Home | History | Annotate | Download | only in openssl
      1 /* Copyright (C) 1995-1997 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  *
    113  * Portions of the attached software ("Contribution") are developed by
    114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
    115  *
    116  * The Contribution is licensed pursuant to the Eric Young open source
    117  * license provided above.
    118  *
    119  * The binary polynomial arithmetic software is originally written by
    120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
    121  * Laboratories. */
    122 
    123 #ifndef OPENSSL_HEADER_BN_H
    124 #define OPENSSL_HEADER_BN_H
    125 
    126 #include <openssl/base.h>
    127 #include <openssl/thread.h>
    128 
    129 #include <inttypes.h>  /* for PRIu64 and friends */
    130 #include <stdio.h>  /* for FILE* */
    131 
    132 #if defined(__cplusplus)
    133 extern "C" {
    134 #endif
    135 
    136 
    137 /* BN provides support for working with arbitary sized integers. For example,
    138  * although the largest integer supported by the compiler might be 64 bits, BN
    139  * will allow you to work with numbers until you run out of memory. */
    140 
    141 
    142 /* BN_ULONG is the native word size when working with big integers.
    143  *
    144  * Note: on some platforms, inttypes.h does not define print format macros in
    145  * C++ unless |__STDC_FORMAT_MACROS| defined. As this is a public header, bn.h
    146  * does not define |__STDC_FORMAT_MACROS| itself. C++ source files which use the
    147  * FMT macros must define it externally. */
    148 #if defined(OPENSSL_64_BIT)
    149 #define BN_ULONG uint64_t
    150 #define BN_BITS2 64
    151 #define BN_DEC_FMT1	"%" PRIu64
    152 #define BN_DEC_FMT2	"%019" PRIu64
    153 #define BN_HEX_FMT1	"%" PRIx64
    154 #elif defined(OPENSSL_32_BIT)
    155 #define BN_ULONG uint32_t
    156 #define BN_BITS2 32
    157 #define BN_DEC_FMT1	"%" PRIu32
    158 #define BN_DEC_FMT2	"%09" PRIu32
    159 #define BN_HEX_FMT1	"%" PRIx32
    160 #else
    161 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
    162 #endif
    163 
    164 
    165 /* Allocation and freeing. */
    166 
    167 /* BN_new creates a new, allocated BIGNUM and initialises it. */
    168 OPENSSL_EXPORT BIGNUM *BN_new(void);
    169 
    170 /* BN_init initialises a stack allocated |BIGNUM|. */
    171 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
    172 
    173 /* BN_free frees the data referenced by |bn| and, if |bn| was originally
    174  * allocated on the heap, frees |bn| also. */
    175 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
    176 
    177 /* BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
    178  * originally allocated on the heap, frees |bn| also. */
    179 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
    180 
    181 /* BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
    182  * allocated BIGNUM on success or NULL otherwise. */
    183 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
    184 
    185 /* BN_copy sets |dest| equal to |src| and returns |dest|. */
    186 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
    187 
    188 /* BN_clear sets |bn| to zero and erases the old data. */
    189 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
    190 
    191 /* BN_value_one returns a static BIGNUM with value 1. */
    192 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
    193 
    194 /* BN_with_flags initialises a stack allocated |BIGNUM| with pointers to the
    195  * contents of |in| but with |flags| ORed into the flags field.
