/external/eigen/doc/snippets/ |
MatrixBase_computeInverseAndDetWithCheck.cpp | 5 double determinant; variable 6 m.computeInverseAndDetWithCheck(inverse,determinant,invertible); 7 cout << "Its determinant is " << determinant << endl;
|
/external/eigen/test/ |
determinant.cpp | 14 template<typename MatrixType> void determinant(const MatrixType& m) function 17 Determinant.h 27 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); 28 VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant()); 37 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); 40 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); [all...] |
inverse.cpp | 56 VERIFY_IS_APPROX(det, m1.determinant()); 68 VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
|
dontalign.cpp | 40 VERIFY(square.determinant() != Scalar(0));
|
/external/eigen/test/eigen2/ |
eigen2_determinant.cpp | 14 template<typename MatrixType> void determinant(const MatrixType& m) function 17 Determinant.h 26 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); 27 VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant()); 36 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); 39 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); [all...] |
eigen2_sparse_solvers.cpp | 150 Scalar refDet = refLu.determinant(); 164 // std::cerr << refDet << " == " << slu.determinant() << "\n"; 166 VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex 182 VERIFY_IS_APPROX(refDet,slu.determinant());
|
eigen2_inverse.cpp | 31 while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
|
/external/eigen/doc/examples/ |
TutorialLinAlgInverseDeterminant.cpp | 14 cout << "The determinant of A is " << A.determinant() << endl;
|
/external/eigen/Eigen/ |
LU | 9 * This module includes %LU decomposition and related notions such as matrix inversion and determinant. 12 * - MatrixBase::determinant() 27 #include "src/LU/Determinant.h"
|
/external/eigen/Eigen/src/LU/ |
Inverse.h | 54 typename ResultType::Scalar& determinant, 59 determinant = matrix.coeff(0,0); 60 invertible = abs(determinant) > absDeterminantThreshold; 61 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; 86 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); 98 typename ResultType::Scalar& determinant, 104 determinant = matrix.determinant(); 105 invertible = abs(determinant) > absDeterminantThreshold; 107 const Scalar invdet = Scalar(1) / determinant; 364 (derived(), absDeterminantThreshold, inverse, determinant, invertible); local 392 RealScalar determinant; local [all...] |
Determinant.h | 41 return m.partialPivLu().determinant(); 89 * \returns the determinant of this matrix 92 inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const function in class:Eigen::MatrixBase
|
/external/chromium_org/ui/gfx/geometry/ |
matrix3_f.cc | 33 // This routine is separated from the Matrix3F::Determinant because in 103 double determinant = Determinant3x3(data_); local 104 if (std::numeric_limits<float>::epsilon() > std::abs(determinant)) 108 (data_[M11] * data_[M22] - data_[M12] * data_[M21]) / determinant, 109 (data_[M02] * data_[M21] - data_[M01] * data_[M22]) / determinant, 110 (data_[M01] * data_[M12] - data_[M02] * data_[M11]) / determinant, 111 (data_[M12] * data_[M20] - data_[M10] * data_[M22]) / determinant, 112 (data_[M00] * data_[M22] - data_[M02] * data_[M20]) / determinant, 113 (data_[M02] * data_[M10] - data_[M00] * data_[M12]) / determinant, 114 (data_[M10] * data_[M21] - data_[M11] * data_[M20]) / determinant, [all...] |
matrix3_unittest.cc | 47 TEST(Matrix3fTest, Determinant) { 48 EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant()); 49 EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant()); 50 EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant()); 55 EXPECT_EQ(390.0f, matrix.Determinant()); 59 EXPECT_EQ(0, matrix.Determinant()); 64 EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f); 76 EXPECT_EQ(0, singular.Determinant());
|
matrix3_f.h | 66 // Value of the determinant of the matrix. 67 float Determinant() const;
|
/external/chromium_org/chrome/browser/resources/chromeos/chromevox/chromevox/background/mathmaps/functions/ |
algebra.json | 14 "default": "determinant",
|
/external/chromium_org/third_party/WebKit/Source/platform/geometry/ |
FloatPolygon.cpp | 37 static inline float determinant(const FloatSize& a, const FloatSize& b) function in namespace:blink 44 return !determinant(p1 - p0, p2 - p0); 104 bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0; 208 float denominator = determinant(thisDelta, otherDelta); 217 float uThisLine = determinant(otherDelta, vertex1Delta) / denominator; 218 float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator;
|
FloatQuad.cpp | 54 inline float determinant(const FloatSize& a, const FloatSize& b) function in namespace:blink 159 if (determinant(v1, p - m_p1) < 0) 163 if (determinant(v2, p - m_p2) < 0) 167 if (determinant(v3, p - m_p3) < 0) 171 if (determinant(v4, p - m_p4) < 0) 231 return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0;
|
/external/chromium_org/third_party/WebKit/Source/platform/transforms/ |
AffineTransform.cpp | 93 double determinant = det(); local 94 if (determinant == 0.0) 104 result.m_transform[0] = m_transform[3] / determinant; 105 result.m_transform[1] = -m_transform[1] / determinant; 106 result.m_transform[2] = -m_transform[2] / determinant; 107 result.m_transform[3] = m_transform[0] / determinant; 109 - m_transform[3] * m_transform[4]) / determinant; 111 - m_transform[0] * m_transform[5]) / determinant;
|
/external/eigen/doc/ |
TutorialLinearAlgebra.dox | 146 \section TutorialLinAlgInverse Computing inverse and determinant 148 First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts, 150 advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix 153 However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful. 155 While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also 156 call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
|
/external/eigen/Eigen/src/QR/ |
HouseholderQR.h | 153 /** \returns the absolute value of the determinant of the matrix of which 160 * \warning a determinant can be very big or small, so for matrices 164 * \sa logAbsDeterminant(), MatrixBase::determinant() 168 /** \returns the natural log of the absolute value of the determinant of the matrix of which 176 * to determinant computation. 178 * \sa absDeterminant(), MatrixBase::determinant() 203 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 211 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
/external/llvm/test/Transforms/InstCombine/ |
2006-12-08-Phi-ICmp-Op-Fold.ll | 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2] 51 declare i32 @determinant(i64, i64, i64)
|
2006-12-08-Select-ICmp.ll | 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2] 41 declare i32 @determinant(i64, i64, i64)
|
/development/perftests/panorama/feature_mos/src/mosaic/ |
trsMatrix.h | 25 // Calculate the determinant of a matrix
|
/external/chromium-trace/trace-viewer/third_party/gl-matrix/src/gl-matrix/ |
mat2.js | 120 // Calculate the determinant 155 * Calculates the determinant of a mat2 158 * @returns {Number} determinant of a 160 mat2.determinant = function (a) {
|
/packages/apps/Camera/jni/feature_mos/src/mosaic/ |
trsMatrix.h | 25 // Calculate the determinant of a matrix
|