Home | History | Annotate | Download | only in driver
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "compiler_driver.h"
     18 
     19 #define ATRACE_TAG ATRACE_TAG_DALVIK
     20 #include <utils/Trace.h>
     21 
     22 #include <unordered_set>
     23 #include <vector>
     24 #include <unistd.h>
     25 
     26 #ifndef __APPLE__
     27 #include <malloc.h>  // For mallinfo
     28 #endif
     29 
     30 #include "art_field-inl.h"
     31 #include "art_method-inl.h"
     32 #include "base/stl_util.h"
     33 #include "base/time_utils.h"
     34 #include "base/timing_logger.h"
     35 #include "class_linker-inl.h"
     36 #include "compiled_class.h"
     37 #include "compiled_method.h"
     38 #include "compiler.h"
     39 #include "compiler_driver-inl.h"
     40 #include "dex_compilation_unit.h"
     41 #include "dex_file-inl.h"
     42 #include "dex/verification_results.h"
     43 #include "dex/verified_method.h"
     44 #include "dex/quick/dex_file_method_inliner.h"
     45 #include "dex/quick/dex_file_to_method_inliner_map.h"
     46 #include "driver/compiler_options.h"
     47 #include "elf_writer_quick.h"
     48 #include "jni_internal.h"
     49 #include "object_lock.h"
     50 #include "profiler.h"
     51 #include "runtime.h"
     52 #include "gc/accounting/card_table-inl.h"
     53 #include "gc/accounting/heap_bitmap.h"
     54 #include "gc/space/image_space.h"
     55 #include "gc/space/space.h"
     56 #include "mirror/class_loader.h"
     57 #include "mirror/class-inl.h"
     58 #include "mirror/dex_cache-inl.h"
     59 #include "mirror/object-inl.h"
     60 #include "mirror/object_array-inl.h"
     61 #include "mirror/throwable.h"
     62 #include "scoped_thread_state_change.h"
     63 #include "ScopedLocalRef.h"
     64 #include "handle_scope-inl.h"
     65 #include "thread.h"
     66 #include "thread_list.h"
     67 #include "thread_pool.h"
     68 #include "trampolines/trampoline_compiler.h"
     69 #include "transaction.h"
     70 #include "utils/dex_cache_arrays_layout-inl.h"
     71 #include "utils/swap_space.h"
     72 #include "verifier/method_verifier.h"
     73 #include "verifier/method_verifier-inl.h"
     74 
     75 namespace art {
     76 
     77 static constexpr bool kTimeCompileMethod = !kIsDebugBuild;
     78 
     79 // Whether to produce 64-bit ELF files for 64-bit targets.
     80 static constexpr bool kProduce64BitELFFiles = true;
     81 
     82 // Whether classes-to-compile and methods-to-compile are only applied to the boot image, or, when
     83 // given, too all compilations.
     84 static constexpr bool kRestrictCompilationFiltersToImage = true;
     85 
     86 static double Percentage(size_t x, size_t y) {
     87   return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
     88 }
     89 
     90 static void DumpStat(size_t x, size_t y, const char* str) {
     91   if (x == 0 && y == 0) {
     92     return;
     93   }
     94   LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
     95 }
     96 
     97 class CompilerDriver::AOTCompilationStats {
     98  public:
     99   AOTCompilationStats()
    100       : stats_lock_("AOT compilation statistics lock"),
    101         types_in_dex_cache_(0), types_not_in_dex_cache_(0),
    102         strings_in_dex_cache_(0), strings_not_in_dex_cache_(0),
    103         resolved_types_(0), unresolved_types_(0),
    104         resolved_instance_fields_(0), unresolved_instance_fields_(0),
    105         resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0),
    106         type_based_devirtualization_(0),
    107         safe_casts_(0), not_safe_casts_(0) {
    108     for (size_t i = 0; i <= kMaxInvokeType; i++) {
    109       resolved_methods_[i] = 0;
    110       unresolved_methods_[i] = 0;
    111       virtual_made_direct_[i] = 0;
    112       direct_calls_to_boot_[i] = 0;
    113       direct_methods_to_boot_[i] = 0;
    114     }
    115   }
    116 
    117   void Dump() {
    118     DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache");
    119     DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache");
    120     DumpStat(resolved_types_, unresolved_types_, "types resolved");
    121     DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
    122     DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
    123              "static fields resolved");
    124     DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
    125              "static fields local to a class");
    126     DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information");
    127     // Note, the code below subtracts the stat value so that when added to the stat value we have
    128     // 100% of samples. TODO: clean this up.
    129     DumpStat(type_based_devirtualization_,
    130              resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] +
    131              resolved_methods_[kInterface] + unresolved_methods_[kInterface] -
    132              type_based_devirtualization_,
    133              "virtual/interface calls made direct based on type information");
    134 
    135     for (size_t i = 0; i <= kMaxInvokeType; i++) {
    136       std::ostringstream oss;
    137       oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
    138       DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
    139       if (virtual_made_direct_[i] > 0) {
    140         std::ostringstream oss2;
    141         oss2 << static_cast<InvokeType>(i) << " methods made direct";
    142         DumpStat(virtual_made_direct_[i],
    143                  resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
    144                  oss2.str().c_str());
    145       }
    146       if (direct_calls_to_boot_[i] > 0) {
    147         std::ostringstream oss2;
    148         oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
    149         DumpStat(direct_calls_to_boot_[i],
    150                  resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
    151                  oss2.str().c_str());
    152       }
    153       if (direct_methods_to_boot_[i] > 0) {
    154         std::ostringstream oss2;
    155         oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
    156         DumpStat(direct_methods_to_boot_[i],
    157                  resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
    158                  oss2.str().c_str());
    159       }
    160     }
    161   }
    162 
    163 // Allow lossy statistics in non-debug builds.
    164 #ifndef NDEBUG
    165 #define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_)
    166 #else
    167 #define STATS_LOCK()
    168 #endif
    169 
    170   void TypeInDexCache() {
    171     STATS_LOCK();
    172     types_in_dex_cache_++;
    173   }
    174 
    175   void TypeNotInDexCache() {
    176     STATS_LOCK();
    177     types_not_in_dex_cache_++;
    178   }
    179 
    180   void StringInDexCache() {
    181     STATS_LOCK();
    182     strings_in_dex_cache_++;
    183   }
    184 
    185   void StringNotInDexCache() {
    186     STATS_LOCK();
    187     strings_not_in_dex_cache_++;
    188   }
    189 
    190   void TypeDoesntNeedAccessCheck() {
    191     STATS_LOCK();
    192     resolved_types_++;
    193   }
    194 
    195   void TypeNeedsAccessCheck() {
    196     STATS_LOCK();
    197     unresolved_types_++;
    198   }
    199 
    200   void ResolvedInstanceField() {
    201     STATS_LOCK();
    202     resolved_instance_fields_++;
    203   }
    204 
    205   void UnresolvedInstanceField() {
    206     STATS_LOCK();
    207     unresolved_instance_fields_++;
    208   }
    209 
    210   void ResolvedLocalStaticField() {
    211     STATS_LOCK();
    212     resolved_local_static_fields_++;
    213   }
    214 
    215   void ResolvedStaticField() {
    216     STATS_LOCK();
    217     resolved_static_fields_++;
    218   }
    219 
    220   void UnresolvedStaticField() {
    221     STATS_LOCK();
    222     unresolved_static_fields_++;
    223   }
    224 
    225   // Indicate that type information from the verifier led to devirtualization.
    226   void PreciseTypeDevirtualization() {
    227     STATS_LOCK();
    228     type_based_devirtualization_++;
    229   }
    230 
    231   // Indicate that a method of the given type was resolved at compile time.
    232   void ResolvedMethod(InvokeType type) {
    233     DCHECK_LE(type, kMaxInvokeType);
    234     STATS_LOCK();
    235     resolved_methods_[type]++;
    236   }
    237 
    238   // Indicate that a method of the given type was unresolved at compile time as it was in an
    239   // unknown dex file.
    240   void UnresolvedMethod(InvokeType type) {
    241     DCHECK_LE(type, kMaxInvokeType);
    242     STATS_LOCK();
    243     unresolved_methods_[type]++;
    244   }
    245 
    246   // Indicate that a type of virtual method dispatch has been converted into a direct method
    247   // dispatch.
    248   void VirtualMadeDirect(InvokeType type) {
    249     DCHECK(type == kVirtual || type == kInterface || type == kSuper);
    250     STATS_LOCK();
    251     virtual_made_direct_[type]++;
    252   }
    253 
    254   // Indicate that a method of the given type was able to call directly into boot.
    255   void DirectCallsToBoot(InvokeType type) {
    256     DCHECK_LE(type, kMaxInvokeType);
    257     STATS_LOCK();
    258     direct_calls_to_boot_[type]++;
    259   }
    260 
    261   // Indicate that a method of the given type was able to be resolved directly from boot.
    262   void DirectMethodsToBoot(InvokeType type) {
    263     DCHECK_LE(type, kMaxInvokeType);
    264     STATS_LOCK();
    265     direct_methods_to_boot_[type]++;
    266   }
    267 
    268   void ProcessedInvoke(InvokeType type, int flags) {
    269     STATS_LOCK();
    270     if (flags == 0) {
    271       unresolved_methods_[type]++;
    272     } else {
    273       DCHECK_NE((flags & kFlagMethodResolved), 0);
    274       resolved_methods_[type]++;
    275       if ((flags & kFlagVirtualMadeDirect) != 0) {
    276         virtual_made_direct_[type]++;
    277         if ((flags & kFlagPreciseTypeDevirtualization) != 0) {
    278           type_based_devirtualization_++;
    279         }
    280       } else {
    281         DCHECK_EQ((flags & kFlagPreciseTypeDevirtualization), 0);
    282       }
    283       if ((flags & kFlagDirectCallToBoot) != 0) {
    284         direct_calls_to_boot_[type]++;
    285       }
    286       if ((flags & kFlagDirectMethodToBoot) != 0) {
    287         direct_methods_to_boot_[type]++;
    288       }
    289     }
    290   }
    291 
    292   // A check-cast could be eliminated due to verifier type analysis.
    293   void SafeCast() {
    294     STATS_LOCK();
    295     safe_casts_++;
    296   }
    297 
    298   // A check-cast couldn't be eliminated due to verifier type analysis.
    299   void NotASafeCast() {
    300     STATS_LOCK();
    301     not_safe_casts_++;
    302   }
    303 
    304  private:
    305   Mutex stats_lock_;
    306 
    307   size_t types_in_dex_cache_;
    308   size_t types_not_in_dex_cache_;
    309 
    310   size_t strings_in_dex_cache_;
    311   size_t strings_not_in_dex_cache_;
    312 
    313   size_t resolved_types_;
    314   size_t unresolved_types_;
    315 
    316   size_t resolved_instance_fields_;
    317   size_t unresolved_instance_fields_;
    318 
    319   size_t resolved_local_static_fields_;
    320   size_t resolved_static_fields_;
    321   size_t unresolved_static_fields_;
    322   // Type based devirtualization for invoke interface and virtual.
    323   size_t type_based_devirtualization_;
    324 
    325   size_t resolved_methods_[kMaxInvokeType + 1];
    326   size_t unresolved_methods_[kMaxInvokeType + 1];
    327   size_t virtual_made_direct_[kMaxInvokeType + 1];
    328   size_t direct_calls_to_boot_[kMaxInvokeType + 1];
    329   size_t direct_methods_to_boot_[kMaxInvokeType + 1];
    330 
    331   size_t safe_casts_;
    332   size_t not_safe_casts_;
    333 
    334   DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
    335 };
    336 
    337 
    338 extern "C" art::CompiledMethod* ArtCompileDEX(art::CompilerDriver& compiler,
    339                                               const art::DexFile::CodeItem* code_item,
    340                                               uint32_t access_flags,
    341                                               art::InvokeType invoke_type,
    342                                               uint16_t class_def_idx,
    343                                               uint32_t method_idx,
    344                                               jobject class_loader,
    345                                               const art::DexFile& dex_file);
    346 
    347 CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options,
    348                                VerificationResults* verification_results,
    349                                DexFileToMethodInlinerMap* method_inliner_map,
    350                                Compiler::Kind compiler_kind,
    351                                InstructionSet instruction_set,
    352                                const InstructionSetFeatures* instruction_set_features,
    353                                bool image, std::unordered_set<std::string>* image_classes,
    354                                std::unordered_set<std::string>* compiled_classes,
    355                                std::unordered_set<std::string>* compiled_methods,
    356                                size_t thread_count, bool dump_stats, bool dump_passes,
    357                                const std::string& dump_cfg_file_name, CumulativeLogger* timer,
    358                                int swap_fd, const std::string& profile_file)
    359     : swap_space_(swap_fd == -1 ? nullptr : new SwapSpace(swap_fd, 10 * MB)),
    360       swap_space_allocator_(new SwapAllocator<void>(swap_space_.get())),
    361       profile_present_(false), compiler_options_(compiler_options),
    362       verification_results_(verification_results),
    363       method_inliner_map_(method_inliner_map),
    364       compiler_(Compiler::Create(this, compiler_kind)),
    365       compiler_kind_(compiler_kind),
    366       instruction_set_(instruction_set),
    367       instruction_set_features_(instruction_set_features),
    368       freezing_constructor_lock_("freezing constructor lock"),
    369       compiled_classes_lock_("compiled classes lock"),
    370       compiled_methods_lock_("compiled method lock"),
    371       compiled_methods_(MethodTable::key_compare()),
    372       non_relative_linker_patch_count_(0u),
    373       image_(image),
    374       image_classes_(image_classes),
    375       classes_to_compile_(compiled_classes),
    376       methods_to_compile_(compiled_methods),
    377       had_hard_verifier_failure_(false),
    378       thread_count_(thread_count),
    379       stats_(new AOTCompilationStats),
    380       dedupe_enabled_(true),
    381       dump_stats_(dump_stats),
    382       dump_passes_(dump_passes),
    383       dump_cfg_file_name_(dump_cfg_file_name),
    384       timings_logger_(timer),
    385       compiler_context_(nullptr),
    386       support_boot_image_fixup_(instruction_set != kMips && instruction_set != kMips64),
    387       dedupe_code_("dedupe code", *swap_space_allocator_),
    388       dedupe_src_mapping_table_("dedupe source mapping table", *swap_space_allocator_),
    389       dedupe_mapping_table_("dedupe mapping table", *swap_space_allocator_),
    390       dedupe_vmap_table_("dedupe vmap table", *swap_space_allocator_),
    391       dedupe_gc_map_("dedupe gc map", *swap_space_allocator_),
    392       dedupe_cfi_info_("dedupe cfi info", *swap_space_allocator_) {
    393   DCHECK(compiler_options_ != nullptr);
    394   DCHECK(verification_results_ != nullptr);
    395   DCHECK(method_inliner_map_ != nullptr);
    396 
    397   dex_to_dex_compiler_ = reinterpret_cast<DexToDexCompilerFn>(ArtCompileDEX);
    398 
    399   compiler_->Init();
    400 
    401   CHECK_EQ(image_, image_classes_.get() != nullptr);
    402 
    403   // Read the profile file if one is provided.