    196  *
    197  * Note: the two BIGNUMs share state and so |out| should /not/ be passed to
    198  * |BN_free|. */
    199 OPENSSL_EXPORT void BN_with_flags(BIGNUM *out, const BIGNUM *in, int flags);
    200 
    201 
    202 /* Basic functions. */
    203 
    204 /* BN_num_bits returns the minimum number of bits needed to represent the
    205  * absolute value of |bn|. */
    206 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
    207 
    208 /* BN_num_bytes returns the minimum number of bytes needed to represent the
    209  * absolute value of |bn|. */
    210 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
    211 
    212 /* BN_zero sets |bn| to zero. */
    213 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
    214 
    215 /* BN_one sets |bn| to one. It returns one on success or zero on allocation
    216  * failure. */
    217 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
    218 
    219 /* BN_set_word sets |bn| to |value|. It returns one on success or zero on
    220  * allocation failure. */
    221 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
    222 
    223 /* BN_set_negative sets the sign of |bn|. */
    224 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
    225 
    226 /* BN_is_negative returns one if |bn| is negative and zero otherwise. */
    227 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
    228 
    229 /* BN_get_flags returns |bn->flags| & |flags|. */
    230 OPENSSL_EXPORT int BN_get_flags(const BIGNUM *bn, int flags);
    231 
    232 /* BN_set_flags sets |flags| on |bn|. */
    233 OPENSSL_EXPORT void BN_set_flags(BIGNUM *bn, int flags);
    234 
    235 
    236 /* Conversion functions. */
    237 
    238 /* BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
    239  * a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
    240  * |BIGNUM| is allocated and returned. It returns NULL on allocation
    241  * failure. */
    242 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
    243 
    244 /* BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
    245  * integer, which must have |BN_num_bytes| of space available. It returns the
    246  * number of bytes written. */
    247 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
    248 
    249 /* BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
    250  * big-endian integer. The integer is padded with leading zeros up to size
    251  * |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
    252  * returns 0. Otherwise, it returns 1. */
    253 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
    254 
    255 /* BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
    256  * representation of |bn|. If |bn| is negative, the first char in the resulting
    257  * string will be '-'. Returns NULL on allocation failure. */
    258 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
    259 
    260 /* BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
    261  * a '-' to indicate a negative number and may contain trailing, non-hex data.
    262  * If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
    263  * stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
    264  * updates |*outp|. It returns the number of bytes of |in| processed or zero on
    265  * error. */
    266 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
    267 
    268 /* BN_bn2dec returns an allocated string that contains a NUL-terminated,
    269  * decimal representation of |bn|. If |bn| is negative, the first char in the
    270  * resulting string will be '-'. Returns NULL on allocation failure. */
    271 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
    272 
    273 /* BN_dec2bn parses the leading decimal number from |in|, which may be
    274  * proceeded by a '-' to indicate a negative number and may contain trailing,
    275  * non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
    276  * decimal number and stores it in |*outp|. If |*outp| is NULL then it
    277  * allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
    278  * of |in| processed or zero on error. */
    279 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
    280 
    281 /* BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
    282  * begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
    283  * leading '-' is still permitted and comes before the optional 0X/0x. It
    284  * returns one on success or zero on error. */
    285 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
    286 
    287 /* BN_print writes a hex encoding of |a| to |bio|. It returns one on success
    288  * and zero on error. */
    289 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
    290 
    291 /* BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. */
    292 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
    293 
    294 /* BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
    295  * too large to be represented as a single word, the maximum possible value
    296  * will be returned. */
    297 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
    298 
    299 
    300 /* Internal functions.
    301  *
    302  * These functions are useful for code that is doing low-level manipulations of
    303  * BIGNUM values. However, be sure that no other function in this file does
    304  * what you want before turning to these. */
    305 
    306 /* bn_correct_top decrements |bn->top| until |bn->d[top-1]| is non-zero or
    307  * until |top| is zero. */
    308 OPENSSL_EXPORT void bn_correct_top(BIGNUM *bn);
    309 
    310 /* bn_wexpand ensures that |bn| has at least |words| works of space without
    311  * altering its value. It returns one on success or zero on allocation
    312  * failure. */
    313 OPENSSL_EXPORT BIGNUM *bn_wexpand(BIGNUM *bn, unsigned words);
    314 
    315 
    316 /* BIGNUM pools.
    317  *
    318  * Certain BIGNUM operations need to use many temporary variables and
    319  * allocating and freeing them can be quite slow. Thus such opertions typically
    320  * take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
    321  * argument to a public function may be NULL, in which case a local |BN_CTX|
    322  * will be created just for the lifetime of that call.
    323  *
    324  * A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
    325  * repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
    326  * before calling any other functions that use the |ctx| as an argument.
    327  *
    328  * Finally, |BN_CTX_end| must be called before returning from the function.
