HomeSort by relevance Sort by last modified time
    Searched full:determinant (Results 1 - 25 of 129) sorted by null

1 2 3 4 5 6

  /external/eigen/doc/snippets/
MatrixBase_computeInverseAndDetWithCheck.cpp 5 double determinant; variable
6 m.computeInverseAndDetWithCheck(inverse,determinant,invertible);
7 cout << "Its determinant is " << determinant << endl;
  /external/eigen/test/
determinant.cpp 14 template<typename MatrixType> void determinant(const MatrixType& m) function
17 Determinant.h
27 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1));
28 VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant());
37 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
40 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
    [all...]
inverse.cpp 56 VERIFY_IS_APPROX(det, m1.determinant());
68 VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
dontalign.cpp 40 VERIFY(square.determinant() != Scalar(0));
  /external/eigen/test/eigen2/
eigen2_determinant.cpp 14 template<typename MatrixType> void determinant(const MatrixType& m) function
17 Determinant.h
26 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1));
27 VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant());
36 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
39 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
    [all...]
eigen2_sparse_solvers.cpp 150 Scalar refDet = refLu.determinant();
164 // std::cerr << refDet << " == " << slu.determinant() << "\n";
166 VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
182 VERIFY_IS_APPROX(refDet,slu.determinant());
eigen2_inverse.cpp 31 while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
  /external/eigen/doc/examples/
TutorialLinAlgInverseDeterminant.cpp 14 cout << "The determinant of A is " << A.determinant() << endl;
  /external/eigen/Eigen/
LU 9 * This module includes %LU decomposition and related notions such as matrix inversion and determinant.
12 * - MatrixBase::determinant()
27 #include "src/LU/Determinant.h"
  /external/eigen/Eigen/src/LU/
Inverse.h 54 typename ResultType::Scalar& determinant,
59 determinant = matrix.coeff(0,0);
60 invertible = abs(determinant) > absDeterminantThreshold;
61 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
86 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
98 typename ResultType::Scalar& determinant,
104 determinant = matrix.determinant();
105 invertible = abs(determinant) > absDeterminantThreshold;
107 const Scalar invdet = Scalar(1) / determinant;
364 (derived(), absDeterminantThreshold, inverse, determinant, invertible); local
392 RealScalar determinant; local
    [all...]
Determinant.h 41 return m.partialPivLu().determinant();
89 * \returns the determinant of this matrix
92 inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const function in class:Eigen::MatrixBase
  /external/chromium_org/ui/gfx/geometry/
matrix3_f.cc 33 // This routine is separated from the Matrix3F::Determinant because in
103 double determinant = Determinant3x3(data_); local
104 if (std::numeric_limits<float>::epsilon() > std::abs(determinant))
108 (data_[M11] * data_[M22] - data_[M12] * data_[M21]) / determinant,
109 (data_[M02] * data_[M21] - data_[M01] * data_[M22]) / determinant,
110 (data_[M01] * data_[M12] - data_[M02] * data_[M11]) / determinant,
111 (data_[M12] * data_[M20] - data_[M10] * data_[M22]) / determinant,
112 (data_[M00] * data_[M22] - data_[M02] * data_[M20]) / determinant,
113 (data_[M02] * data_[M10] - data_[M00] * data_[M12]) / determinant,
114 (data_[M10] * data_[M21] - data_[M11] * data_[M20]) / determinant,
    [all...]
matrix3_unittest.cc 47 TEST(Matrix3fTest, Determinant) {
48 EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant());
49 EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant());
50 EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant());
55 EXPECT_EQ(390.0f, matrix.Determinant());
59 EXPECT_EQ(0, matrix.Determinant());
64 EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f);
76 EXPECT_EQ(0, singular.Determinant());
matrix3_f.h 66 // Value of the determinant of the matrix.
67 float Determinant() const;
  /external/chromium_org/chrome/browser/resources/chromeos/chromevox/chromevox/background/mathmaps/functions/
algebra.json 14 "default": "determinant",
  /external/chromium_org/third_party/WebKit/Source/platform/geometry/
FloatPolygon.cpp 37 static inline float determinant(const FloatSize& a, const FloatSize& b) function in namespace:blink
44 return !determinant(p1 - p0, p2 - p0);
104 bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0;
208 float denominator = determinant(thisDelta, otherDelta);
217 float uThisLine = determinant(otherDelta, vertex1Delta) / denominator;
218 float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator;
FloatQuad.cpp 54 inline float determinant(const FloatSize& a, const FloatSize& b) function in namespace:blink
159 if (determinant(v1, p - m_p1) < 0)
163 if (determinant(v2, p - m_p2) < 0)
167 if (determinant(v3, p - m_p3) < 0)
171 if (determinant(v4, p - m_p4) < 0)
231 return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0;
  /external/chromium_org/third_party/WebKit/Source/platform/transforms/
AffineTransform.cpp 93 double determinant = det(); local
94 if (determinant == 0.0)
104 result.m_transform[0] = m_transform[3] / determinant;
105 result.m_transform[1] = -m_transform[1] / determinant;
106 result.m_transform[2] = -m_transform[2] / determinant;
107 result.m_transform[3] = m_transform[0] / determinant;
109 - m_transform[3] * m_transform[4]) / determinant;
111 - m_transform[0] * m_transform[5]) / determinant;
  /external/eigen/doc/
TutorialLinearAlgebra.dox 146 \section TutorialLinAlgInverse Computing inverse and determinant
148 First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts,
150 advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
153 However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful.
155 While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also
156 call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
  /external/eigen/Eigen/src/QR/
HouseholderQR.h 153 /** \returns the absolute value of the determinant of the matrix of which
160 * \warning a determinant can be very big or small, so for matrices
164 * \sa logAbsDeterminant(), MatrixBase::determinant()
168 /** \returns the natural log of the absolute value of the determinant of the matrix of which
176 * to determinant computation.
178 * \sa absDeterminant(), MatrixBase::determinant()
203 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
211 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  /external/llvm/test/Transforms/InstCombine/
2006-12-08-Phi-ICmp-Op-Fold.ll 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2]
51 declare i32 @determinant(i64, i64, i64)
2006-12-08-Select-ICmp.ll 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2]
41 declare i32 @determinant(i64, i64, i64)
  /development/perftests/panorama/feature_mos/src/mosaic/
trsMatrix.h 25 // Calculate the determinant of a matrix
  /external/chromium-trace/trace-viewer/third_party/gl-matrix/src/gl-matrix/
mat2.js 120 // Calculate the determinant
155 * Calculates the determinant of a mat2
158 * @returns {Number} determinant of a
160 mat2.determinant = function (a) {
  /packages/apps/Camera/jni/feature_mos/src/mosaic/
trsMatrix.h 25 // Calculate the determinant of a matrix

Completed in 559 milliseconds

1 2 3 4 5 6