/external/eigen/Eigen/src/Core/ |
PlainObjectBase.h | 38 static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) 43 bool error = (rows == 0 || cols == 0) ? false 44 : (rows > max_index / cols); 136 EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } function in class:Eigen::PlainObjectBase 141 return m_storage.data()[colId + rowId * m_storage.cols()]; 154 return m_storage.data()[colId + rowId * m_storage.cols()]; 167 return m_storage.data()[colId + rowId * m_storage.cols()]; 183 ? colId + rowId * m_storage.cols() 200 ? colId + rowId * m_storage.cols() [all...] |
EigenBase.h | 43 /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ 46 inline Index cols() const { return derived().cols(); } function in struct:Eigen::EigenBase 47 /** \returns the number of coefficients, which is rows()*cols(). 48 * \sa rows(), cols(), SizeAtCompileTime. */ 49 inline Index size() const { return rows() * cols(); } 60 typename Dest::PlainObject res(rows(),cols()); 70 typename Dest::PlainObject res(rows(),cols());
|
/external/eigen/Eigen/src/LU/ |
FullPivLU.h | 80 FullPivLU(Index rows, Index cols); 315 return cols() - rank(); 328 return rank() == cols(); 353 return isInjective() && (m_lu.rows() == m_lu.cols()); 366 eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); 368 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); 374 inline Index cols() const { return m_lu.cols(); } function in class:Eigen::FullPivLU 394 FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) 395 : m_lu(rows, cols), 429 const Index cols = matrix.cols(); local 556 const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); local 682 const Index rows = dec().rows(), cols = dec().cols(), local [all...] |
/external/compiler-rt/lib/sanitizer_common/scripts/ |
gen_dynamic_list.py | 42 cols = line.split(' ') 43 if (len(cols) == 3 and cols[1] in ('T', 'W')) : 44 functions.append(cols[2])
|
/external/eigen/bench/ |
basicbenchmark.h | 44 const int cols = mat.cols(); local 46 MatrixType I(rows,cols); 47 MatrixType m(rows,cols);
|
sparse_dense_product.cpp | 55 int cols = SIZE; local 58 EigenSparseMatrix sm1(rows,cols); 59 DenseVector v1(cols), v2(cols); 65 //fillMatrix(density, rows, cols, sm1); 66 fillMatrix2(7, rows, cols, sm1); 72 DenseMatrix m1(rows,cols); 93 std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n"; 106 // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n"; 119 //GmmDynSparse gmmT3(rows,cols); [all...] |
sparse_cholesky.cpp | 44 void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst) 46 dst.startFill(rows*cols*density); 47 for(int j = 0; j < cols; j++) 80 int cols = SIZE; local 84 VectorXf b = VectorXf::Random(cols); 85 VectorXf x = VectorXf::Random(cols); 92 EigenSparseSelfAdjointMatrix sm1(rows, cols); 94 fillSpdMatrix(density, rows, cols, sm1); 103 DenseMatrix m1(rows,cols); 117 for (int j=0; j<cols; ++j [all...] |
sparse_lu.cpp | 75 int cols = SIZE; local 79 VectorX b = VectorX::Random(cols); 80 VectorX x = VectorX::Random(cols); 87 EigenSparseMatrix sm1(rows, cols); 88 fillMatrix(density, rows, cols, sm1); 96 DenseMatrix m1(rows,cols);
|
/external/eigen/blas/ |
GeneralRank1Update.h | 22 static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) 28 for (Index i=0; i<cols; ++i) 36 static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) 38 general_rank1_update<Scalar,Index,ColMajor,ConjRhs,ConjRhs>::run(rows,cols,mat,stride,u,v,alpha);
|
/external/eigen/doc/examples/ |
function_taking_eigenbase.cpp | 8 std::cout << "size (rows, cols): " << b.size() << " (" << b.rows() 9 << ", " << b.cols() << ")" << std::endl;
|
/external/eigen/test/ |
diagonalmatrices.cpp | 16 enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; 18 typedef Matrix<Scalar, 1, Cols> RowVectorType; 21 typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix; 22 typedef Matrix<Scalar, Rows==Dynamic?Dynamic:2*Rows, Cols==Dynamic?Dynamic:2*Cols> BigMatrix; 24 Index cols = m.cols(); local 26 MatrixType m1 = MatrixType::Random(rows, cols), 27 m2 = MatrixType::Random(rows, cols); 30 RowVectorType rv1 = RowVectorType::Random(cols), [all...] |
selfadjoint.cpp | 21 Index cols = m.cols(); local 23 MatrixType m1 = MatrixType::Random(rows, cols), 24 m3(rows, cols);
|
sizeoverflow.cpp | 24 void triggerMatrixBadAlloc(Index rows, Index cols) 26 VERIFY_THROWS_BADALLOC( MatrixType m(rows, cols) ); 27 VERIFY_THROWS_BADALLOC( MatrixType m; m.resize(rows, cols) ); 28 VERIFY_THROWS_BADALLOC( MatrixType m; m.conservativeResize(rows, cols) ); 41 // there are 2 levels of overflow checking. first in PlainObjectBase.h we check for overflow in rows*cols computations.