    329  * When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
    330  * |BN_CTX_get| become invalid. */
    331 
    332 /* BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. */
    333 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
    334 
    335 /* BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
    336  * itself. */
    337 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
    338 
    339 /* BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
    340  * calls to |BN_CTX_get|. */
    341 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
    342 
    343 /* BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
    344  * |BN_CTX_get| has returned NULL, all future calls will also return NULL until
    345  * |BN_CTX_end| is called. */
    346 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
    347 
    348 /* BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
    349  * matching |BN_CTX_start| call. */
    350 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
    351 
    352 
    353 /* Simple arithmetic */
    354 
    355 /* BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
    356  * or |b|. It returns one on success and zero on allocation failure. */
    357 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    358 
    359 /* BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
    360  * be the same pointer as either |a| or |b|. It returns one on success and zero
    361  * on allocation failure. */
    362 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    363 
    364 /* BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. */
    365 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
    366 
    367 /* BN_sub sets |r| = |a| - |b|, where |r| must be a distinct pointer from |a|
    368  * and |b|. It returns one on success and zero on allocation failure. */
    369 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    370 
    371 /* BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
    372  * |b| < |a| and |r| must be a distinct pointer from |a| and |b|. It returns
    373  * one on success and zero on allocation failure. */
    374 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    375 
    376 /* BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
    377  * allocation failure. */
    378 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
    379 
    380 /* BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
    381  * |b|. Returns one on success and zero otherwise. */
    382 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    383                           BN_CTX *ctx);
    384 
    385 /* BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
    386  * allocation failure. */
    387 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
    388 
    389 /* BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
    390  * |a|. Returns one on success and zero otherwise. This is more efficient than
    391  * BN_mul(r, a, a, ctx). */
    392 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
    393 
    394 /* BN_div divides |numerator| by |divisor| and places the result in |quotient|
    395  * and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
    396  * which case the respective value is not returned. The result is rounded
    397  * towards zero; thus if |numerator| is negative, the remainder will be zero or
    398  * negative. It returns one on success or zero on error. */
    399 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
    400                           const BIGNUM *numerator, const BIGNUM *divisor,
    401                           BN_CTX *ctx);
    402 
    403 /* BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
    404  * remainder or (BN_ULONG)-1 on error. */
    405 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
    406 
    407 /* BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
    408  * square root of |in|, using |ctx|. It returns one on success or zero on
    409  * error. Negative numbers and non-square numbers will result in an error with
    410  * appropriate errors on the error queue. */
    411 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
    412 
    413 
    414 /* Comparison functions */
    415 
    416 /* BN_cmp returns a value less than, equal to or greater than zero if |a| is
    417  * less than, equal to or greater than |b|, respectively. */
    418 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
    419 
    420 /* BN_ucmp returns a value less than, equal to or greater than zero if the
    421  * absolute value of |a| is less than, equal to or greater than the absolute
    422  * value of |b|, respectively. */
    423 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
    424 
    425 /* BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
    426  * otherwise. */
    427 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
    428 
    429 /* BN_is_zero returns one if |bn| is zero and zero otherwise. */
    430 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
    431 
    432 /* BN_is_one returns one if |bn| equals one and zero otherwise. */
    433 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
    434 
    435 /* BN_is_word returns one if |bn| is exactly |w| and zero otherwise. */
    436 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
    437 
    438 /* BN_is_odd returns one if |bn| is odd and zero otherwise. */
    439 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
    440 
    441 
    442 /* Bitwise operations. */
    443 
    444 /* BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
    445  * same |BIGNUM|. It returns one on success and zero on allocation failure. */
    446 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
    447 
    448 /* BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
    449  * pointer. It returns one on success and zero on allocation failure. */
    450 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
    451 
    452 /* BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
    453  * pointer. It returns one on success and zero on allocation failure. */
    454 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
    455 
    456 /* BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
    457  * pointer. It returns one on success and zero on allocation failure. */
    458 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
    459 