    404   if (!profile_file.empty()) {
    405     profile_present_ = profile_file_.LoadFile(profile_file);
    406     if (profile_present_) {
    407       LOG(INFO) << "Using profile data form file " << profile_file;
    408     } else {
    409       LOG(INFO) << "Failed to load profile file " << profile_file;
    410     }
    411   }
    412 }
    413 
    414 SwapVector<uint8_t>* CompilerDriver::DeduplicateCode(const ArrayRef<const uint8_t>& code) {
    415   DCHECK(dedupe_enabled_);
    416   return dedupe_code_.Add(Thread::Current(), code);
    417 }
    418 
    419 SwapSrcMap* CompilerDriver::DeduplicateSrcMappingTable(const ArrayRef<SrcMapElem>& src_map) {
    420   DCHECK(dedupe_enabled_);
    421   return dedupe_src_mapping_table_.Add(Thread::Current(), src_map);
    422 }
    423 
    424 SwapVector<uint8_t>* CompilerDriver::DeduplicateMappingTable(const ArrayRef<const uint8_t>& code) {
    425   DCHECK(dedupe_enabled_);
    426   return dedupe_mapping_table_.Add(Thread::Current(), code);
    427 }
    428 
    429 SwapVector<uint8_t>* CompilerDriver::DeduplicateVMapTable(const ArrayRef<const uint8_t>& code) {
    430   DCHECK(dedupe_enabled_);
    431   return dedupe_vmap_table_.Add(Thread::Current(), code);
    432 }
    433 
    434 SwapVector<uint8_t>* CompilerDriver::DeduplicateGCMap(const ArrayRef<const uint8_t>& code) {
    435   DCHECK(dedupe_enabled_);
    436   return dedupe_gc_map_.Add(Thread::Current(), code);
    437 }
    438 
    439 SwapVector<uint8_t>* CompilerDriver::DeduplicateCFIInfo(const ArrayRef<const uint8_t>& cfi_info) {
    440   DCHECK(dedupe_enabled_);
    441   return dedupe_cfi_info_.Add(Thread::Current(), cfi_info);
    442 }
    443 
    444 CompilerDriver::~CompilerDriver() {
    445   Thread* self = Thread::Current();
    446   {
    447     MutexLock mu(self, compiled_classes_lock_);
    448     STLDeleteValues(&compiled_classes_);
    449   }
    450   {
    451     MutexLock mu(self, compiled_methods_lock_);
    452     for (auto& pair : compiled_methods_) {
    453       CompiledMethod::ReleaseSwapAllocatedCompiledMethod(this, pair.second);
    454     }
    455   }
    456   compiler_->UnInit();
    457 }
    458 
    459 #define CREATE_TRAMPOLINE(type, abi, offset) \
    460     if (Is64BitInstructionSet(instruction_set_)) { \
    461       return CreateTrampoline64(instruction_set_, abi, \
    462                                 type ## _ENTRYPOINT_OFFSET(8, offset)); \
    463     } else { \
    464       return CreateTrampoline32(instruction_set_, abi, \
    465                                 type ## _ENTRYPOINT_OFFSET(4, offset)); \
    466     }
    467 
    468 const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToInterpreterBridge() const {
    469   CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToInterpreterBridge)
    470 }
    471 
    472 const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToCompiledCodeBridge() const {
    473   CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToCompiledCodeBridge)
    474 }
    475 
    476 const std::vector<uint8_t>* CompilerDriver::CreateJniDlsymLookup() const {
    477   CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup)
    478 }
    479 
    480 const std::vector<uint8_t>* CompilerDriver::CreateQuickGenericJniTrampoline() const {
    481   CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline)
    482 }
    483 
    484 const std::vector<uint8_t>* CompilerDriver::CreateQuickImtConflictTrampoline() const {
    485   CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline)
    486 }
    487 
    488 const std::vector<uint8_t>* CompilerDriver::CreateQuickResolutionTrampoline() const {
    489   CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline)
    490 }
    491 
    492 const std::vector<uint8_t>* CompilerDriver::CreateQuickToInterpreterBridge() const {
    493   CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
    494 }
    495 #undef CREATE_TRAMPOLINE
    496 
    497 void CompilerDriver::CompileAll(jobject class_loader,
    498                                 const std::vector<const DexFile*>& dex_files,
    499                                 TimingLogger* timings) {
    500   DCHECK(!Runtime::Current()->IsStarted());
    501   std::unique_ptr<ThreadPool> thread_pool(
    502       new ThreadPool("Compiler driver thread pool", thread_count_ - 1));
    503   VLOG(compiler) << "Before precompile " << GetMemoryUsageString(false);
    504   PreCompile(class_loader, dex_files, thread_pool.get(), timings);
    505   Compile(class_loader, dex_files, thread_pool.get(), timings);
    506   if (dump_stats_) {
    507     stats_->Dump();
    508   }
    509 }
    510 
    511 DexToDexCompilationLevel CompilerDriver::GetDexToDexCompilationlevel(
    512     Thread* self, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file,
    513     const DexFile::ClassDef& class_def) {
    514   auto* const runtime = Runtime::Current();
    515   if (runtime->UseJit() || GetCompilerOptions().VerifyAtRuntime()) {
    516     // Verify at runtime shouldn't dex to dex since we didn't resolve of verify.
    517     return kDontDexToDexCompile;
    518   }
    519   const char* descriptor = dex_file.GetClassDescriptor(class_def);
    520   ClassLinker* class_linker = runtime->GetClassLinker();
    521   mirror::Class* klass = class_linker->FindClass(self, descriptor, class_loader);
    522   if (klass == nullptr) {
    523     CHECK(self->IsExceptionPending());
    524     self->ClearException();
    525     return kDontDexToDexCompile;
    526   }
    527   // DexToDex at the kOptimize level may introduce quickened opcodes, which replace symbolic
    528   // references with actual offsets. We cannot re-verify such instructions.
    529   //
    530   // We store the verification information in the class status in the oat file, which the linker
    531   // can validate (checksums) and use to skip load-time verification. It is thus safe to
    532   // optimize when a class has been fully verified before.
    533   if (klass->IsVerified()) {
    534     // Class is verified so we can enable DEX-to-DEX compilation for performance.
    535     return kOptimize;
    536   } else if (klass->IsCompileTimeVerified()) {
    537     // Class verification has soft-failed. Anyway, ensure at least correctness.
    538     DCHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
    539     return kRequired;
    540   } else {
    541     // Class verification has failed: do not run DEX-to-DEX compilation.
    542     return kDontDexToDexCompile;
    543   }
    544 }
    545 
    546 void CompilerDriver::CompileOne(Thread* self, ArtMethod* method, TimingLogger* timings) {
    547   DCHECK(!Runtime::Current()->IsStarted());
    548   jobject jclass_loader;
    549   const DexFile* dex_file;
    550   uint16_t class_def_idx;
    551   uint32_t method_idx = method->GetDexMethodIndex();
    552   uint32_t access_flags = method->GetAccessFlags();
    553   InvokeType invoke_type = method->GetInvokeType();
    554   {
    555     ScopedObjectAccessUnchecked soa(self);
    556     ScopedLocalRef<jobject> local_class_loader(
    557         soa.Env(), soa.AddLocalReference<jobject>(method->GetDeclaringClass()->GetClassLoader()));
    558     jclass_loader = soa.Env()->NewGlobalRef(local_class_loader.get());
    559     // Find the dex_file
    560     dex_file = method->GetDexFile();
    561     class_def_idx = method->GetClassDefIndex();
    562   }
    563   const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
    564   self->TransitionFromRunnableToSuspended(kNative);
    565 
    566   std::vector<const DexFile*> dex_files;
    567   dex_files.push_back(dex_file);
    568 
    569   std::unique_ptr<ThreadPool> thread_pool(new ThreadPool("Compiler driver thread pool", 0U));
    570   PreCompile(jclass_loader, dex_files, thread_pool.get(), timings);
    571 
    572   // Can we run DEX-to-DEX compiler on this class ?
    573   DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
    574   {
    575     ScopedObjectAccess soa(self);
    576     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    577     StackHandleScope<1> hs(soa.Self());
    578     Handle<mirror::ClassLoader> class_loader(
    579         hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
    580     dex_to_dex_compilation_level = GetDexToDexCompilationlevel(self, class_loader, *dex_file,
    581                                                                class_def);
    582   }
    583   CompileMethod(self, code_item, access_flags, invoke_type, class_def_idx, method_idx,
    584                 jclass_loader, *dex_file, dex_to_dex_compilation_level, true);
    585 
    586   self->GetJniEnv()->DeleteGlobalRef(jclass_loader);
    587   self->TransitionFromSuspendedToRunnable();
    588 }
    589 
    590 CompiledMethod* CompilerDriver::CompileMethod(Thread* self, ArtMethod* method) {
    591   const uint32_t method_idx = method->GetDexMethodIndex();
    592   const uint32_t access_flags = method->GetAccessFlags();
    593   const InvokeType invoke_type = method->GetInvokeType();
    594   StackHandleScope<1> hs(self);
    595   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
    596       method->GetDeclaringClass()->GetClassLoader()));
    597   jobject jclass_loader = class_loader.ToJObject();
    598   const DexFile* dex_file = method->GetDexFile();
    599   const uint16_t class_def_idx = method->GetClassDefIndex();
    600   const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    601   DexToDexCompilationLevel dex_to_dex_compilation_level =
    602       GetDexToDexCompilationlevel(self, class_loader, *dex_file, class_def);
    603   const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
    604   self->TransitionFromRunnableToSuspended(kNative);
    605   CompileMethod(self, code_item, access_flags, invoke_type, class_def_idx, method_idx,
    606                 jclass_loader, *dex_file, dex_to_dex_compilation_level, true);
    607   auto* compiled_method = GetCompiledMethod(MethodReference(dex_file, method_idx));
    608   self->TransitionFromSuspendedToRunnable();
    609   return compiled_method;
    610 }
    611 
    612 void CompilerDriver::Resolve(jobject class_loader, const std::vector<const DexFile*>& dex_files,
    613                              ThreadPool* thread_pool, TimingLogger* timings) {
    614   for (size_t i = 0; i != dex_files.size(); ++i) {
    615     const DexFile* dex_file = dex_files[i];
    616     CHECK(dex_file != nullptr);
    617     ResolveDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
    618   }
    619 }
    620 
    621 void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
    622                                 ThreadPool* thread_pool, TimingLogger* timings) {
    623   LoadImageClasses(timings);
    624   VLOG(compiler) << "LoadImageClasses: " << GetMemoryUsageString(false);
    625 
    626   const bool verification_enabled = compiler_options_->IsVerificationEnabled();
    627   const bool never_verify = compiler_options_->NeverVerify();
    628 
    629   // We need to resolve for never_verify since it needs to run dex to dex to add the
    630   // RETURN_VOID_NO_BARRIER.
    631   if (never_verify || verification_enabled) {
    632     Resolve(class_loader, dex_files, thread_pool, timings);
    633     VLOG(compiler) << "Resolve: " << GetMemoryUsageString(false);
    634   }
    635 
    636   if (never_verify) {
    637     VLOG(compiler) << "Verify none mode specified, skipping verification.";
    638     SetVerified(class_loader, dex_files, thread_pool, timings);
    639   }
    640 
    641   if (!verification_enabled) {
    642     return;
    643   }
    644 
    645   Verify(class_loader, dex_files, thread_pool, timings);
    646   VLOG(compiler) << "Verify: " << GetMemoryUsageString(false);
    647 
    648   if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) {
    649     LOG(FATAL) << "Had a hard failure verifying all classes, and was asked to abort in such "
    650                << "situations. Please check the log.";
    651   }
    652 
    653   InitializeClasses(class_loader, dex_files, thread_pool, timings);
    654   VLOG(compiler) << "InitializeClasses: " << GetMemoryUsageString(false);
    655 
    656   UpdateImageClasses(timings);
    657   VLOG(compiler) << "UpdateImageClasses: " << GetMemoryUsageString(false);
    658 }
    659 
    660 bool CompilerDriver::IsImageClass(const char* descriptor) const {
    661   if (!IsImage()) {
    662     // NOTE: Currently unreachable, all callers check IsImage().
