Home | History | Annotate | Download | only in Bitcode
      1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitstreamReader class.  This class can be used to
     11 // read an arbitrary bitstream, regardless of its contents.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H
     16 #define LLVM_BITCODE_BITSTREAMREADER_H
     17 
     18 #include "llvm/Bitcode/BitCodes.h"
     19 #include "llvm/Support/Endian.h"
     20 #include "llvm/Support/StreamingMemoryObject.h"
     21 #include <climits>
     22 #include <string>
     23 #include <vector>
     24 
     25 namespace llvm {
     26 
     27 /// This class is used to read from an LLVM bitcode stream, maintaining
     28 /// information that is global to decoding the entire file. While a file is
     29 /// being read, multiple cursors can be independently advanced or skipped around
     30 /// within the file.  These are represented by the BitstreamCursor class.
     31 class BitstreamReader {
     32 public:
     33   /// This contains information emitted to BLOCKINFO_BLOCK blocks. These
     34   /// describe abbreviations that all blocks of the specified ID inherit.
     35   struct BlockInfo {
     36     unsigned BlockID;
     37     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> Abbrevs;
     38     std::string Name;
     39 
     40     std::vector<std::pair<unsigned, std::string> > RecordNames;
     41   };
     42 private:
     43   std::unique_ptr<MemoryObject> BitcodeBytes;
     44 
     45   std::vector<BlockInfo> BlockInfoRecords;
     46 
     47   /// This is set to true if we don't care about the block/record name
     48   /// information in the BlockInfo block. Only llvm-bcanalyzer uses this.
     49   bool IgnoreBlockInfoNames;
     50 
     51   BitstreamReader(const BitstreamReader&) = delete;
     52   void operator=(const BitstreamReader&) = delete;
     53 public:
     54   BitstreamReader() : IgnoreBlockInfoNames(true) {
     55   }
     56 
     57   BitstreamReader(const unsigned char *Start, const unsigned char *End)
     58       : IgnoreBlockInfoNames(true) {
     59     init(Start, End);
     60   }
     61 
     62   BitstreamReader(std::unique_ptr<MemoryObject> BitcodeBytes)
     63       : BitcodeBytes(std::move(BitcodeBytes)), IgnoreBlockInfoNames(true) {}
     64 
     65   BitstreamReader(BitstreamReader &&Other) {
     66     *this = std::move(Other);
     67   }
     68 
     69   BitstreamReader &operator=(BitstreamReader &&Other) {
     70     BitcodeBytes = std::move(Other.BitcodeBytes);
     71     // Explicitly swap block info, so that nothing gets destroyed twice.
     72     std::swap(BlockInfoRecords, Other.BlockInfoRecords);
     73     IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames;
     74     return *this;
     75   }
     76 
     77   void init(const unsigned char *Start, const unsigned char *End) {
     78     assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
     79     BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End));
     80   }
     81 
     82   MemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
     83 
     84   /// This is called by clients that want block/record name information.
     85   void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; }
     86   bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
     87 
     88   //===--------------------------------------------------------------------===//
     89   // Block Manipulation
     90   //===--------------------------------------------------------------------===//
     91 
     92   /// Return true if we've already read and processed the block info block for
     93   /// this Bitstream. We only process it for the first cursor that walks over
     94   /// it.
     95   bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
     96 
     97   /// If there is block info for the specified ID, return it, otherwise return
     98   /// null.
     99   const BlockInfo *getBlockInfo(unsigned BlockID) const {
    100     // Common case, the most recent entry matches BlockID.
    101     if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
    102       return &BlockInfoRecords.back();
    103 
    104     for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size());
    105          i != e; ++i)
    106       if (BlockInfoRecords[i].BlockID == BlockID)
    107         return &BlockInfoRecords[i];
    108     return nullptr;
    109   }
    110 
    111   BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
    112     if (const BlockInfo *BI = getBlockInfo(BlockID))
    113       return *const_cast<BlockInfo*>(BI);
    114 
    115     // Otherwise, add a new record.
    116     BlockInfoRecords.push_back(BlockInfo());
    117     BlockInfoRecords.back().BlockID = BlockID;
    118     return BlockInfoRecords.back();
    119   }
    120 
    121   /// Takes block info from the other bitstream reader.
    122   ///
    123   /// This is a "take" operation because BlockInfo records are non-trivial, and
    124   /// indeed rather expensive.