    460 /* BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
    461  * is 2 then setting bit zero will make it 3. It returns one on success or zero
    462  * on allocation failure. */
    463 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
    464 
    465 /* BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
    466  * |a| is 3, clearing bit zero will make it two. It returns one on success or
    467  * zero on allocation failure. */
    468 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
    469 
    470 /* BN_is_bit_set returns the value of the |n|th, least-significant bit in |a|,
    471  * or zero if the bit doesn't exist. */
    472 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
    473 
    474 /* BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
    475  * on success or zero if |n| is greater than the length of |a| already. */
    476 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
    477 
    478 
    479 /* Modulo arithmetic. */
    480 
    481 /* BN_mod_word returns |a| mod |w|. */
    482 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
    483 
    484 /* BN_mod is a helper macro that calls |BN_div| and discards the quotient. */
    485 #define BN_mod(rem, numerator, divisor, ctx) \
    486   BN_div(NULL, (rem), (numerator), (divisor), (ctx))
    487 
    488 /* BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
    489  * |rem| < |divisor| is always true. It returns one on success and zero on
    490  * error. */
    491 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
    492                             const BIGNUM *divisor, BN_CTX *ctx);
    493 
    494 /* BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
    495  * on error. */
    496 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    497                               const BIGNUM *m, BN_CTX *ctx);
    498 
    499 /* BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
    500  * non-negative and less than |m|. */
    501 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    502                                     const BIGNUM *m);
    503 
    504 /* BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
    505  * on error. */
    506 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    507                               const BIGNUM *m, BN_CTX *ctx);
    508 
    509 /* BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
    510  * non-negative and less than |m|. */
    511 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    512                                     const BIGNUM *m);
    513 
    514 /* BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
    515  * on error. */
    516 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    517                               const BIGNUM *m, BN_CTX *ctx);
    518 
    519 /* BN_mod_mul sets |r| = |a|^2 mod |m|. It returns one on success and zero
    520  * on error. */
    521 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    522                               BN_CTX *ctx);
    523 
    524 /* BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
    525  * same pointer. It returns one on success and zero on error. */
    526 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
    527                                  const BIGNUM *m, BN_CTX *ctx);
    528 
    529 /* BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
    530  * non-negative and less than |m|. */
    531 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
    532                                        const BIGNUM *m);
    533 
    534 /* BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
    535  * same pointer. It returns one on success and zero on error. */
    536 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    537                                   BN_CTX *ctx);
    538 
    539 /* BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
    540  * non-negative and less than |m|. */
    541 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
    542                                         const BIGNUM *m);
    543 
    544 /* BN_mod_sqrt returns a |BIGNUM|, r, such that r^2 == a (mod p). */
    545 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
    546                                    BN_CTX *ctx);
    547 
    548 
    549 /* Random and prime number generation. */
    550 
    551 /* BN_rand sets |rnd| to a random number of length |bits|. If |top| is zero, the
    552  * most-significant bit, if any, will be set. If |top| is one, the two most
    553  * significant bits, if any, will be set.
    554  *
    555  * If |top| is -1 then no extra action will be taken and |BN_num_bits(rnd)| may
    556  * not equal |bits| if the most significant bits randomly ended up as zeros.
    557  *
    558  * If |bottom| is non-zero, the least-significant bit, if any, will be set. The
    559  * function returns one on success or zero otherwise. */
    560 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
    561 
    562 /* BN_pseudo_rand is an alias for |BN_rand|. */
    563 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
    564 
    565 /* BN_rand_range sets |rnd| to a random value [0..range). It returns one on
    566  * success and zero otherwise. */
    567 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
    568 
    569 /* BN_pseudo_rand_range is an alias for BN_rand_range. */
    570 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
    571 
    572 /* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
    573  * BN_rand_range, it also includes the contents of |priv| and |message| in the
    574  * generation so that an RNG failure isn't fatal as long as |priv| remains
    575  * secret. This is intended for use in DSA and ECDSA where an RNG weakness
    576  * leads directly to private key exposure unless this function is used.
    577  * It returns one on success and zero on error. */
    578 OPENSSL_EXPORT int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
    579                                          const BIGNUM *priv,
    580                                          const uint8_t *message,
    581                                          size_t message_len, BN_CTX *ctx);
    582 
    583 /* BN_GENCB holds a callback function that is used by generation functions that
    584  * can take a very long time to complete. Use |BN_GENCB_set| to initialise a
    585  * |BN_GENCB| structure.