    663     return false;
    664   } else {
    665     return image_classes_->find(descriptor) != image_classes_->end();
    666   }
    667 }
    668 
    669 bool CompilerDriver::IsClassToCompile(const char* descriptor) const {
    670   if (kRestrictCompilationFiltersToImage && !IsImage()) {
    671     return true;
    672   }
    673 
    674   if (classes_to_compile_ == nullptr) {
    675     return true;
    676   }
    677   return classes_to_compile_->find(descriptor) != classes_to_compile_->end();
    678 }
    679 
    680 bool CompilerDriver::IsMethodToCompile(const MethodReference& method_ref) const {
    681   if (kRestrictCompilationFiltersToImage && !IsImage()) {
    682     return true;
    683   }
    684 
    685   if (methods_to_compile_ == nullptr) {
    686     return true;
    687   }
    688 
    689   std::string tmp = PrettyMethod(method_ref.dex_method_index, *method_ref.dex_file, true);
    690   return methods_to_compile_->find(tmp.c_str()) != methods_to_compile_->end();
    691 }
    692 
    693 static void ResolveExceptionsForMethod(
    694     ArtMethod* method_handle, std::set<std::pair<uint16_t, const DexFile*>>& exceptions_to_resolve)
    695     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    696   const DexFile::CodeItem* code_item = method_handle->GetCodeItem();
    697   if (code_item == nullptr) {
    698     return;  // native or abstract method
    699   }
    700   if (code_item->tries_size_ == 0) {
    701     return;  // nothing to process
    702   }
    703   const uint8_t* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0);
    704   size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
    705   for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
    706     int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
    707     bool has_catch_all = false;
    708     if (encoded_catch_handler_size <= 0) {
    709       encoded_catch_handler_size = -encoded_catch_handler_size;
    710       has_catch_all = true;
    711     }
    712     for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
    713       uint16_t encoded_catch_handler_handlers_type_idx =
    714           DecodeUnsignedLeb128(&encoded_catch_handler_list);
    715       // Add to set of types to resolve if not already in the dex cache resolved types
    716       if (!method_handle->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
    717         exceptions_to_resolve.insert(
    718             std::pair<uint16_t, const DexFile*>(encoded_catch_handler_handlers_type_idx,
    719                                                 method_handle->GetDexFile()));
    720       }
    721       // ignore address associated with catch handler
    722       DecodeUnsignedLeb128(&encoded_catch_handler_list);
    723     }
    724     if (has_catch_all) {
    725       // ignore catch all address
    726       DecodeUnsignedLeb128(&encoded_catch_handler_list);
    727     }
    728   }
    729 }
    730 
    731 static bool ResolveCatchBlockExceptionsClassVisitor(mirror::Class* c, void* arg)
    732     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    733   auto* exceptions_to_resolve =
    734       reinterpret_cast<std::set<std::pair<uint16_t, const DexFile*>>*>(arg);
    735   const auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
    736   for (auto& m : c->GetVirtualMethods(pointer_size)) {
    737     ResolveExceptionsForMethod(&m, *exceptions_to_resolve);
    738   }
    739   for (auto& m : c->GetDirectMethods(pointer_size)) {
    740     ResolveExceptionsForMethod(&m, *exceptions_to_resolve);
    741   }
    742   return true;
    743 }
    744 
    745 static bool RecordImageClassesVisitor(mirror::Class* klass, void* arg)
    746     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    747   std::unordered_set<std::string>* image_classes =
    748       reinterpret_cast<std::unordered_set<std::string>*>(arg);
    749   std::string temp;
    750   image_classes->insert(klass->GetDescriptor(&temp));
    751   return true;
    752 }
    753 
    754 // Make a list of descriptors for classes to include in the image
    755 void CompilerDriver::LoadImageClasses(TimingLogger* timings)
    756       LOCKS_EXCLUDED(Locks::mutator_lock_) {
    757   CHECK(timings != nullptr);
    758   if (!IsImage()) {
    759     return;
    760   }
    761 
    762   TimingLogger::ScopedTiming t("LoadImageClasses", timings);
    763   // Make a first class to load all classes explicitly listed in the file
    764   Thread* self = Thread::Current();
    765   ScopedObjectAccess soa(self);
    766   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    767   CHECK(image_classes_.get() != nullptr);
    768   for (auto it = image_classes_->begin(), end = image_classes_->end(); it != end;) {
    769     const std::string& descriptor(*it);
    770     StackHandleScope<1> hs(self);
    771     Handle<mirror::Class> klass(
    772         hs.NewHandle(class_linker->FindSystemClass(self, descriptor.c_str())));
    773     if (klass.Get() == nullptr) {
    774       VLOG(compiler) << "Failed to find class " << descriptor;
    775       image_classes_->erase(it++);
    776       self->ClearException();
    777     } else {
    778       ++it;
    779     }
    780   }
    781 
    782   // Resolve exception classes referenced by the loaded classes. The catch logic assumes
    783   // exceptions are resolved by the verifier when there is a catch block in an interested method.
    784   // Do this here so that exception classes appear to have been specified image classes.
    785   std::set<std::pair<uint16_t, const DexFile*>> unresolved_exception_types;
    786   StackHandleScope<1> hs(self);
    787   Handle<mirror::Class> java_lang_Throwable(
    788       hs.NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")));
    789   do {
    790     unresolved_exception_types.clear();
    791     class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor,
    792                                &unresolved_exception_types);
    793     for (const std::pair<uint16_t, const DexFile*>& exception_type : unresolved_exception_types) {
    794       uint16_t exception_type_idx = exception_type.first;
    795       const DexFile* dex_file = exception_type.second;
    796       StackHandleScope<2> hs2(self);
    797       Handle<mirror::DexCache> dex_cache(hs2.NewHandle(class_linker->FindDexCache(*dex_file)));
    798       Handle<mirror::Class> klass(hs2.NewHandle(
    799           class_linker->ResolveType(*dex_file, exception_type_idx, dex_cache,
    800                                     NullHandle<mirror::ClassLoader>())));
    801       if (klass.Get() == nullptr) {
    802         const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
    803         const char* descriptor = dex_file->GetTypeDescriptor(type_id);
    804         LOG(FATAL) << "Failed to resolve class " << descriptor;
    805       }
    806       DCHECK(java_lang_Throwable->IsAssignableFrom(klass.Get()));
    807     }
    808     // Resolving exceptions may load classes that reference more exceptions, iterate until no
    809     // more are found
    810   } while (!unresolved_exception_types.empty());
    811 
    812   // We walk the roots looking for classes so that we'll pick up the
    813   // above classes plus any classes them depend on such super
    814   // classes, interfaces, and the required ClassLinker roots.
    815   class_linker->VisitClasses(RecordImageClassesVisitor, image_classes_.get());
    816 
    817   CHECK_NE(image_classes_->size(), 0U);
    818 }
    819 
    820 static void MaybeAddToImageClasses(Handle<mirror::Class> c,
    821                                    std::unordered_set<std::string>* image_classes)
    822     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    823   Thread* self = Thread::Current();
    824   StackHandleScope<1> hs(self);
    825   // Make a copy of the handle so that we don't clobber it doing Assign.
    826   MutableHandle<mirror::Class> klass(hs.NewHandle(c.Get()));
    827   std::string temp;
    828   const size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
    829   while (!klass->IsObjectClass()) {
    830     const char* descriptor = klass->GetDescriptor(&temp);
    831     std::pair<std::unordered_set<std::string>::iterator, bool> result =
    832         image_classes->insert(descriptor);
    833     if (!result.second) {  // Previously inserted.
    834       break;
    835     }
    836     VLOG(compiler) << "Adding " << descriptor << " to image classes";
    837     for (size_t i = 0; i < klass->NumDirectInterfaces(); ++i) {
    838       StackHandleScope<1> hs2(self);
    839       MaybeAddToImageClasses(hs2.NewHandle(mirror::Class::GetDirectInterface(self, klass, i)),
    840                              image_classes);
    841     }
    842     for (auto& m : c->GetVirtualMethods(pointer_size)) {
    843       if (m.IsMiranda() || (true)) {
    844         StackHandleScope<1> hs2(self);
    845         MaybeAddToImageClasses(hs2.NewHandle(m.GetDeclaringClass()), image_classes);
    846       }
    847     }
    848     if (klass->IsArrayClass()) {
    849       StackHandleScope<1> hs2(self);
    850       MaybeAddToImageClasses(hs2.NewHandle(klass->GetComponentType()), image_classes);
    851     }
    852     klass.Assign(klass->GetSuperClass());
    853   }
    854 }
    855 
    856 // Keeps all the data for the update together. Also doubles as the reference visitor.
    857 // Note: we can use object pointers because we suspend all threads.
    858 class ClinitImageUpdate {
    859  public:
    860   static ClinitImageUpdate* Create(std::unordered_set<std::string>* image_class_descriptors,
    861                                    Thread* self, ClassLinker* linker, std::string* error_msg) {
    862     std::unique_ptr<ClinitImageUpdate> res(new ClinitImageUpdate(image_class_descriptors, self,
    863                                                                  linker));
    864     if (res->dex_cache_class_ == nullptr) {
    865       *error_msg = "Could not find DexCache class.";
    866       return nullptr;
    867     }
    868 
    869     return res.release();
    870   }
    871 
    872   ~ClinitImageUpdate() {
    873     // Allow others to suspend again.
    874     self_->EndAssertNoThreadSuspension(old_cause_);
    875   }
    876 
    877   // Visitor for VisitReferences.
    878   void operator()(mirror::Object* object, MemberOffset field_offset, bool /* is_static */) const
    879       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    880     mirror::Object* ref = object->GetFieldObject<mirror::Object>(field_offset);
    881     if (ref != nullptr) {
    882       VisitClinitClassesObject(ref);
    883     }
    884   }
    885 
    886   // java.lang.Reference visitor for VisitReferences.
    887   void operator()(mirror::Class* /* klass */, mirror::Reference* /* ref */) const {
    888   }
    889 
    890   void Walk() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    891     // Use the initial classes as roots for a search.
    892     for (mirror::Class* klass_root : image_classes_) {
    893       VisitClinitClassesObject(klass_root);
    894     }
    895   }
    896 
    897  private:
    898   ClinitImageUpdate(std::unordered_set<std::string>* image_class_descriptors, Thread* self,
    899                     ClassLinker* linker)
    900       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
    901       image_class_descriptors_(image_class_descriptors), self_(self) {
    902     CHECK(linker != nullptr);
    903     CHECK(image_class_descriptors != nullptr);
    904 
    905     // Make sure nobody interferes with us.
    906     old_cause_ = self->StartAssertNoThreadSuspension("Boot image closure");
    907 
    908     // Find the interesting classes.
    909     dex_cache_class_ = linker->LookupClass(self, "Ljava/lang/DexCache;",
    910         ComputeModifiedUtf8Hash("Ljava/lang/DexCache;"), nullptr);
    911 
    912     // Find all the already-marked classes.
    913     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    914     linker->VisitClasses(FindImageClasses, this);
    915   }
    916 
    917   static bool FindImageClasses(mirror::Class* klass, void* arg)
    918       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    919     ClinitImageUpdate* data = reinterpret_cast<ClinitImageUpdate*>(arg);
    920     std::string temp;
    921     const char* name = klass->GetDescriptor(&temp);
    922     if (data->image_class_descriptors_->find(name) != data->image_class_descriptors_->end()) {
    923       data->image_classes_.push_back(klass);
    924     } else {
    925       // Check whether it is initialized and has a clinit. They must be kept, too.
    926       if (klass->IsInitialized() && klass->FindClassInitializer(
    927           Runtime::Current()->GetClassLinker()->GetImagePointerSize()) != nullptr) {
    928         data->image_classes_.push_back(klass);
    929       }
    930     }
    931 
    932     return true;
    933   }
    934 
    935   void VisitClinitClassesObject(mirror::Object* object) const
    936       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    937     DCHECK(object != nullptr);
    938     if (marked_objects_.find(object) != marked_objects_.end()) {
    939       // Already processed.
    940       return;
    941     }
    942 
    943     // Mark it.
    944     marked_objects_.insert(object);
    945 
    946     if (object->IsClass()) {
    947       // If it is a class, add it.
    948       StackHandleScope<1> hs(self_);
    949       MaybeAddToImageClasses(hs.NewHandle(object->AsClass()), image_class_descriptors_);
    950     } else {
    951       // Else visit the object's class.
    952       VisitClinitClassesObject(object->GetClass());
    953     }
    954 
    955     // If it is not a DexCache, visit all references.
    956     mirror::Class* klass = object->GetClass();
    957     if (klass != dex_cache_class_) {
    958       object->VisitReferences<false /* visit class */>(*this, *this);
    959     }
    960   }
    961 
    962   mutable std::unordered_set<mirror::Object*> marked_objects_;
    963   std::unordered_set<std::string>* const image_class_descriptors_;
    964   std::vector<mirror::Class*> image_classes_;
    965   const mirror::Class* dex_cache_class_;
    966   Thread* const self_;
    967   const char* old_cause_;
    968 
    969   DISALLOW_COPY_AND_ASSIGN(ClinitImageUpdate);
    970 };
    971 
    972 void CompilerDriver::UpdateImageClasses(TimingLogger* timings) {
    973   if (IsImage()) {
    974     TimingLogger::ScopedTiming t("UpdateImageClasses", timings);
    975 
    976     Runtime* current = Runtime::Current();
    977 
    978     // Suspend all threads.
    979     current->GetThreadList()->SuspendAll(__FUNCTION__);
    980 
    981     std::string error_msg;
    982     std::unique_ptr<ClinitImageUpdate> update(ClinitImageUpdate::Create(image_classes_.get(),
    983                                                                         Thread::Current(),
    984                                                                         current->GetClassLinker(),
    985                                                                         &error_msg));
    986     CHECK(update.get() != nullptr) << error_msg;  // TODO: Soft failure?
    987 
    988     // Do the marking.
    989     update->Walk();
    990 
    991     // Resume threads.
    992     current->GetThreadList()->ResumeAll();
    993   }
    994 }
    995 
    996 bool CompilerDriver::CanAssumeClassIsLoaded(mirror::Class* klass) {
    997   Runtime* runtime = Runtime::Current();
    998   if (!runtime->IsAotCompiler()) {
    999     DCHECK(runtime->UseJit());
   1000     // Having the klass reference here implies that the klass is already loaded.
   1001     return true;
   1002   }
   1003   if (!IsImage()) {
   1004     // Assume loaded only if klass is in the boot image. App classes cannot be assumed
   1005     // loaded because we don't even know what class loader will be used to load them.
   1006     bool class_in_image = runtime->GetHeap()->FindSpaceFromObject(klass, false)->IsImageSpace();
   1007     return class_in_image;
   1008   }
   1009   std::string temp;
   1010   const char* descriptor = klass->GetDescriptor(&temp);
   1011   return IsImageClass(descriptor);
   1012 }
   1013 
   1014 bool CompilerDriver::CanAssumeTypeIsPresentInDexCache(const DexFile& dex_file, uint32_t type_idx) {
   1015   if (IsImage() &&
   1016       IsImageClass(dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_))) {
   1017     {
   1018       ScopedObjectAccess soa(Thread::Current());
   1019       mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
   1020       mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
   1021       if (resolved_class == nullptr) {
   1022         // Erroneous class.