    125   void takeBlockInfo(BitstreamReader &&Other) {
    126     assert(!hasBlockInfoRecords());
    127     BlockInfoRecords = std::move(Other.BlockInfoRecords);
    128   }
    129 };
    130 
    131 /// When advancing through a bitstream cursor, each advance can discover a few
    132 /// different kinds of entries:
    133 struct BitstreamEntry {
    134   enum {
    135     Error,    // Malformed bitcode was found.
    136     EndBlock, // We've reached the end of the current block, (or the end of the
    137               // file, which is treated like a series of EndBlock records.
    138     SubBlock, // This is the start of a new subblock of a specific ID.
    139     Record    // This is a record with a specific AbbrevID.
    140   } Kind;
    141 
    142   unsigned ID;
    143 
    144   static BitstreamEntry getError() {
    145     BitstreamEntry E; E.Kind = Error; return E;
    146   }
    147   static BitstreamEntry getEndBlock() {
    148     BitstreamEntry E; E.Kind = EndBlock; return E;
    149   }
    150   static BitstreamEntry getSubBlock(unsigned ID) {
    151     BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
    152   }
    153   static BitstreamEntry getRecord(unsigned AbbrevID) {
    154     BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
    155   }
    156 };
    157 
    158 /// This represents a position within a bitcode file. There may be multiple
    159 /// independent cursors reading within one bitstream, each maintaining their own
    160 /// local state.
    161 ///
    162 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
    163 /// be passed by value.
    164 class BitstreamCursor {
    165   BitstreamReader *BitStream;
    166   size_t NextChar;
    167 
    168   // The size of the bicode. 0 if we don't know it yet.
    169   size_t Size;
    170 
    171   /// This is the current data we have pulled from the stream but have not
    172   /// returned to the client. This is specifically and intentionally defined to
    173   /// follow the word size of the host machine for efficiency. We use word_t in
    174   /// places that are aware of this to make it perfectly explicit what is going
    175   /// on.
    176   typedef size_t word_t;
    177   word_t CurWord;
    178 
    179   /// This is the number of bits in CurWord that are valid. This is always from
    180   /// [0...bits_of(size_t)-1] inclusive.
    181   unsigned BitsInCurWord;
    182 
    183   // This is the declared size of code values used for the current block, in
    184   // bits.
    185   unsigned CurCodeSize;
    186 
    187   /// Abbrevs installed at in this block.
    188   std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> CurAbbrevs;
    189 
    190   struct Block {
    191     unsigned PrevCodeSize;
    192     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> PrevAbbrevs;
    193     explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
    194   };
    195 
    196   /// This tracks the codesize of parent blocks.
    197   SmallVector<Block, 8> BlockScope;
    198 
    199 
    200 public:
    201   BitstreamCursor() { init(nullptr); }
    202 
    203   explicit BitstreamCursor(BitstreamReader &R) { init(&R); }
    204 
    205   void init(BitstreamReader *R) {
    206     freeState();
    207 
    208     BitStream = R;
    209     NextChar = 0;
    210     Size = 0;
    211     BitsInCurWord = 0;
    212     CurCodeSize = 2;
    213   }
    214 
    215   void freeState();
    216 
    217   bool canSkipToPos(size_t pos) const {
    218     // pos can be skipped to if it is a valid address or one byte past the end.
    219     return pos == 0 || BitStream->getBitcodeBytes().isValidAddress(
    220         static_cast<uint64_t>(pos - 1));
    221   }
    222 
    223   bool AtEndOfStream() {
    224     if (BitsInCurWord != 0)
    225       return false;
    226     if (Size != 0)
    227       return Size == NextChar;
    228     fillCurWord();
    229     return BitsInCurWord == 0;
    230   }
    231 
    232   /// Return the number of bits used to encode an abbrev #.
    233   unsigned getAbbrevIDWidth() const { return CurCodeSize; }
    234 
    235   /// Return the bit # of the bit we are reading.
    236   uint64_t GetCurrentBitNo() const {
    237     return NextChar*CHAR_BIT - BitsInCurWord;
    238   }
    239 
    240   BitstreamReader *getBitStreamReader() {
    241     return BitStream;
    242   }
    243   const BitstreamReader *getBitStreamReader() const {
    244     return BitStream;
    245   }
    246 
    247   /// Flags that modify the behavior of advance().