    586  *
    587  * The callback receives the address of that |BN_GENCB| structure as its last
    588  * argument and the user is free to put an arbitary pointer in |arg|. The other
    589  * arguments are set as follows:
    590  *   event=BN_GENCB_GENERATED, n=i:   after generating the i'th possible prime
    591  *                                    number.
    592  *   event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
    593  *                                    checks.
    594  *   event=BN_GENCB_PRIME_TEST, n=i:  when the i'th primality test has finished.
    595  *
    596  * The callback can return zero to abort the generation progress or one to
    597  * allow it to continue.
    598  *
    599  * When other code needs to call a BN generation function it will often take a
    600  * BN_GENCB argument and may call the function with other argument values. */
    601 #define BN_GENCB_GENERATED 0
    602 #define BN_GENCB_PRIME_TEST 1
    603 
    604 struct bn_gencb_st {
    605   void *arg;        /* callback-specific data */
    606   int (*callback)(int event, int n, struct bn_gencb_st *);
    607 };
    608 
    609 /* BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
    610  * |arg|. */
    611 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
    612                                  int (*f)(int event, int n,
    613                                           struct bn_gencb_st *),
    614                                  void *arg);
    615 
    616 /* BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
    617  * the callback, or 1 if |callback| is NULL. */
    618 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
    619 
    620 /* BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
    621  * is non-zero then the prime will be such that (ret-1)/2 is also a prime.
    622  * (This is needed for Diffie-Hellman groups to ensure that the only subgroups
    623  * are of size 2 and (p-1)/2.).
    624  *
    625  * If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
    626  * |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
    627  * |add| == 1.)
    628  *
    629  * If |cb| is not NULL, it will be called during processing to give an
    630  * indication of progress. See the comments for |BN_GENCB|. It returns one on
    631  * success and zero otherwise. */
    632 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
    633                                         const BIGNUM *add, const BIGNUM *rem,
    634                                         BN_GENCB *cb);
    635 
    636 /* BN_prime_checks is magic value that can be used as the |checks| argument to
    637  * the primality testing functions in order to automatically select a number of
    638  * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
    639 #define BN_prime_checks 0
    640 
    641 /* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
    642  * probably a prime number by the Miller-Rabin test or zero if it's certainly
    643  * not.
    644  *
    645  * If |do_trial_division| is non-zero then |candidate| will be tested against a
    646  * list of small primes before Miller-Rabin tests. The probability of this
    647  * function returning a false positive is 2^{2*checks}. If |checks| is
    648  * |BN_prime_checks| then a value that results in approximately 2^{-80} false
    649  * positive probability is used. If |cb| is not NULL then it is called during
    650  * the checking process. See the comment above |BN_GENCB|.
    651  *
    652  * The function returns one on success and zero on error.
    653  *
    654  * (If you are unsure whether you want |do_trial_division|, don't set it.) */
    655 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
    656                                      const BIGNUM *candidate, int checks,
    657                                      BN_CTX *ctx, int do_trial_division,
    658                                      BN_GENCB *cb);
    659 
    660 /* BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
    661  * number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
    662  *
    663  * If |do_trial_division| is non-zero then |candidate| will be tested against a
    664  * list of small primes before Miller-Rabin tests. The probability of this
    665  * function returning one when |candidate| is composite is 2^{2*checks}. If
    666  * |checks| is |BN_prime_checks| then a value that results in approximately
    667  * 2^{-80} false positive probability is used. If |cb| is not NULL then it is
    668  * called during the checking process. See the comment above |BN_GENCB|.
    669  *
    670  * WARNING: deprecated. Use |BN_primality_test|. */
    671 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
    672                                            BN_CTX *ctx, int do_trial_division,
    673                                            BN_GENCB *cb);
    674 
    675 /* BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
    676  * |do_trial_division| set to zero.