|
linearstructure.cpp | 22 Index cols = m.cols(); local 26 MatrixType m1 = MatrixType::Random(rows, cols), 27 m2 = MatrixType::Random(rows, cols), 28 m3(rows, cols); 34 c = internal::random<Index>(0, cols-1); 65 VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1); 66 VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1)); 67 VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1); 68 VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1) [all...] |
product_selfadjoint.cpp | 22 Index cols = m.cols(); local 24 MatrixType m1 = MatrixType::Random(rows, cols), 25 m2 = MatrixType::Random(rows, cols), 56 m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); 58 m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint();
|
eigen2support.cpp | 20 Index cols = m.cols(); local 22 MatrixType m1 = MatrixType::Random(rows, cols), 23 m3(rows, cols); 30 VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); 31 VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
|
/external/eigen/test/eigen2/ |
eigen2_submatrices.cpp | 22 int cols = m1.cols(); local 25 VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1)); 49 int cols = m.cols(); local 51 MatrixType m1 = MatrixType::Random(rows, cols), 52 m2 = MatrixType::Random(rows, cols), 53 m3(rows, cols), 54 mzero = MatrixType::Zero(rows, cols), 55 ones = MatrixType::Ones(rows, cols), [all...] |
eigen2_sum.cpp | 17 int cols = m.cols(); local 19 MatrixType m1 = MatrixType::Random(rows, cols); 21 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); 22 VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy 24 for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j);
|
/external/opencv/cvaux/src/ |
cvvideo.cpp | 64 if( frame->cols != even->cols || frame->cols != odd->cols ||
|
/external/ceres-solver/internal/ceres/ |
incomplete_lq_factorization_test.cc | 52 EXPECT_EQ(expected.cols()[i], actual.cols()[i]); 85 int* cols = matrix.mutable_cols(); local 94 cols[idx] = j; 141 EXPECT_EQ(matrix.cols()[0], 0); 149 EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]); 159 EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0); 160 EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3); 161 EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5); 173 EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0) [all...] |
triplet_sparse_matrix_test.cc | 81 EXPECT_EQ(m.cols()[0], 1); 82 EXPECT_EQ(m.cols()[1], 4); 122 EXPECT_EQ(cpy.cols()[0], 1); 123 EXPECT_EQ(cpy.cols()[1], 4); 168 EXPECT_EQ(cpy.cols()[0], 1); 169 EXPECT_EQ(cpy.cols()[1], 4); 221 EXPECT_EQ(m.cols()[0], 1); 222 EXPECT_EQ(m.cols()[1], 4); 223 EXPECT_EQ(m.cols()[2], 1); 224 EXPECT_EQ(m.cols()[3], 4) [all...] |
/external/eigen/Eigen/src/Core/products/ |
GeneralMatrixVector_MKL.h | 57 Index rows, Index cols, \ 64 rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \ 67 rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \ 74 Index rows, Index cols, \ 80 rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \ 96 Index rows, Index cols, \ 101 MKL_INT m=rows, n=cols, lda=lhsStride, incx=rhsIncr, incy=resIncr; \ 106 m=cols; \ 113 Map<const GEMVVector, 0, InnerStride<> > map_x(rhs,cols,1,InnerStride<>(incx)); \
|
/external/eigen/Eigen/src/SVD/ |
UpperBidiagonalization.h | 56 : m_householder(matrix.rows(), matrix.cols()), 57 m_bidiagonal(matrix.cols(), matrix.cols()), 78 .setLength(m_householder.cols()-1) 92 Index cols = matrix.cols(); local 94 eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols."); 100 for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k) 103 Index remainingCols = cols - k - 1 [all...] |
/external/chromium_org/third_party/libvpx/source/libvpx/vp9/encoder/arm/neon/ |
vp9_subtract_neon.c | 17 void vp9_subtract_block_neon(int rows, int cols, 23 if (cols > 16) { 25 for (c = 0; c < cols; c += 32) { 47 } else if (cols > 8) { 61 } else if (cols > 4) { 73 for (c = 0; c < cols; ++c)
|
/external/eigen/Eigen/src/QR/ |
ColPivHouseholderQR_MKL.h | 55 Index cols = matrix.cols();\ 61 m_colsTranspositions.resize(cols);\ 66 m_colsPermutation.resize(cols); \ 71 LAPACKE_##MKLPREFIX##geqp3( matrix_order, rows, cols, (MKLTYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (MKLTYPE*)m_hCoeffs.data()); \ 80 for(i=0;i<cols;i++) perm[i]--;\
|