   1023         stats_->TypeNotInDexCache();
   1024         return false;
   1025       }
   1026     }
   1027     stats_->TypeInDexCache();
   1028     return true;
   1029   } else {
   1030     stats_->TypeNotInDexCache();
   1031     return false;
   1032   }
   1033 }
   1034 
   1035 bool CompilerDriver::CanAssumeStringIsPresentInDexCache(const DexFile& dex_file,
   1036                                                         uint32_t string_idx) {
   1037   // See also Compiler::ResolveDexFile
   1038 
   1039   bool result = false;
   1040   if (IsImage()) {
   1041     // We resolve all const-string strings when building for the image.
   1042     ScopedObjectAccess soa(Thread::Current());
   1043     StackHandleScope<1> hs(soa.Self());
   1044     Handle<mirror::DexCache> dex_cache(
   1045         hs.NewHandle(Runtime::Current()->GetClassLinker()->FindDexCache(dex_file)));
   1046     Runtime::Current()->GetClassLinker()->ResolveString(dex_file, string_idx, dex_cache);
   1047     result = true;
   1048   }
   1049   if (result) {
   1050     stats_->StringInDexCache();
   1051   } else {
   1052     stats_->StringNotInDexCache();
   1053   }
   1054   return result;
   1055 }
   1056 
   1057 bool CompilerDriver::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexFile& dex_file,
   1058                                                 uint32_t type_idx,
   1059                                                 bool* type_known_final, bool* type_known_abstract,
   1060                                                 bool* equals_referrers_class) {
   1061   if (type_known_final != nullptr) {
   1062     *type_known_final = false;
   1063   }
   1064   if (type_known_abstract != nullptr) {
   1065     *type_known_abstract = false;
   1066   }
   1067   if (equals_referrers_class != nullptr) {
   1068     *equals_referrers_class = false;
   1069   }
   1070   ScopedObjectAccess soa(Thread::Current());
   1071   mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
   1072   // Get type from dex cache assuming it was populated by the verifier
   1073   mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
   1074   if (resolved_class == nullptr) {
   1075     stats_->TypeNeedsAccessCheck();
   1076     return false;  // Unknown class needs access checks.
   1077   }
   1078   const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
   1079   if (equals_referrers_class != nullptr) {
   1080     *equals_referrers_class = (method_id.class_idx_ == type_idx);
   1081   }
   1082   mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
   1083   if (referrer_class == nullptr) {
   1084     stats_->TypeNeedsAccessCheck();
   1085     return false;  // Incomplete referrer knowledge needs access check.
   1086   }
   1087   // Perform access check, will return true if access is ok or false if we're going to have to
   1088   // check this at runtime (for example for class loaders).
   1089   bool result = referrer_class->CanAccess(resolved_class);
   1090   if (result) {
   1091     stats_->TypeDoesntNeedAccessCheck();
   1092     if (type_known_final != nullptr) {
   1093       *type_known_final = resolved_class->IsFinal() && !resolved_class->IsArrayClass();
   1094     }
   1095     if (type_known_abstract != nullptr) {
   1096       *type_known_abstract = resolved_class->IsAbstract() && !resolved_class->IsArrayClass();
   1097     }
   1098   } else {
   1099     stats_->TypeNeedsAccessCheck();
   1100   }
   1101   return result;
   1102 }
   1103 
   1104 bool CompilerDriver::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx,
   1105                                                             const DexFile& dex_file,
   1106                                                             uint32_t type_idx) {
   1107   ScopedObjectAccess soa(Thread::Current());
   1108   mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
   1109   // Get type from dex cache assuming it was populated by the verifier.
   1110   mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
   1111   if (resolved_class == nullptr) {
   1112     stats_->TypeNeedsAccessCheck();
   1113     return false;  // Unknown class needs access checks.
   1114   }
   1115   const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
   1116   mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
   1117   if (referrer_class == nullptr) {
   1118     stats_->TypeNeedsAccessCheck();
   1119     return false;  // Incomplete referrer knowledge needs access check.
   1120   }
   1121   // Perform access and instantiable checks, will return true if access is ok or false if we're
   1122   // going to have to check this at runtime (for example for class loaders).
   1123   bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable();
   1124   if (result) {
   1125     stats_->TypeDoesntNeedAccessCheck();
   1126   } else {
   1127     stats_->TypeNeedsAccessCheck();
   1128   }
   1129   return result;
   1130 }
   1131 
   1132 bool CompilerDriver::CanEmbedTypeInCode(const DexFile& dex_file, uint32_t type_idx,
   1133                                         bool* is_type_initialized, bool* use_direct_type_ptr,
   1134                                         uintptr_t* direct_type_ptr, bool* out_is_finalizable) {
   1135   ScopedObjectAccess soa(Thread::Current());
   1136   Runtime* runtime = Runtime::Current();
   1137   mirror::DexCache* dex_cache = runtime->GetClassLinker()->FindDexCache(dex_file);
   1138   mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
   1139   if (resolved_class == nullptr) {
   1140     return false;
   1141   }
   1142   if (GetCompilerOptions().GetCompilePic()) {
   1143     // Do not allow a direct class pointer to be used when compiling for position-independent
   1144     return false;
   1145   }
   1146   *out_is_finalizable = resolved_class->IsFinalizable();
   1147   gc::Heap* heap = runtime->GetHeap();
   1148   const bool compiling_boot = heap->IsCompilingBoot();
   1149   const bool support_boot_image_fixup = GetSupportBootImageFixup();
   1150   if (compiling_boot) {
   1151     // boot -> boot class pointers.
   1152     // True if the class is in the image at boot compiling time.
   1153     const bool is_image_class = IsImage() && IsImageClass(
   1154         dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_));
   1155     // True if pc relative load works.
   1156     if (is_image_class && support_boot_image_fixup) {
   1157       *is_type_initialized = resolved_class->IsInitialized();
   1158       *use_direct_type_ptr = false;
   1159       *direct_type_ptr = 0;
   1160       return true;
   1161     } else {
   1162       return false;
   1163     }
   1164   } else if (runtime->UseJit() && !heap->IsMovableObject(resolved_class)) {
   1165     *is_type_initialized = resolved_class->IsInitialized();
   1166     // If the class may move around, then don't embed it as a direct pointer.
   1167     *use_direct_type_ptr = true;
   1168     *direct_type_ptr = reinterpret_cast<uintptr_t>(resolved_class);
   1169     return true;
   1170   } else {
   1171     // True if the class is in the image at app compiling time.
   1172     const bool class_in_image = heap->FindSpaceFromObject(resolved_class, false)->IsImageSpace();
   1173     if (class_in_image && support_boot_image_fixup) {
   1174       // boot -> app class pointers.
   1175       *is_type_initialized = resolved_class->IsInitialized();
   1176       // TODO This is somewhat hacky. We should refactor all of this invoke codepath.
   1177       *use_direct_type_ptr = !GetCompilerOptions().GetIncludePatchInformation();
   1178       *direct_type_ptr = reinterpret_cast<uintptr_t>(resolved_class);
   1179       return true;
   1180     } else {
   1181       // app -> app class pointers.
   1182       // Give up because app does not have an image and class
   1183       // isn't created at compile time.  TODO: implement this
   1184       // if/when each app gets an image.
   1185       return false;
   1186     }
   1187   }
   1188 }
   1189 
   1190 bool CompilerDriver::CanEmbedReferenceTypeInCode(ClassReference* ref,
   1191                                                  bool* use_direct_ptr,
   1192                                                  uintptr_t* direct_type_ptr) {
   1193   CHECK(ref != nullptr);
   1194   CHECK(use_direct_ptr != nullptr);
   1195   CHECK(direct_type_ptr != nullptr);
   1196 
   1197   ScopedObjectAccess soa(Thread::Current());
   1198   mirror::Class* reference_class = mirror::Reference::GetJavaLangRefReference();
   1199   bool is_initialized = false;
   1200   bool unused_finalizable;
   1201   // Make sure we have a finished Reference class object before attempting to use it.
   1202   if (!CanEmbedTypeInCode(*reference_class->GetDexCache()->GetDexFile(),
   1203                           reference_class->GetDexTypeIndex(), &is_initialized,
   1204                           use_direct_ptr, direct_type_ptr, &unused_finalizable) ||
   1205       !is_initialized) {
   1206     return false;
   1207   }
   1208   ref->first = &reference_class->GetDexFile();
   1209   ref->second = reference_class->GetDexClassDefIndex();
   1210   return true;
   1211 }
   1212 
   1213 uint32_t CompilerDriver::GetReferenceSlowFlagOffset() const {
   1214   ScopedObjectAccess soa(Thread::Current());
   1215   mirror::Class* klass = mirror::Reference::GetJavaLangRefReference();
   1216   DCHECK(klass->IsInitialized());
   1217   return klass->GetSlowPathFlagOffset().Uint32Value();
   1218 }
   1219 
   1220 uint32_t CompilerDriver::GetReferenceDisableFlagOffset() const {
   1221   ScopedObjectAccess soa(Thread::Current());
   1222   mirror::Class* klass = mirror::Reference::GetJavaLangRefReference();
   1223   DCHECK(klass->IsInitialized());
   1224   return klass->GetDisableIntrinsicFlagOffset().Uint32Value();
   1225 }
   1226 
   1227 DexCacheArraysLayout CompilerDriver::GetDexCacheArraysLayout(const DexFile* dex_file) {
   1228   // Currently only image dex caches have fixed array layout.
   1229   return IsImage() && GetSupportBootImageFixup()
   1230       ? DexCacheArraysLayout(GetInstructionSetPointerSize(instruction_set_), dex_file)
   1231       : DexCacheArraysLayout();
   1232 }
   1233 
   1234 void CompilerDriver::ProcessedInstanceField(bool resolved) {
   1235   if (!resolved) {
   1236     stats_->UnresolvedInstanceField();
   1237   } else {
   1238     stats_->ResolvedInstanceField();
   1239   }
   1240 }
   1241 
   1242 void CompilerDriver::ProcessedStaticField(bool resolved, bool local) {
   1243   if (!resolved) {
   1244     stats_->UnresolvedStaticField();
   1245   } else if (local) {
   1246     stats_->ResolvedLocalStaticField();
   1247   } else {
   1248     stats_->ResolvedStaticField();
   1249   }
   1250 }
   1251 
   1252 void CompilerDriver::ProcessedInvoke(InvokeType invoke_type, int flags) {
   1253   stats_->ProcessedInvoke(invoke_type, flags);
   1254 }
   1255 
   1256 ArtField* CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx,
   1257                                                    const DexCompilationUnit* mUnit, bool is_put,
   1258                                                    const ScopedObjectAccess& soa) {
   1259   // Try to resolve the field and compiling method's class.
   1260   ArtField* resolved_field;
   1261   mirror::Class* referrer_class;
   1262   mirror::DexCache* dex_cache;
   1263   {
   1264     StackHandleScope<3> hs(soa.Self());
   1265     Handle<mirror::DexCache> dex_cache_handle(
   1266         hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
   1267     Handle<mirror::ClassLoader> class_loader_handle(
   1268         hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
   1269     resolved_field =
   1270         ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, false);
   1271     referrer_class = resolved_field != nullptr
   1272         ? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
   1273     dex_cache = dex_cache_handle.Get();
   1274   }
   1275   bool can_link = false;
   1276   if (resolved_field != nullptr && referrer_class != nullptr) {
   1277     std::pair<bool, bool> fast_path = IsFastInstanceField(
   1278         dex_cache, referrer_class, resolved_field, field_idx);
   1279     can_link = is_put ? fast_path.second : fast_path.first;
   1280   }
   1281   ProcessedInstanceField(can_link);
   1282   return can_link ? resolved_field : nullptr;
   1283 }
   1284 
   1285 bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
   1286                                               bool is_put, MemberOffset* field_offset,
   1287                                               bool* is_volatile) {
   1288   ScopedObjectAccess soa(Thread::Current());
   1289   ArtField* resolved_field = ComputeInstanceFieldInfo(field_idx, mUnit, is_put, soa);
   1290 
   1291   if (resolved_field == nullptr) {
   1292     // Conservative defaults.
   1293     *is_volatile = true;
   1294     *field_offset = MemberOffset(static_cast<size_t>(-1));
   1295     return false;
   1296   } else {
   1297     *is_volatile = resolved_field->IsVolatile();
   1298     *field_offset = resolved_field->GetOffset();
   1299     return true;
   1300   }
   1301 }
   1302 
   1303 bool CompilerDriver::ComputeStaticFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
   1304                                             bool is_put, MemberOffset* field_offset,
   1305                                             uint32_t* storage_index, bool* is_referrers_class,
   1306                                             bool* is_volatile, bool* is_initialized,
   1307                                             Primitive::Type* type) {
   1308   ScopedObjectAccess soa(Thread::Current());
   1309   // Try to resolve the field and compiling method's class.
   1310   ArtField* resolved_field;
   1311   mirror::Class* referrer_class;
   1312   mirror::DexCache* dex_cache;
   1313   {
   1314     StackHandleScope<2> hs(soa.Self());
   1315     Handle<mirror::DexCache> dex_cache_handle(
   1316         hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
   1317     Handle<mirror::ClassLoader> class_loader_handle(
   1318         hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
   1319     resolved_field =
   1320         ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, true);
   1321     referrer_class = resolved_field != nullptr
   1322         ? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
   1323     dex_cache = dex_cache_handle.Get();
   1324   }
   1325   bool result = false;
   1326   if (resolved_field != nullptr && referrer_class != nullptr) {
   1327     *is_volatile = IsFieldVolatile(resolved_field);
   1328     std::pair<bool, bool> fast_path = IsFastStaticField(
   1329         dex_cache, referrer_class, resolved_field, field_idx, storage_index);
   1330     result = is_put ? fast_path.second : fast_path.first;
   1331   }
   1332   if (result) {
   1333     *field_offset = GetFieldOffset(resolved_field);
   1334     *is_referrers_class = IsStaticFieldInReferrerClass(referrer_class, resolved_field);
   1335     // *is_referrers_class == true implies no worrying about class initialization.