    677  *
    678  * WARNING: deprecated: Use |BN_primality_test|. */
    679 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
    680                                   BN_CTX *ctx, BN_GENCB *cb);
    681 
    682 
    683 /* Number theory functions */
    684 
    685 /* BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
    686  * otherwise. */
    687 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    688                           BN_CTX *ctx);
    689 
    690 /* BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If either of |a| or |n|
    691  * have |BN_FLG_CONSTTIME| set then the operation is performed in constant
    692  * time. If |out| is NULL, a fresh BIGNUM is allocated. It returns the result
    693  * or NULL on error. */
    694 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
    695                                       const BIGNUM *n, BN_CTX *ctx);
    696 
    697 /* BN_kronecker returns the Kronecker symbol of |a| and |b| (which is -1, 0 or
    698  * 1), or -2 on error. */
    699 OPENSSL_EXPORT int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
    700 
    701 
    702 /* Montgomery arithmetic. */
    703 
    704 /* BN_MONT_CTX contains the precomputed values needed to work in a specific
    705  * Montgomery domain. */
    706 
    707 /* BN_MONT_CTX_new returns a fresh BN_MONT_CTX or NULL on allocation failure. */
    708 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
    709 
    710 /* BN_MONT_CTX_init initialises a stack allocated |BN_MONT_CTX|. */
    711 OPENSSL_EXPORT void BN_MONT_CTX_init(BN_MONT_CTX *mont);
    712 
    713 /* BN_MONT_CTX_free frees the contexts of |mont| and, if it was originally
    714  * allocated with |BN_MONT_CTX_new|, |mont| itself. */
    715 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
    716 
    717 /* BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
    718  * NULL on error. */
    719 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
    720                                              BN_MONT_CTX *from);
    721 
    722 /* BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
    723  * returns one on success and zero on error. */
    724 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
    725                                    BN_CTX *ctx);
    726 
    727 /* BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
    728  * so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
    729  * then stores it as |*pmont| and returns it, or NULL on error.
    730  *
    731  * If |*pmont| is already non-NULL then the existing value is returned. */
    732 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
    733                                     const BIGNUM *mod, BN_CTX *bn_ctx);
    734 
    735 /* BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. It
    736  * returns one on success and zero on error. */
    737 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
    738                                     const BN_MONT_CTX *mont, BN_CTX *ctx);
    739 
    740 /* BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values
    741  * out of the Montgomery domain. It returns one on success or zero on error. */
    742 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
    743                                       const BN_MONT_CTX *mont, BN_CTX *ctx);
    744 
    745 /* BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
    746  * Both |a| and |b| must already be in the Montgomery domain (by
    747  * |BN_to_montgomery|). It returns one on success or zero on error. */
    748 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
    749                                          const BIGNUM *b,
    750                                          const BN_MONT_CTX *mont, BN_CTX *ctx);
    751 
    752 
    753 /* Exponentiation. */
    754 
    755 /* BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
    756  * algorithm that leaks side-channel information. It returns one on success or
    757  * zero otherwise. */
    758 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    759                           BN_CTX *ctx);
    760 
    761 /* BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
    762  * algorithm for the values provided and can run in constant time if
    763  * |BN_FLG_CONSTTIME| is set for |p|. It returns one on success or zero
    764  * otherwise. */
    765 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    766                               const BIGNUM *m, BN_CTX *ctx);
    767 
    768 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    769                                    const BIGNUM *m, BN_CTX *ctx,
    770                                    BN_MONT_CTX *m_ctx);
    771 
    772 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
    773                                              const BIGNUM *p, const BIGNUM *m,
    774                                              BN_CTX *ctx, BN_MONT_CTX *in_mont);
    775 
    776 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
    777                                         const BIGNUM *m, BN_CTX *ctx,
    778                                         BN_MONT_CTX *m_ctx);
    779 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
    780                                     const BIGNUM *p1, const BIGNUM *a2,
    781                                     const BIGNUM *p2, const BIGNUM *m,
    782                                     BN_CTX *ctx, BN_MONT_CTX *m_ctx);
    783 
    784 
    785 /* Private functions */
    786 
    787 struct bignum_st {
    788   BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks in little-endian
    789                   order. */
    790   int top;   /* Index of last used element in |d|, plus one. */
    791   int dmax;  /* Size of |d|, in words. */
    792   int neg;   /* one if the number is negative */
    793   int flags; /* bitmask of BN_FLG_* values */
    794 };
    795 
    796 struct bn_mont_ctx_st {
    797   BIGNUM RR; /* used to convert to montgomery form */
    798   BIGNUM N;  /* The modulus */
    799   BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
    800               * (Ni is only stored for bignum algorithm) */
    801   BN_ULONG n0[2]; /* least significant word(s) of Ni;
    802                      (type changed with 0.9.9, was "BN_ULONG n0;" before) */
    803   int flags;
    804   int ri;    /* number of bits in R */
    805 };
    806 
    807 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
    808 
    809 #define BN_FLG_MALLOCED 0x01
    810 #define BN_FLG_STATIC_DATA 0x02
    811 /* avoid leaking exponent information through timing, BN_mod_exp_mont() will
    812  * call BN_mod_exp_mont_consttime, BN_div() will call BN_div_no_branch,
    813  * BN_mod_inverse() will call BN_mod_inverse_no_branch. */
    814 #define BN_FLG_CONSTTIME 0x04
    815 
    816 
    817 /* Android compatibility section.