    248   enum {
    249     /// If this flag is used, the advance() method does not automatically pop
    250     /// the block scope when the end of a block is reached.
    251     AF_DontPopBlockAtEnd = 1,
    252 
    253     /// If this flag is used, abbrev entries are returned just like normal
    254     /// records.
    255     AF_DontAutoprocessAbbrevs = 2
    256   };
    257 
    258   /// Advance the current bitstream, returning the next entry in the stream.
    259   BitstreamEntry advance(unsigned Flags = 0) {
    260     while (1) {
    261       unsigned Code = ReadCode();
    262       if (Code == bitc::END_BLOCK) {
    263         // Pop the end of the block unless Flags tells us not to.
    264         if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
    265           return BitstreamEntry::getError();
    266         return BitstreamEntry::getEndBlock();
    267       }
    268 
    269       if (Code == bitc::ENTER_SUBBLOCK)
    270         return BitstreamEntry::getSubBlock(ReadSubBlockID());
    271 
    272       if (Code == bitc::DEFINE_ABBREV &&
    273           !(Flags & AF_DontAutoprocessAbbrevs)) {
    274         // We read and accumulate abbrev's, the client can't do anything with
    275         // them anyway.
    276         ReadAbbrevRecord();
    277         continue;
    278       }
    279 
    280       return BitstreamEntry::getRecord(Code);
    281     }
    282   }
    283 
    284   /// This is a convenience function for clients that don't expect any
    285   /// subblocks. This just skips over them automatically.
    286   BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
    287     while (1) {
    288       // If we found a normal entry, return it.
    289       BitstreamEntry Entry = advance(Flags);
    290       if (Entry.Kind != BitstreamEntry::SubBlock)
    291         return Entry;
    292 
    293       // If we found a sub-block, just skip over it and check the next entry.
    294       if (SkipBlock())
    295         return BitstreamEntry::getError();
    296     }
    297   }
    298 
    299   /// Reset the stream to the specified bit number.
    300   void JumpToBit(uint64_t BitNo) {
    301     size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1);
    302     unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
    303     assert(canSkipToPos(ByteNo) && "Invalid location");
    304 
    305     // Move the cursor to the right word.
    306     NextChar = ByteNo;
    307     BitsInCurWord = 0;
    308 
    309     // Skip over any bits that are already consumed.
    310     if (WordBitNo)
    311       Read(WordBitNo);
    312   }
    313 
    314   void fillCurWord() {
    315     if (Size != 0 && NextChar >= Size)
    316       report_fatal_error("Unexpected end of file");
    317 
    318     // Read the next word from the stream.
    319     uint8_t Array[sizeof(word_t)] = {0};
    320 
    321     uint64_t BytesRead =
    322         BitStream->getBitcodeBytes().readBytes(Array, sizeof(Array), NextChar);
    323 
    324     // If we run out of data, stop at the end of the stream.
    325     if (BytesRead == 0) {
    326       Size = NextChar;
    327       return;
    328     }
    329 
    330     CurWord =
    331         support::endian::read<word_t, support::little, support::unaligned>(
    332             Array);
    333     NextChar += BytesRead;
    334     BitsInCurWord = BytesRead * 8;
    335   }
    336 
    337   word_t Read(unsigned NumBits) {
    338     static const unsigned BitsInWord = sizeof(word_t) * 8;
    339 
    340     assert(NumBits && NumBits <= BitsInWord &&
    341            "Cannot return zero or more than BitsInWord bits!");
    342 
    343     static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
    344 
    345     // If the field is fully contained by CurWord, return it quickly.
    346     if (BitsInCurWord >= NumBits) {
    347       word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
    348 
    349       // Use a mask to avoid undefined behavior.
    350       CurWord >>= (NumBits & Mask);
    351 
    352       BitsInCurWord -= NumBits;
    353       return R;
    354     }
    355 
    356     word_t R = BitsInCurWord ? CurWord : 0;
    357     unsigned BitsLeft = NumBits - BitsInCurWord;
    358 
    359     fillCurWord();
    360 
    361     // If we run out of data, stop at the end of the stream.
    362     if (BitsLeft > BitsInCurWord)
    363       return 0;
    364 
    365     word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
    366 
    367     // Use a mask to avoid undefined behavior.