   1336     *is_initialized = (*is_referrers_class) ||
   1337         (IsStaticFieldsClassInitialized(referrer_class, resolved_field) &&
   1338          CanAssumeTypeIsPresentInDexCache(*mUnit->GetDexFile(), *storage_index));
   1339     *type = resolved_field->GetTypeAsPrimitiveType();
   1340   } else {
   1341     // Conservative defaults.
   1342     *is_volatile = true;
   1343     *field_offset = MemberOffset(static_cast<size_t>(-1));
   1344     *storage_index = -1;
   1345     *is_referrers_class = false;
   1346     *is_initialized = false;
   1347     *type = Primitive::kPrimVoid;
   1348   }
   1349   ProcessedStaticField(result, *is_referrers_class);
   1350   return result;
   1351 }
   1352 
   1353 void CompilerDriver::GetCodeAndMethodForDirectCall(InvokeType* type, InvokeType sharp_type,
   1354                                                    bool no_guarantee_of_dex_cache_entry,
   1355                                                    const mirror::Class* referrer_class,
   1356                                                    ArtMethod* method,
   1357                                                    int* stats_flags,
   1358                                                    MethodReference* target_method,
   1359                                                    uintptr_t* direct_code,
   1360                                                    uintptr_t* direct_method) {
   1361   // For direct and static methods compute possible direct_code and direct_method values, ie
   1362   // an address for the Method* being invoked and an address of the code for that Method*.
   1363   // For interface calls compute a value for direct_method that is the interface method being
   1364   // invoked, so this can be passed to the out-of-line runtime support code.
   1365   *direct_code = 0;
   1366   *direct_method = 0;
   1367   Runtime* const runtime = Runtime::Current();
   1368   gc::Heap* const heap = runtime->GetHeap();
   1369   auto* cl = runtime->GetClassLinker();
   1370   const auto pointer_size = cl->GetImagePointerSize();
   1371   bool use_dex_cache = GetCompilerOptions().GetCompilePic();  // Off by default
   1372   const bool compiling_boot = heap->IsCompilingBoot();
   1373   // TODO This is somewhat hacky. We should refactor all of this invoke codepath.
   1374   const bool force_relocations = (compiling_boot ||
   1375                                   GetCompilerOptions().GetIncludePatchInformation());
   1376   if (sharp_type != kStatic && sharp_type != kDirect) {
   1377     return;
   1378   }
   1379   // TODO: support patching on all architectures.
   1380   use_dex_cache = use_dex_cache || (force_relocations && !support_boot_image_fixup_);
   1381   mirror::Class* declaring_class = method->GetDeclaringClass();
   1382   bool method_code_in_boot = declaring_class->GetClassLoader() == nullptr;
   1383   if (!use_dex_cache) {
   1384     if (!method_code_in_boot) {
   1385       use_dex_cache = true;
   1386     } else {
   1387       bool has_clinit_trampoline =
   1388           method->IsStatic() && !declaring_class->IsInitialized();
   1389       if (has_clinit_trampoline && declaring_class != referrer_class) {
   1390         // Ensure we run the clinit trampoline unless we are invoking a static method in the same
   1391         // class.
   1392         use_dex_cache = true;
   1393       }
   1394     }
   1395   }
   1396   if (runtime->UseJit()) {
   1397     // If we are the JIT, then don't allow a direct call to the interpreter bridge since this will
   1398     // never be updated even after we compile the method.
   1399     if (cl->IsQuickToInterpreterBridge(
   1400         reinterpret_cast<const void*>(compiler_->GetEntryPointOf(method)))) {
   1401       use_dex_cache = true;
   1402     }
   1403   }
   1404   if (method_code_in_boot) {
   1405     *stats_flags |= kFlagDirectCallToBoot | kFlagDirectMethodToBoot;
   1406   }
   1407   if (!use_dex_cache && force_relocations) {
   1408     bool is_in_image;
   1409     if (IsImage()) {
   1410       is_in_image = IsImageClass(method->GetDeclaringClassDescriptor());
   1411     } else {
   1412       is_in_image = instruction_set_ != kX86 && instruction_set_ != kX86_64 &&
   1413                     heap->FindSpaceFromObject(method->GetDeclaringClass(), false)->IsImageSpace() &&
   1414                     !cl->IsQuickToInterpreterBridge(
   1415                         reinterpret_cast<const void*>(compiler_->GetEntryPointOf(method)));
   1416     }
   1417     if (!is_in_image) {
   1418       // We can only branch directly to Methods that are resolved in the DexCache.
   1419       // Otherwise we won't invoke the resolution trampoline.
   1420       use_dex_cache = true;
   1421     }
   1422   }
   1423   // The method is defined not within this dex file. We need a dex cache slot within the current
   1424   // dex file or direct pointers.
   1425   bool must_use_direct_pointers = false;
   1426   mirror::DexCache* dex_cache = declaring_class->GetDexCache();
   1427   if (target_method->dex_file == dex_cache->GetDexFile() &&
   1428     !(runtime->UseJit() && dex_cache->GetResolvedMethod(
   1429         method->GetDexMethodIndex(), pointer_size) == nullptr)) {
   1430     target_method->dex_method_index = method->GetDexMethodIndex();
   1431   } else {
   1432     if (no_guarantee_of_dex_cache_entry) {
   1433       // See if the method is also declared in this dex cache.
   1434       uint32_t dex_method_idx = method->FindDexMethodIndexInOtherDexFile(
   1435           *target_method->dex_file, target_method->dex_method_index);
   1436       if (dex_method_idx != DexFile::kDexNoIndex) {
   1437         target_method->dex_method_index = dex_method_idx;
   1438       } else {
   1439         if (force_relocations && !use_dex_cache) {
   1440           target_method->dex_method_index = method->GetDexMethodIndex();
   1441           target_method->dex_file = dex_cache->GetDexFile();
   1442         }
   1443         must_use_direct_pointers = true;
   1444       }
   1445     }
   1446   }
   1447   if (use_dex_cache) {
   1448     if (must_use_direct_pointers) {
   1449       // Fail. Test above showed the only safe dispatch was via the dex cache, however, the direct
   1450       // pointers are required as the dex cache lacks an appropriate entry.
   1451       VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
   1452     } else {
   1453       *type = sharp_type;
   1454     }
   1455   } else {
   1456     auto* image_space = heap->GetImageSpace();
   1457     bool method_in_image = false;
   1458     if (image_space != nullptr) {
   1459       const auto& method_section = image_space->GetImageHeader().GetMethodsSection();
   1460       method_in_image = method_section.Contains(
   1461           reinterpret_cast<uint8_t*>(method) - image_space->Begin());
   1462     }
   1463     if (method_in_image || compiling_boot || runtime->UseJit()) {
   1464       // We know we must be able to get to the method in the image, so use that pointer.
   1465       // In the case where we are the JIT, we can always use direct pointers since we know where
   1466       // the method and its code are / will be. We don't sharpen to interpreter bridge since we
   1467       // check IsQuickToInterpreterBridge above.
   1468       CHECK(!method->IsAbstract());
   1469       *type = sharp_type;
   1470       *direct_method = force_relocations ? -1 : reinterpret_cast<uintptr_t>(method);
   1471       *direct_code = force_relocations ? -1 : compiler_->GetEntryPointOf(method);
   1472       target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
   1473       target_method->dex_method_index = method->GetDexMethodIndex();
   1474     } else if (!must_use_direct_pointers) {
   1475       // Set the code and rely on the dex cache for the method.
   1476       *type = sharp_type;
   1477       if (force_relocations) {
   1478         *direct_code = -1;
   1479         target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
   1480         target_method->dex_method_index = method->GetDexMethodIndex();
   1481       } else {
   1482         *direct_code = compiler_->GetEntryPointOf(method);
   1483       }
   1484     } else {
   1485       // Direct pointers were required but none were available.
   1486       VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
   1487     }
   1488   }
   1489 }
   1490 
   1491 bool CompilerDriver::ComputeInvokeInfo(const DexCompilationUnit* mUnit, const uint32_t dex_pc,
   1492                                        bool update_stats, bool enable_devirtualization,
   1493                                        InvokeType* invoke_type, MethodReference* target_method,
   1494                                        int* vtable_idx, uintptr_t* direct_code,
   1495                                        uintptr_t* direct_method) {
   1496   InvokeType orig_invoke_type = *invoke_type;
   1497   int stats_flags = 0;
   1498   ScopedObjectAccess soa(Thread::Current());
   1499   // Try to resolve the method and compiling method's class.
   1500   StackHandleScope<3> hs(soa.Self());
   1501   Handle<mirror::DexCache> dex_cache(
   1502       hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
   1503   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
   1504       soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
   1505   uint32_t method_idx = target_method->dex_method_index;
   1506   ArtMethod* resolved_method = ResolveMethod(
   1507       soa, dex_cache, class_loader, mUnit, method_idx, orig_invoke_type);
   1508   auto h_referrer_class = hs.NewHandle(resolved_method != nullptr ?
   1509       ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr);
   1510   bool result = false;
   1511   if (resolved_method != nullptr) {
   1512     *vtable_idx = GetResolvedMethodVTableIndex(resolved_method, orig_invoke_type);
   1513 
   1514     if (enable_devirtualization && mUnit->GetVerifiedMethod() != nullptr) {
   1515       const MethodReference* devirt_target = mUnit->GetVerifiedMethod()->GetDevirtTarget(dex_pc);
   1516 
   1517       stats_flags = IsFastInvoke(
   1518           soa, dex_cache, class_loader, mUnit, h_referrer_class.Get(), resolved_method,
   1519           invoke_type, target_method, devirt_target, direct_code, direct_method);
   1520       result = stats_flags != 0;
   1521     } else {
   1522       // Devirtualization not enabled. Inline IsFastInvoke(), dropping the devirtualization parts.
   1523       if (UNLIKELY(h_referrer_class.Get() == nullptr) ||
   1524           UNLIKELY(!h_referrer_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
   1525                                                             resolved_method, dex_cache.Get(),
   1526                                                             target_method->dex_method_index)) ||
   1527           *invoke_type == kSuper) {
   1528         // Slow path. (Without devirtualization, all super calls go slow path as well.)
   1529       } else {
   1530         // Sharpening failed so generate a regular resolved method dispatch.
   1531         stats_flags = kFlagMethodResolved;
   1532         GetCodeAndMethodForDirectCall(
   1533             invoke_type, *invoke_type, false, h_referrer_class.Get(), resolved_method, &stats_flags,
   1534             target_method, direct_code, direct_method);
   1535         result = true;
   1536       }
   1537     }
   1538   }
   1539   if (!result) {
   1540     // Conservative defaults.
   1541     *vtable_idx = -1;
   1542     *direct_code = 0u;
   1543     *direct_method = 0u;
   1544   }
   1545   if (update_stats) {
   1546     ProcessedInvoke(orig_invoke_type, stats_flags);
   1547   }
   1548   return result;
   1549 }
   1550 
   1551 const VerifiedMethod* CompilerDriver::GetVerifiedMethod(const DexFile* dex_file,
   1552                                                         uint32_t method_idx) const {
   1553   MethodReference ref(dex_file, method_idx);
   1554   return verification_results_->GetVerifiedMethod(ref);
   1555 }
   1556 
   1557 bool CompilerDriver::IsSafeCast(const DexCompilationUnit* mUnit, uint32_t dex_pc) {
   1558   if (!compiler_options_->IsVerificationEnabled()) {
   1559     // If we didn't verify, every cast has to be treated as non-safe.
   1560     return false;
   1561   }
   1562   DCHECK(mUnit->GetVerifiedMethod() != nullptr);
   1563   bool result = mUnit->GetVerifiedMethod()->IsSafeCast(dex_pc);
   1564   if (result) {
   1565     stats_->SafeCast();
   1566   } else {
   1567     stats_->NotASafeCast();
   1568   }
   1569   return result;
   1570 }
   1571 
   1572 class ParallelCompilationManager {
   1573  public:
   1574   typedef void Callback(const ParallelCompilationManager* manager, size_t index);
   1575 
   1576   ParallelCompilationManager(ClassLinker* class_linker,
   1577                              jobject class_loader,
   1578                              CompilerDriver* compiler,
   1579                              const DexFile* dex_file,
   1580                              const std::vector<const DexFile*>& dex_files,
   1581                              ThreadPool* thread_pool)
   1582     : index_(0),
   1583       class_linker_(class_linker),
   1584       class_loader_(class_loader),
   1585       compiler_(compiler),
   1586       dex_file_(dex_file),
   1587       dex_files_(dex_files),
   1588       thread_pool_(thread_pool) {}
   1589 
   1590   ClassLinker* GetClassLinker() const {
   1591     CHECK(class_linker_ != nullptr);
   1592     return class_linker_;
   1593   }
   1594 
   1595   jobject GetClassLoader() const {
   1596     return class_loader_;
   1597   }
   1598 
   1599   CompilerDriver* GetCompiler() const {
   1600     CHECK(compiler_ != nullptr);
   1601     return compiler_;
   1602   }
   1603 
   1604   const DexFile* GetDexFile() const {
   1605     CHECK(dex_file_ != nullptr);
   1606     return dex_file_;
   1607   }
   1608 
   1609   const std::vector<const DexFile*>& GetDexFiles() const {
   1610     return dex_files_;
   1611   }
   1612 
   1613   void ForAll(size_t begin, size_t end, Callback callback, size_t work_units) {
   1614     Thread* self = Thread::Current();
   1615     self->AssertNoPendingException();
   1616     CHECK_GT(work_units, 0U);
   1617 
   1618     index_.StoreRelaxed(begin);
   1619     for (size_t i = 0; i < work_units; ++i) {
   1620       thread_pool_->AddTask(self, new ForAllClosure(this, end, callback));
   1621     }
   1622     thread_pool_->StartWorkers(self);
   1623 
   1624     // Ensure we're suspended while we're blocked waiting for the other threads to finish (worker
   1625     // thread destructor's called below perform join).
