_jfdctint.c | 47 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
52 * because the y0 and y4 outputs need not be divided by sqrt(N).
151 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
166 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
183 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
192 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
194 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
195 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
196 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ [all...] |
/external/qemu/distrib/jpeg-6b/ |
jfdctint.c | 46 * Each 1-D DCT step produces outputs which are a factor of sqrt(N) 51 * because the y0 and y4 outputs need not be divided by sqrt(N). 150 /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 165 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 182 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 191 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 193 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 194 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 195 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) * [all...] |
/external/qemu/distrib/sdl-1.2.15/src/video/ |
e_sqrt.h | 18 * Return correctly rounded sqrt. 20 * | Use the hardware sqrt if you have one | 27 * sqrt(x) = 2^k * sqrt(y) 29 * Let q = sqrt(y) truncated to i bit after binary point (q = 1), 78 * sqrt(+-0) = +-0 ... exact 79 * sqrt(inf) = inf 80 * sqrt(-ve) = NaN ... with invalid signal 81 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN 152 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+in [all...] |
/external/llvm/lib/Transforms/Scalar/ |
PartiallyInlineLibCalls.cpp | 11 // functions, such as using square-root instructions for cases where sqrt() 43 /// Optimize calls to sqrt. 85 case LibFunc::sqrt: 106 // There is no need to change the IR, since backend will emit sqrt 114 // dst = sqrt(src) 117 // v0 = sqrt_noreadmem(src) # native sqrt instruction. 119 // v1 = sqrt(src) # library call. 130 // Create basic block LibCallBB and insert a call to library function sqrt. 131 BasicBlock *LibCallBB = BasicBlock::Create(CurrBB.getContext(), "call.sqrt", 138 // Add attribute "readnone" so that backend can use a native sqrt instructio [all...] |