    368     CurWord >>= (BitsLeft & Mask);
    369 
    370     BitsInCurWord -= BitsLeft;
    371 
    372     R |= R2 << (NumBits - BitsLeft);
    373 
    374     return R;
    375   }
    376 
    377   uint32_t ReadVBR(unsigned NumBits) {
    378     uint32_t Piece = Read(NumBits);
    379     if ((Piece & (1U << (NumBits-1))) == 0)
    380       return Piece;
    381 
    382     uint32_t Result = 0;
    383     unsigned NextBit = 0;
    384     while (1) {
    385       Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
    386 
    387       if ((Piece & (1U << (NumBits-1))) == 0)
    388         return Result;
    389 
    390       NextBit += NumBits-1;
    391       Piece = Read(NumBits);
    392     }
    393   }
    394 
    395   // Read a VBR that may have a value up to 64-bits in size. The chunk size of
    396   // the VBR must still be <= 32 bits though.
    397   uint64_t ReadVBR64(unsigned NumBits) {
    398     uint32_t Piece = Read(NumBits);
    399     if ((Piece & (1U << (NumBits-1))) == 0)
    400       return uint64_t(Piece);
    401 
    402     uint64_t Result = 0;
    403     unsigned NextBit = 0;
    404     while (1) {
    405       Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
    406 
    407       if ((Piece & (1U << (NumBits-1))) == 0)
    408         return Result;
    409 
    410       NextBit += NumBits-1;
    411       Piece = Read(NumBits);
    412     }
    413   }
    414 
    415 private:
    416   void SkipToFourByteBoundary() {
    417     // If word_t is 64-bits and if we've read less than 32 bits, just dump
    418     // the bits we have up to the next 32-bit boundary.
    419     if (sizeof(word_t) > 4 &&
    420         BitsInCurWord >= 32) {
    421       CurWord >>= BitsInCurWord-32;
    422       BitsInCurWord = 32;
    423       return;
    424     }
    425 
    426     BitsInCurWord = 0;
    427   }
    428 public:
    429 
    430   unsigned ReadCode() {
    431     return Read(CurCodeSize);
    432   }
    433 
    434 
    435   // Block header:
    436   //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
    437 
    438   /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
    439   unsigned ReadSubBlockID() {
    440     return ReadVBR(bitc::BlockIDWidth);
    441   }
    442 
    443   /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
    444   /// of this block. If the block record is malformed, return true.
    445   bool SkipBlock() {
    446     // Read and ignore the codelen value.  Since we are skipping this block, we
    447     // don't care what code widths are used inside of it.
    448     ReadVBR(bitc::CodeLenWidth);
    449     SkipToFourByteBoundary();
    450     unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
    451 
    452     // Check that the block wasn't partially defined, and that the offset isn't
    453     // bogus.
    454     size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8;
    455     if (AtEndOfStream() || !canSkipToPos(SkipTo/8))
    456       return true;
    457 
    458     JumpToBit(SkipTo);
    459     return false;
    460   }
    461 
    462   /// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true
    463   /// if the block has an error.
    464   bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
    465 
    466   bool ReadBlockEnd() {
    467     if (BlockScope.empty()) return true;
    468 
    469     // Block tail:
    470     //    [END_BLOCK, <align4bytes>]
    471     SkipToFourByteBoundary();
    472 
    473     popBlockScope();
    474     return false;
    475   }
    476 
    477 private:
    478 
    479   void popBlockScope() {
    480     CurCodeSize = BlockScope.back().PrevCodeSize;
    481 
    482     CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs);
    483     BlockScope.pop_back();
    484   }
    485 
    486   //===--------------------------------------------------------------------===//
    487   // Record Processing
    488   //===--------------------------------------------------------------------===//
    489 
    490 public:
    491   /// Return the abbreviation for the specified AbbrevId.
    492   const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) {
    493     unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV;
    494     if (AbbrevNo >= CurAbbrevs.size())
    495       report_fatal_error("Invalid abbrev number");
    496     return CurAbbrevs[AbbrevNo].get();
    497   }
    498 
    499   /// Read the current record and discard it.
    500   void skipRecord(unsigned AbbrevID);
    501 
    502   unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals,
    503                       StringRef *Blob = nullptr);
    504 
    505   //===--------------------------------------------------------------------===//
    506   // Abbrev Processing
    507   //===--------------------------------------------------------------------===//
    508   void ReadAbbrevRecord();
    509 
    510   bool ReadBlockInfoBlock();
    511 };
    512 
    513 } // End llvm namespace
    514 
    515 #endif
    516