   1626     CHECK_NE(self->GetState(), kRunnable);
   1627 
   1628     // Wait for all the worker threads to finish.
   1629     thread_pool_->Wait(self, true, false);
   1630   }
   1631 
   1632   size_t NextIndex() {
   1633     return index_.FetchAndAddSequentiallyConsistent(1);
   1634   }
   1635 
   1636  private:
   1637   class ForAllClosure : public Task {
   1638    public:
   1639     ForAllClosure(ParallelCompilationManager* manager, size_t end, Callback* callback)
   1640         : manager_(manager),
   1641           end_(end),
   1642           callback_(callback) {}
   1643 
   1644     virtual void Run(Thread* self) {
   1645       while (true) {
   1646         const size_t index = manager_->NextIndex();
   1647         if (UNLIKELY(index >= end_)) {
   1648           break;
   1649         }
   1650         callback_(manager_, index);
   1651         self->AssertNoPendingException();
   1652       }
   1653     }
   1654 
   1655     virtual void Finalize() {
   1656       delete this;
   1657     }
   1658 
   1659    private:
   1660     ParallelCompilationManager* const manager_;
   1661     const size_t end_;
   1662     Callback* const callback_;
   1663   };
   1664 
   1665   AtomicInteger index_;
   1666   ClassLinker* const class_linker_;
   1667   const jobject class_loader_;
   1668   CompilerDriver* const compiler_;
   1669   const DexFile* const dex_file_;
   1670   const std::vector<const DexFile*>& dex_files_;
   1671   ThreadPool* const thread_pool_;
   1672 
   1673   DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager);
   1674 };
   1675 
   1676 // A fast version of SkipClass above if the class pointer is available
   1677 // that avoids the expensive FindInClassPath search.
   1678 static bool SkipClass(jobject class_loader, const DexFile& dex_file, mirror::Class* klass)
   1679     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1680   DCHECK(klass != nullptr);
   1681   const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile();
   1682   if (&dex_file != &original_dex_file) {
   1683     if (class_loader == nullptr) {
   1684       LOG(WARNING) << "Skipping class " << PrettyDescriptor(klass) << " from "
   1685                    << dex_file.GetLocation() << " previously found in "
   1686                    << original_dex_file.GetLocation();
   1687     }
   1688     return true;
   1689   }
   1690   return false;
   1691 }
   1692 
   1693 static void CheckAndClearResolveException(Thread* self)
   1694     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1695   CHECK(self->IsExceptionPending());
   1696   mirror::Throwable* exception = self->GetException();
   1697   std::string temp;
   1698   const char* descriptor = exception->GetClass()->GetDescriptor(&temp);
   1699   const char* expected_exceptions[] = {
   1700       "Ljava/lang/IllegalAccessError;",
   1701       "Ljava/lang/IncompatibleClassChangeError;",
   1702       "Ljava/lang/InstantiationError;",
   1703       "Ljava/lang/LinkageError;",
   1704       "Ljava/lang/NoClassDefFoundError;",
   1705       "Ljava/lang/NoSuchFieldError;",
   1706       "Ljava/lang/NoSuchMethodError;"
   1707   };
   1708   bool found = false;
   1709   for (size_t i = 0; (found == false) && (i < arraysize(expected_exceptions)); ++i) {
   1710     if (strcmp(descriptor, expected_exceptions[i]) == 0) {
   1711       found = true;
   1712     }
   1713   }
   1714   if (!found) {
   1715     LOG(FATAL) << "Unexpected exception " << exception->Dump();
   1716   }
   1717   self->ClearException();
   1718 }
   1719 
   1720 static void ResolveClassFieldsAndMethods(const ParallelCompilationManager* manager,
   1721                                          size_t class_def_index)
   1722     LOCKS_EXCLUDED(Locks::mutator_lock_) {
   1723   ATRACE_CALL();
   1724   Thread* self = Thread::Current();
   1725   jobject jclass_loader = manager->GetClassLoader();
   1726   const DexFile& dex_file = *manager->GetDexFile();
   1727   ClassLinker* class_linker = manager->GetClassLinker();
   1728 
   1729   // If an instance field is final then we need to have a barrier on the return, static final
   1730   // fields are assigned within the lock held for class initialization. Conservatively assume
   1731   // constructor barriers are always required.
   1732   bool requires_constructor_barrier = true;
   1733 
   1734   // Method and Field are the worst. We can't resolve without either
   1735   // context from the code use (to disambiguate virtual vs direct
   1736   // method and instance vs static field) or from class
   1737   // definitions. While the compiler will resolve what it can as it
   1738   // needs it, here we try to resolve fields and methods used in class
   1739   // definitions, since many of them many never be referenced by
   1740   // generated code.
   1741   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
   1742   ScopedObjectAccess soa(self);
   1743   StackHandleScope<2> hs(soa.Self());
   1744   Handle<mirror::ClassLoader> class_loader(
   1745       hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   1746   Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
   1747   // Resolve the class.
   1748   mirror::Class* klass = class_linker->ResolveType(dex_file, class_def.class_idx_, dex_cache,
   1749                                                    class_loader);
   1750   bool resolve_fields_and_methods;
   1751   if (klass == nullptr) {
   1752     // Class couldn't be resolved, for example, super-class is in a different dex file. Don't
   1753     // attempt to resolve methods and fields when there is no declaring class.
   1754     CheckAndClearResolveException(soa.Self());
   1755     resolve_fields_and_methods = false;
   1756   } else {
   1757     // We successfully resolved a class, should we skip it?
   1758     if (SkipClass(jclass_loader, dex_file, klass)) {
   1759       return;
   1760     }
   1761     // We want to resolve the methods and fields eagerly.
   1762     resolve_fields_and_methods = true;
   1763   }
   1764   // Note the class_data pointer advances through the headers,
   1765   // static fields, instance fields, direct methods, and virtual
   1766   // methods.
   1767   const uint8_t* class_data = dex_file.GetClassData(class_def);
   1768   if (class_data == nullptr) {
   1769     // Empty class such as a marker interface.
   1770     requires_constructor_barrier = false;
   1771   } else {
   1772     ClassDataItemIterator it(dex_file, class_data);
   1773     while (it.HasNextStaticField()) {
   1774       if (resolve_fields_and_methods) {
   1775         ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
   1776                                                              dex_cache, class_loader, true);
   1777         if (field == nullptr) {
   1778           CheckAndClearResolveException(soa.Self());
   1779         }
   1780       }
   1781       it.Next();
   1782     }
   1783     // We require a constructor barrier if there are final instance fields.
   1784     requires_constructor_barrier = false;
   1785     while (it.HasNextInstanceField()) {
   1786       if (it.MemberIsFinal()) {
   1787         requires_constructor_barrier = true;
   1788       }
   1789       if (resolve_fields_and_methods) {
   1790         ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
   1791                                                              dex_cache, class_loader, false);
   1792         if (field == nullptr) {
   1793           CheckAndClearResolveException(soa.Self());
   1794         }
   1795       }
   1796       it.Next();
   1797     }
   1798     if (resolve_fields_and_methods) {
   1799       while (it.HasNextDirectMethod()) {
   1800         ArtMethod* method = class_linker->ResolveMethod(
   1801             dex_file, it.GetMemberIndex(), dex_cache, class_loader, nullptr,
   1802             it.GetMethodInvokeType(class_def));
   1803         if (method == nullptr) {
   1804           CheckAndClearResolveException(soa.Self());
   1805         }
   1806         it.Next();
   1807       }
   1808       while (it.HasNextVirtualMethod()) {
   1809         ArtMethod* method = class_linker->ResolveMethod(
   1810             dex_file, it.GetMemberIndex(), dex_cache, class_loader, nullptr,
   1811             it.GetMethodInvokeType(class_def));
   1812         if (method == nullptr) {
   1813           CheckAndClearResolveException(soa.Self());
   1814         }
   1815         it.Next();
   1816       }
   1817       DCHECK(!it.HasNext());
   1818     }
   1819   }
   1820   if (requires_constructor_barrier) {
   1821     manager->GetCompiler()->AddRequiresConstructorBarrier(self, &dex_file, class_def_index);
   1822   }
   1823 }
   1824 
   1825 static void ResolveType(const ParallelCompilationManager* manager, size_t type_idx)
   1826     LOCKS_EXCLUDED(Locks::mutator_lock_) {
   1827   // Class derived values are more complicated, they require the linker and loader.
   1828   ScopedObjectAccess soa(Thread::Current());
   1829   ClassLinker* class_linker = manager->GetClassLinker();
   1830   const DexFile& dex_file = *manager->GetDexFile();
   1831   StackHandleScope<2> hs(soa.Self());
   1832   Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
   1833   Handle<mirror::ClassLoader> class_loader(
   1834       hs.NewHandle(soa.Decode<mirror::ClassLoader*>(manager->GetClassLoader())));
   1835   mirror::Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader);
   1836 
   1837   if (klass == nullptr) {
   1838     CHECK(soa.Self()->IsExceptionPending());
   1839     mirror::Throwable* exception = soa.Self()->GetException();
   1840     VLOG(compiler) << "Exception during type resolution: " << exception->Dump();
   1841     if (exception->GetClass()->DescriptorEquals("Ljava/lang/OutOfMemoryError;")) {
   1842       // There's little point continuing compilation if the heap is exhausted.
   1843       LOG(FATAL) << "Out of memory during type resolution for compilation";
   1844     }
   1845     soa.Self()->ClearException();
   1846   }
   1847 }
   1848 
   1849 void CompilerDriver::ResolveDexFile(jobject class_loader, const DexFile& dex_file,
   1850                                     const std::vector<const DexFile*>& dex_files,
   1851                                     ThreadPool* thread_pool, TimingLogger* timings) {
   1852   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1853 
   1854   // TODO: we could resolve strings here, although the string table is largely filled with class
   1855   //       and method names.
   1856 
   1857   ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
   1858                                      thread_pool);
   1859   if (IsImage()) {
   1860     // For images we resolve all types, such as array, whereas for applications just those with
   1861     // classdefs are resolved by ResolveClassFieldsAndMethods.
   1862     TimingLogger::ScopedTiming t("Resolve Types", timings);
   1863     context.ForAll(0, dex_file.NumTypeIds(), ResolveType, thread_count_);
   1864   }
   1865 
   1866   TimingLogger::ScopedTiming t("Resolve MethodsAndFields", timings);
   1867   context.ForAll(0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_);
   1868 }
   1869 
   1870 void CompilerDriver::SetVerified(jobject class_loader, const std::vector<const DexFile*>& dex_files,
   1871                                  ThreadPool* thread_pool, TimingLogger* timings) {
   1872   for (size_t i = 0; i != dex_files.size(); ++i) {
   1873     const DexFile* dex_file = dex_files[i];
   1874     CHECK(dex_file != nullptr);
   1875     SetVerifiedDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
   1876   }
   1877 }
   1878 
   1879 void CompilerDriver::Verify(jobject class_loader, const std::vector<const DexFile*>& dex_files,
   1880                             ThreadPool* thread_pool, TimingLogger* timings) {
   1881   for (size_t i = 0; i != dex_files.size(); ++i) {
   1882     const DexFile* dex_file = dex_files[i];
   1883     CHECK(dex_file != nullptr);
   1884     VerifyDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
   1885   }
   1886 }
   1887 
   1888 static void VerifyClass(const ParallelCompilationManager* manager, size_t class_def_index)
   1889     LOCKS_EXCLUDED(Locks::mutator_lock_) {
   1890   ATRACE_CALL();
   1891   ScopedObjectAccess soa(Thread::Current());
   1892   const DexFile& dex_file = *manager->GetDexFile();
   1893   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
   1894   const char* descriptor = dex_file.GetClassDescriptor(class_def);
   1895   ClassLinker* class_linker = manager->GetClassLinker();
   1896   jobject jclass_loader = manager->GetClassLoader();
   1897   StackHandleScope<3> hs(soa.Self());
   1898   Handle<mirror::ClassLoader> class_loader(
   1899       hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   1900   Handle<mirror::Class> klass(
   1901       hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
   1902   if (klass.Get() == nullptr) {
   1903     CHECK(soa.Self()->IsExceptionPending());
   1904     soa.Self()->ClearException();
   1905 
   1906     /*
   1907      * At compile time, we can still structurally verify the class even if FindClass fails.
   1908      * This is to ensure the class is structurally sound for compilation. An unsound class
   1909      * will be rejected by the verifier and later skipped during compilation in the compiler.
   1910      */
   1911     Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
   1912     std::string error_msg;
   1913     if (verifier::MethodVerifier::VerifyClass(soa.Self(), &dex_file, dex_cache, class_loader,
   1914                                               &class_def, true, &error_msg) ==
   1915                                                   verifier::MethodVerifier::kHardFailure) {
   1916       LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(descriptor)
   1917                  << " because: " << error_msg;
   1918       manager->GetCompiler()->SetHadHardVerifierFailure();
   1919     }
   1920   } else if (!SkipClass(jclass_loader, dex_file, klass.Get())) {
   1921     CHECK(klass->IsResolved()) << PrettyClass(klass.Get());
   1922     class_linker->VerifyClass(soa.Self(), klass);
   1923 
   1924     if (klass->IsErroneous()) {
   1925       // ClassLinker::VerifyClass throws, which isn't useful in the compiler.
   1926       CHECK(soa.Self()->IsExceptionPending());
   1927       soa.Self()->ClearException();
   1928       manager->GetCompiler()->SetHadHardVerifierFailure();
   1929     }
   1930 
   1931     CHECK(klass->IsCompileTimeVerified() || klass->IsErroneous())
   1932         << PrettyDescriptor(klass.Get()) << ": state=" << klass->GetStatus();
   1933 
   1934     // It is *very* problematic if there are verification errors in the boot classpath. For example,
   1935     // we rely on things working OK without verification when the decryption dialog is brought up.
   1936     // So abort in a debug build if we find this violated.