    818  *
    819  * These functions are declared, temporarily, for Android because
    820  * wpa_supplicant will take a little time to sync with upstream. Outside of
    821  * Android they'll have no definition. */
    822 
    823 OPENSSL_EXPORT BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn);
    824 
    825 
    826 #if defined(__cplusplus)
    827 }  /* extern C */
    828 #endif
    829 
    830 #define BN_F_BN_CTX_get 100
    831 #define BN_F_BN_CTX_new 101
    832 #define BN_F_BN_CTX_start 102
    833 #define BN_F_BN_bn2dec 103
    834 #define BN_F_BN_bn2hex 104
    835 #define BN_F_BN_div 105
    836 #define BN_F_BN_div_recp 106
    837 #define BN_F_BN_exp 107
    838 #define BN_F_BN_generate_dsa_nonce 108
    839 #define BN_F_BN_generate_prime_ex 109
    840 #define BN_F_BN_mod_exp2_mont 110
    841 #define BN_F_BN_mod_exp_mont 111
    842 #define BN_F_BN_mod_exp_mont_consttime 112
    843 #define BN_F_BN_mod_exp_mont_word 113
    844 #define BN_F_BN_mod_inverse 114
    845 #define BN_F_BN_mod_inverse_no_branch 115
    846 #define BN_F_BN_mod_lshift_quick 116
    847 #define BN_F_BN_mod_sqrt 117
    848 #define BN_F_BN_new 118
    849 #define BN_F_BN_rand 119
    850 #define BN_F_BN_rand_range 120
    851 #define BN_F_BN_sqrt 121
    852 #define BN_F_BN_usub 122
    853 #define BN_F_bn_wexpand 123
    854 #define BN_F_mod_exp_recp 124
    855 #define BN_F_BN_lshift 125
    856 #define BN_F_BN_rshift 126
    857 #define BN_R_ARG2_LT_ARG3 100
    858 #define BN_R_BAD_RECIPROCAL 101
    859 #define BN_R_BIGNUM_TOO_LONG 102
    860 #define BN_R_BITS_TOO_SMALL 103
    861 #define BN_R_CALLED_WITH_EVEN_MODULUS 104
    862 #define BN_R_DIV_BY_ZERO 105
    863 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
    864 #define BN_R_INPUT_NOT_REDUCED 107
    865 #define BN_R_INVALID_RANGE 108
    866 #define BN_R_NEGATIVE_NUMBER 109
    867 #define BN_R_NOT_A_SQUARE 110
    868 #define BN_R_NOT_INITIALIZED 111
    869 #define BN_R_NO_INVERSE 112
    870 #define BN_R_PRIVATE_KEY_TOO_LARGE 113
    871 #define BN_R_P_IS_NOT_PRIME 114
    872 #define BN_R_TOO_MANY_ITERATIONS 115
    873 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
    874 
    875 #endif  /* OPENSSL_HEADER_BN_H */
    876