   1937     DCHECK(!manager->GetCompiler()->IsImage() || klass->IsVerified()) << "Boot classpath class " <<
   1938         PrettyClass(klass.Get()) << " failed to fully verify.";
   1939   }
   1940   soa.Self()->AssertNoPendingException();
   1941 }
   1942 
   1943 void CompilerDriver::VerifyDexFile(jobject class_loader, const DexFile& dex_file,
   1944                                    const std::vector<const DexFile*>& dex_files,
   1945                                    ThreadPool* thread_pool, TimingLogger* timings) {
   1946   TimingLogger::ScopedTiming t("Verify Dex File", timings);
   1947   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1948   ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
   1949                                      thread_pool);
   1950   context.ForAll(0, dex_file.NumClassDefs(), VerifyClass, thread_count_);
   1951 }
   1952 
   1953 static void SetVerifiedClass(const ParallelCompilationManager* manager, size_t class_def_index)
   1954     LOCKS_EXCLUDED(Locks::mutator_lock_) {
   1955   ATRACE_CALL();
   1956   ScopedObjectAccess soa(Thread::Current());
   1957   const DexFile& dex_file = *manager->GetDexFile();
   1958   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
   1959   const char* descriptor = dex_file.GetClassDescriptor(class_def);
   1960   ClassLinker* class_linker = manager->GetClassLinker();
   1961   jobject jclass_loader = manager->GetClassLoader();
   1962   StackHandleScope<3> hs(soa.Self());
   1963   Handle<mirror::ClassLoader> class_loader(
   1964       hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   1965   Handle<mirror::Class> klass(
   1966       hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
   1967   // Class might have failed resolution. Then don't set it to verified.
   1968   if (klass.Get() != nullptr) {
   1969     // Only do this if the class is resolved. If even resolution fails, quickening will go very,
   1970     // very wrong.
   1971     if (klass->IsResolved()) {
   1972       if (klass->GetStatus() < mirror::Class::kStatusVerified) {
   1973         ObjectLock<mirror::Class> lock(soa.Self(), klass);
   1974         // Set class status to verified.
   1975         mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, soa.Self());
   1976         // Mark methods as pre-verified. If we don't do this, the interpreter will run with
   1977         // access checks.
   1978         klass->SetPreverifiedFlagOnAllMethods(
   1979             GetInstructionSetPointerSize(manager->GetCompiler()->GetInstructionSet()));
   1980         klass->SetPreverified();
   1981       }
   1982       // Record the final class status if necessary.
   1983       ClassReference ref(manager->GetDexFile(), class_def_index);
   1984       manager->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
   1985     }
   1986   } else {
   1987     Thread* self = soa.Self();
   1988     DCHECK(self->IsExceptionPending());
   1989     self->ClearException();
   1990   }
   1991 }
   1992 
   1993 void CompilerDriver::SetVerifiedDexFile(jobject class_loader, const DexFile& dex_file,
   1994                                         const std::vector<const DexFile*>& dex_files,
   1995                                         ThreadPool* thread_pool, TimingLogger* timings) {
   1996   TimingLogger::ScopedTiming t("Verify Dex File", timings);
   1997   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1998   ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
   1999                                      thread_pool);
   2000   context.ForAll(0, dex_file.NumClassDefs(), SetVerifiedClass, thread_count_);
   2001 }
   2002 
   2003 static void InitializeClass(const ParallelCompilationManager* manager, size_t class_def_index)
   2004     LOCKS_EXCLUDED(Locks::mutator_lock_) {
   2005   ATRACE_CALL();
   2006   jobject jclass_loader = manager->GetClassLoader();
   2007   const DexFile& dex_file = *manager->GetDexFile();
   2008   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
   2009   const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_);
   2010   const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
   2011 
   2012   ScopedObjectAccess soa(Thread::Current());
   2013   StackHandleScope<3> hs(soa.Self());
   2014   Handle<mirror::ClassLoader> class_loader(
   2015       hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   2016   Handle<mirror::Class> klass(
   2017       hs.NewHandle(manager->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)));
   2018 
   2019   if (klass.Get() != nullptr && !SkipClass(jclass_loader, dex_file, klass.Get())) {
   2020     // Only try to initialize classes that were successfully verified.
   2021     if (klass->IsVerified()) {
   2022       // Attempt to initialize the class but bail if we either need to initialize the super-class
   2023       // or static fields.
   2024       manager->GetClassLinker()->EnsureInitialized(soa.Self(), klass, false, false);
   2025       if (!klass->IsInitialized()) {
   2026         // We don't want non-trivial class initialization occurring on multiple threads due to
   2027         // deadlock problems. For example, a parent class is initialized (holding its lock) that
   2028         // refers to a sub-class in its static/class initializer causing it to try to acquire the
   2029         // sub-class' lock. While on a second thread the sub-class is initialized (holding its lock)
   2030         // after first initializing its parents, whose locks are acquired. This leads to a
   2031         // parent-to-child and a child-to-parent lock ordering and consequent potential deadlock.
   2032         // We need to use an ObjectLock due to potential suspension in the interpreting code. Rather
   2033         // than use a special Object for the purpose we use the Class of java.lang.Class.
   2034         Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass()));
   2035         ObjectLock<mirror::Class> lock(soa.Self(), h_klass);
   2036         // Attempt to initialize allowing initialization of parent classes but still not static
   2037         // fields.
   2038         manager->GetClassLinker()->EnsureInitialized(soa.Self(), klass, false, true);
   2039         if (!klass->IsInitialized()) {
   2040           // We need to initialize static fields, we only do this for image classes that aren't
   2041           // marked with the $NoPreloadHolder (which implies this should not be initialized early).
   2042           bool can_init_static_fields = manager->GetCompiler()->IsImage() &&
   2043               manager->GetCompiler()->IsImageClass(descriptor) &&
   2044               !StringPiece(descriptor).ends_with("$NoPreloadHolder;");
   2045           if (can_init_static_fields) {
   2046             VLOG(compiler) << "Initializing: " << descriptor;
   2047             // TODO multithreading support. We should ensure the current compilation thread has
   2048             // exclusive access to the runtime and the transaction. To achieve this, we could use
   2049             // a ReaderWriterMutex but we're holding the mutator lock so we fail mutex sanity
   2050             // checks in Thread::AssertThreadSuspensionIsAllowable.
   2051             Runtime* const runtime = Runtime::Current();
   2052             Transaction transaction;
   2053 
   2054             // Run the class initializer in transaction mode.
   2055             runtime->EnterTransactionMode(&transaction);
   2056             const mirror::Class::Status old_status = klass->GetStatus();
   2057             bool success = manager->GetClassLinker()->EnsureInitialized(soa.Self(), klass, true,
   2058                                                                         true);
   2059             // TODO we detach transaction from runtime to indicate we quit the transactional
   2060             // mode which prevents the GC from visiting objects modified during the transaction.
   2061             // Ensure GC is not run so don't access freed objects when aborting transaction.
   2062 
   2063             ScopedAssertNoThreadSuspension ants(soa.Self(), "Transaction end");
   2064             runtime->ExitTransactionMode();
   2065 
   2066             if (!success) {
   2067               CHECK(soa.Self()->IsExceptionPending());
   2068               mirror::Throwable* exception = soa.Self()->GetException();
   2069               VLOG(compiler) << "Initialization of " << descriptor << " aborted because of "
   2070                   << exception->Dump();
   2071               std::ostream* file_log = manager->GetCompiler()->
   2072                   GetCompilerOptions().GetInitFailureOutput();
   2073               if (file_log != nullptr) {
   2074                 *file_log << descriptor << "\n";
   2075                 *file_log << exception->Dump() << "\n";
   2076               }
   2077               soa.Self()->ClearException();
   2078               transaction.Rollback();
   2079               CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored";
   2080             }
   2081           }
   2082         }
   2083         soa.Self()->AssertNoPendingException();
   2084       }
   2085     }
   2086     // Record the final class status if necessary.
   2087     ClassReference ref(manager->GetDexFile(), class_def_index);
   2088     manager->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
   2089   }
   2090   // Clear any class not found or verification exceptions.
   2091   soa.Self()->ClearException();
   2092 }
   2093 
   2094 void CompilerDriver::InitializeClasses(jobject jni_class_loader, const DexFile& dex_file,
   2095                                        const std::vector<const DexFile*>& dex_files,
   2096                                        ThreadPool* thread_pool, TimingLogger* timings) {
   2097   TimingLogger::ScopedTiming t("InitializeNoClinit", timings);
   2098   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2099   ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, dex_files,
   2100                                      thread_pool);
   2101   size_t thread_count;
   2102   if (IsImage()) {
   2103     // TODO: remove this when transactional mode supports multithreading.
   2104     thread_count = 1U;
   2105   } else {
   2106     thread_count = thread_count_;
   2107   }
   2108   context.ForAll(0, dex_file.NumClassDefs(), InitializeClass, thread_count);
   2109 }
   2110 
   2111 void CompilerDriver::InitializeClasses(jobject class_loader,
   2112                                        const std::vector<const DexFile*>& dex_files,
   2113                                        ThreadPool* thread_pool, TimingLogger* timings) {
   2114   for (size_t i = 0; i != dex_files.size(); ++i) {
   2115     const DexFile* dex_file = dex_files[i];
   2116     CHECK(dex_file != nullptr);
   2117     InitializeClasses(class_loader, *dex_file, dex_files, thread_pool, timings);
   2118   }
   2119   if (IsImage()) {
   2120     // Prune garbage objects created during aborted transactions.
   2121     Runtime::Current()->GetHeap()->CollectGarbage(true);
   2122   }
   2123 }
   2124 
   2125 void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
   2126                              ThreadPool* thread_pool, TimingLogger* timings) {
   2127   for (size_t i = 0; i != dex_files.size(); ++i) {
   2128     const DexFile* dex_file = dex_files[i];
   2129     CHECK(dex_file != nullptr);
   2130     CompileDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
   2131   }
   2132   VLOG(compiler) << "Compile: " << GetMemoryUsageString(false);
   2133 }
   2134 
   2135 void CompilerDriver::CompileClass(const ParallelCompilationManager* manager,
   2136                                   size_t class_def_index) {
   2137   ATRACE_CALL();
   2138   const DexFile& dex_file = *manager->GetDexFile();
   2139   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
   2140   ClassLinker* class_linker = manager->GetClassLinker();
   2141   jobject jclass_loader = manager->GetClassLoader();
   2142   Thread* self = Thread::Current();
   2143   {
   2144     // Use a scoped object access to perform to the quick SkipClass check.
   2145     const char* descriptor = dex_file.GetClassDescriptor(class_def);
   2146     ScopedObjectAccess soa(self);
   2147     StackHandleScope<3> hs(soa.Self());
   2148     Handle<mirror::ClassLoader> class_loader(
   2149         hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   2150     Handle<mirror::Class> klass(
   2151         hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
   2152     if (klass.Get() == nullptr) {
   2153       CHECK(soa.Self()->IsExceptionPending());
   2154       soa.Self()->ClearException();
   2155     } else if (SkipClass(jclass_loader, dex_file, klass.Get())) {
   2156       return;
   2157     }
   2158   }
   2159   ClassReference ref(&dex_file, class_def_index);
   2160   // Skip compiling classes with generic verifier failures since they will still fail at runtime
   2161   if (manager->GetCompiler()->verification_results_->IsClassRejected(ref)) {
   2162     return;
   2163   }
   2164   const uint8_t* class_data = dex_file.GetClassData(class_def);
   2165   if (class_data == nullptr) {
   2166     // empty class, probably a marker interface
   2167     return;
   2168   }
   2169 
   2170   CompilerDriver* const driver = manager->GetCompiler();
   2171 
   2172   // Can we run DEX-to-DEX compiler on this class ?
   2173   DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
   2174   {
   2175     ScopedObjectAccess soa(self);
   2176     StackHandleScope<1> hs(soa.Self());
   2177     Handle<mirror::ClassLoader> class_loader(
   2178         hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
   2179     dex_to_dex_compilation_level = driver->GetDexToDexCompilationlevel(
   2180         soa.Self(), class_loader, dex_file, class_def);
   2181   }
   2182   ClassDataItemIterator it(dex_file, class_data);
   2183   // Skip fields
   2184   while (it.HasNextStaticField()) {
   2185     it.Next();
   2186   }
   2187   while (it.HasNextInstanceField()) {
   2188     it.Next();
   2189   }
   2190 
   2191   bool compilation_enabled = driver->IsClassToCompile(
   2192       dex_file.StringByTypeIdx(class_def.class_idx_));
   2193 
   2194   // Compile direct methods
   2195   int64_t previous_direct_method_idx = -1;
   2196   while (it.HasNextDirectMethod()) {
   2197     uint32_t method_idx = it.GetMemberIndex();
   2198     if (method_idx == previous_direct_method_idx) {
   2199       // smali can create dex files with two encoded_methods sharing the same method_idx
   2200       // http://code.google.com/p/smali/issues/detail?id=119
   2201       it.Next();
   2202       continue;
   2203     }
   2204     previous_direct_method_idx = method_idx;
   2205     driver->CompileMethod(self, it.GetMethodCodeItem(), it.GetMethodAccessFlags(),
   2206                           it.GetMethodInvokeType(class_def), class_def_index,
   2207                           method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level,
   2208                           compilation_enabled);
   2209     it.Next();
   2210   }
   2211   // Compile virtual methods
   2212   int64_t previous_virtual_method_idx = -1;
   2213   while (it.HasNextVirtualMethod()) {
   2214     uint32_t method_idx = it.GetMemberIndex();
   2215     if (method_idx == previous_virtual_method_idx) {
   2216       // smali can create dex files with two encoded_methods sharing the same method_idx
   2217       // http://code.google.com/p/smali/issues/detail?id=119
   2218       it.Next();
   2219       continue;
   2220     }
   2221     previous_virtual_method_idx = method_idx;
   2222     driver->CompileMethod(self, it.GetMethodCodeItem(), it.GetMethodAccessFlags(),
   2223                           it.GetMethodInvokeType(class_def), class_def_index,
   2224                           method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level,
   2225                           compilation_enabled);
   2226     it.Next();
   2227   }
   2228   DCHECK(!it.HasNext());
   2229 }
   2230 
   2231 void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file,
   2232                                     const std::vector<const DexFile*>& dex_files,
   2233                                     ThreadPool* thread_pool, TimingLogger* timings) {
   2234   TimingLogger::ScopedTiming t("Compile Dex File", timings);
   2235   ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this,
   2236                                      &dex_file, dex_files, thread_pool);
   2237   context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);
   2238 }
   2239 
   2240 // Does the runtime for the InstructionSet provide an implementation returned by
   2241 // GetQuickGenericJniStub allowing down calls that aren't compiled using a JNI compiler?
   2242 static bool InstructionSetHasGenericJniStub(InstructionSet isa) {
   2243   switch (isa) {
   2244     case kArm:
   2245     case kArm64:
   2246     case kThumb2:
   2247     case kMips:
   2248     case kMips64:
   2249     case kX86:
   2250     case kX86_64: return true;
   2251     default: return false;
   2252   }
   2253 }
   2254 
   2255 void CompilerDriver::CompileMethod(Thread* self, const DexFile::CodeItem* code_item,
   2256                                    uint32_t access_flags, InvokeType invoke_type,
   2257                                    uint16_t class_def_idx, uint32_t method_idx,
   2258                                    jobject class_loader, const DexFile& dex_file,
   2259                                    DexToDexCompilationLevel dex_to_dex_compilation_level,
   2260                                    bool compilation_enabled) {
   2261   CompiledMethod* compiled_method = nullptr;
   2262   uint64_t start_ns = kTimeCompileMethod ? NanoTime() : 0;
   2263   MethodReference method_ref(&dex_file, method_idx);
   2264 
   2265   if ((access_flags & kAccNative) != 0) {
   2266     // Are we interpreting only and have support for generic JNI down calls?
   2267     if (!compiler_options_->IsCompilationEnabled() &&
   2268         InstructionSetHasGenericJniStub(instruction_set_)) {
   2269       // Leaving this empty will trigger the generic JNI version
   2270     } else {
   2271       compiled_method = compiler_->JniCompile(access_flags, method_idx, dex_file);
   2272       CHECK(compiled_method != nullptr);
   2273     }
   2274   } else if ((access_flags & kAccAbstract) != 0) {
   2275     // Abstract methods don't have code.
   2276   } else {
   2277     bool has_verified_method = verification_results_->GetVerifiedMethod(method_ref) != nullptr;
   2278     bool compile = compilation_enabled &&
   2279                    // Basic checks, e.g., not <clinit>.
   2280                    verification_results_->IsCandidateForCompilation(method_ref, access_flags) &&
   2281                    // Did not fail to create VerifiedMethod metadata.
   2282                    has_verified_method &&
   2283                    // Is eligable for compilation by methods-to-compile filter.
   2284                    IsMethodToCompile(method_ref);
   2285     if (compile) {
   2286       // NOTE: if compiler declines to compile this method, it will return null.
   2287       compiled_method = compiler_->Compile(code_item, access_flags, invoke_type, class_def_idx,
   2288                                            method_idx, class_loader, dex_file);
   2289     }
   2290     if (compiled_method == nullptr && dex_to_dex_compilation_level != kDontDexToDexCompile) {
   2291       // TODO: add a command-line option to disable DEX-to-DEX compilation ?
   2292       // Do not optimize if a VerifiedMethod is missing. SafeCast elision, for example, relies on
   2293       // it.
   2294       (*dex_to_dex_compiler_)(*this, code_item, access_flags,
   2295                               invoke_type, class_def_idx,
   2296                               method_idx, class_loader, dex_file,
   2297                               has_verified_method ? dex_to_dex_compilation_level : kRequired);
   2298     }
   2299   }
   2300   if (kTimeCompileMethod) {
   2301     uint64_t duration_ns = NanoTime() - start_ns;
   2302     if (duration_ns > MsToNs(compiler_->GetMaximumCompilationTimeBeforeWarning())) {
   2303       LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file)
   2304                    << " took " << PrettyDuration(duration_ns);
   2305     }
   2306   }
   2307 
   2308   if (compiled_method != nullptr) {
   2309     // Count non-relative linker patches.
   2310     size_t non_relative_linker_patch_count = 0u;
   2311     for (const LinkerPatch& patch : compiled_method->GetPatches()) {
   2312       if (!patch.IsPcRelative()) {
   2313         ++non_relative_linker_patch_count;
   2314       }
   2315     }
   2316     bool compile_pic = GetCompilerOptions().GetCompilePic();  // Off by default
   2317     // When compiling with PIC, there should be zero non-relative linker patches
   2318     CHECK(!compile_pic || non_relative_linker_patch_count == 0u);
   2319 
   2320     DCHECK(GetCompiledMethod(method_ref) == nullptr) << PrettyMethod(method_idx, dex_file);
   2321     {
   2322       MutexLock mu(self, compiled_methods_lock_);
   2323       compiled_methods_.Put(method_ref, compiled_method);
   2324       non_relative_linker_patch_count_ += non_relative_linker_patch_count;
   2325     }
   2326     DCHECK(GetCompiledMethod(method_ref) != nullptr) << PrettyMethod(method_idx, dex_file);
   2327   }
   2328 
   2329   // Done compiling, delete the verified method to reduce native memory usage. Do not delete in
   2330   // optimizing compiler, which may need the verified method again for inlining.
   2331   if (compiler_kind_ != Compiler::kOptimizing) {
   2332     verification_results_->RemoveVerifiedMethod(method_ref);
   2333   }
   2334 
   2335   if (self->IsExceptionPending()) {
   2336     ScopedObjectAccess soa(self);
   2337     LOG(FATAL) << "Unexpected exception compiling: " << PrettyMethod(method_idx, dex_file) << "\n"
   2338         << self->GetException()->Dump();
   2339   }
   2340 }
   2341 
   2342 void CompilerDriver::RemoveCompiledMethod(const MethodReference& method_ref) {
   2343   CompiledMethod* compiled_method = nullptr;
   2344   {
   2345     MutexLock mu(Thread::Current(), compiled_methods_lock_);
   2346     auto it = compiled_methods_.find(method_ref);
   2347     if (it != compiled_methods_.end()) {
   2348       compiled_method = it->second;
   2349       compiled_methods_.erase(it);
   2350     }
   2351   }
   2352   if (compiled_method != nullptr) {
   2353     CompiledMethod::ReleaseSwapAllocatedCompiledMethod(this, compiled_method);
   2354   }
   2355 }
   2356 
   2357 CompiledClass* CompilerDriver::GetCompiledClass(ClassReference ref) const {
   2358   MutexLock mu(Thread::Current(), compiled_classes_lock_);
   2359   ClassTable::const_iterator it = compiled_classes_.find(ref);
   2360   if (it == compiled_classes_.end()) {
   2361     return nullptr;
   2362   }
   2363   CHECK(it->second != nullptr);
   2364   return it->second;
   2365 }
   2366 
   2367 void CompilerDriver::RecordClassStatus(ClassReference ref, mirror::Class::Status status) {
   2368   MutexLock mu(Thread::Current(), compiled_classes_lock_);
   2369   auto it = compiled_classes_.find(ref);
   2370   if (it == compiled_classes_.end() || it->second->GetStatus() != status) {
   2371     // An entry doesn't exist or the status is lower than the new status.
   2372     if (it != compiled_classes_.end()) {
   2373       CHECK_GT(status, it->second->GetStatus());
   2374       delete it->second;
   2375     }
   2376     switch (status) {
   2377       case mirror::Class::kStatusNotReady:
   2378       case mirror::Class::kStatusError:
   2379       case mirror::Class::kStatusRetryVerificationAtRuntime:
   2380       case mirror::Class::kStatusVerified:
   2381       case mirror::Class::kStatusInitialized:
   2382         break;  // Expected states.
   2383       default:
   2384         LOG(FATAL) << "Unexpected class status for class "
   2385             << PrettyDescriptor(ref.first->GetClassDescriptor(ref.first->GetClassDef(ref.second)))
   2386             << " of " << status;
   2387     }
   2388     CompiledClass* compiled_class = new CompiledClass(status);
   2389     compiled_classes_.Overwrite(ref, compiled_class);
   2390   }
   2391 }
   2392 
   2393 CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const {
   2394   MutexLock mu(Thread::Current(), compiled_methods_lock_);
   2395   MethodTable::const_iterator it = compiled_methods_.find(ref);
   2396   if (it == compiled_methods_.end()) {
   2397     return nullptr;
   2398   }
   2399   CHECK(it->second != nullptr);
   2400   return it->second;
   2401 }
   2402 
   2403 bool CompilerDriver::IsMethodVerifiedWithoutFailures(uint32_t method_idx,
   2404                                                      uint16_t class_def_idx,
   2405                                                      const DexFile& dex_file) const {
   2406   const VerifiedMethod* verified_method = GetVerifiedMethod(&dex_file, method_idx);
   2407   if (verified_method != nullptr) {
   2408     return !verified_method->HasVerificationFailures();
   2409   }
   2410 
   2411   // If we can't find verification metadata, check if this is a system class (we trust that system
   2412   // classes have their methods verified). If it's not, be conservative and assume the method
   2413   // has not been verified successfully.
   2414 
   2415   // TODO: When compiling the boot image it should be safe to assume that everything is verified,
   2416   // even if methods are not found in the verification cache.
   2417   const char* descriptor = dex_file.GetClassDescriptor(dex_file.GetClassDef(class_def_idx));
   2418   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2419   Thread* self = Thread::Current();
   2420   ScopedObjectAccess soa(self);
   2421   bool is_system_class = class_linker->FindSystemClass(self, descriptor) != nullptr;
   2422   if (!is_system_class) {
   2423     self->ClearException();
   2424   }
   2425   return is_system_class;
   2426 }
   2427 
   2428 size_t CompilerDriver::GetNonRelativeLinkerPatchCount() const {
   2429   MutexLock mu(Thread::Current(), compiled_methods_lock_);
   2430   return non_relative_linker_patch_count_;
   2431 }
   2432 
   2433 void CompilerDriver::AddRequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
   2434                                                    uint16_t class_def_index) {
   2435   WriterMutexLock mu(self, freezing_constructor_lock_);
   2436   freezing_constructor_classes_.insert(ClassReference(dex_file, class_def_index));
   2437 }
   2438 
   2439 bool CompilerDriver::RequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
   2440                                                 uint16_t class_def_index) const {
   2441   ReaderMutexLock mu(self, freezing_constructor_lock_);
   2442   return freezing_constructor_classes_.count(ClassReference(dex_file, class_def_index)) != 0;
   2443 }
   2444 
   2445 bool CompilerDriver::WriteElf(const std::string& android_root,
   2446                               bool is_host,
   2447                               const std::vector<const art::DexFile*>& dex_files,
   2448                               OatWriter* oat_writer,
   2449                               art::File* file)
   2450     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2451   if (kProduce64BitELFFiles && Is64BitInstructionSet(GetInstructionSet())) {
   2452     return art::ElfWriterQuick64::Create(file, oat_writer, dex_files, android_root, is_host, *this);
   2453   } else {
   2454     return art::ElfWriterQuick32::Create(file, oat_writer, dex_files, android_root, is_host, *this);
   2455   }
   2456 }
   2457 
   2458 bool CompilerDriver::SkipCompilation(const std::string& method_name) {
   2459   if (!profile_present_) {
   2460     return false;
   2461   }
   2462   // First find the method in the profile file.
   2463   ProfileFile::ProfileData data;
   2464   if (!profile_file_.GetProfileData(&data, method_name)) {
   2465     // Not in profile, no information can be determined.
   2466     if (kIsDebugBuild) {
   2467       VLOG(compiler) << "not compiling " << method_name << " because it's not in the profile";
   2468     }
   2469     return true;
   2470   }
   2471 
   2472   // Methods that comprise top_k_threshold % of the total samples will be compiled.
   2473   // Compare against the start of the topK percentage bucket just in case the threshold
   2474   // falls inside a bucket.
   2475   bool compile = data.GetTopKUsedPercentage() - data.GetUsedPercent()
   2476                  <= compiler_options_->GetTopKProfileThreshold();
   2477   if (kIsDebugBuild) {
   2478     if (compile) {
   2479       LOG(INFO) << "compiling method " << method_name << " because its usage is part of top "
   2480           << data.GetTopKUsedPercentage() << "% with a percent of " << data.GetUsedPercent() << "%"
   2481           << " (topKThreshold=" << compiler_options_->GetTopKProfileThreshold() << ")";
   2482     } else {
   2483       VLOG(compiler) << "not compiling method " << method_name
   2484           << " because it's not part of leading " << compiler_options_->GetTopKProfileThreshold()
   2485           << "% samples)";
   2486     }
   2487   }
   2488   return !compile;
   2489 }
   2490 
   2491 std::string CompilerDriver::GetMemoryUsageString(bool extended) const {
   2492   std::ostringstream oss;
   2493   Runtime* const runtime = Runtime::Current();
   2494   const ArenaPool* arena_pool = runtime->GetArenaPool();
   2495   gc::Heap* const heap = runtime->GetHeap();
   2496   oss << "arena alloc=" << PrettySize(arena_pool->GetBytesAllocated());
   2497   oss << " java alloc=" << PrettySize(heap->GetBytesAllocated());
   2498 #if defined(__BIONIC__) || defined(__GLIBC__)
   2499   struct mallinfo info = mallinfo();
   2500   const size_t allocated_space = static_cast<size_t>(info.uordblks);
   2501   const size_t free_space = static_cast<size_t>(info.fordblks);
   2502   oss << " native alloc=" << PrettySize(allocated_space) << " free="
   2503       << PrettySize(free_space);
   2504 #endif
   2505   if (swap_space_.get() != nullptr) {
   2506     oss << " swap=" << PrettySize(swap_space_->GetSize());
   2507   }
   2508   if (extended) {
   2509     oss << "\nCode dedupe: " << dedupe_code_.DumpStats();
   2510     oss << "\nMapping table dedupe: " << dedupe_mapping_table_.DumpStats();
   2511     oss << "\nVmap table dedupe: " << dedupe_vmap_table_.DumpStats();
   2512     oss << "\nGC map dedupe: " << dedupe_gc_map_.DumpStats();
   2513     oss << "\nCFI info dedupe: " << dedupe_cfi_info_.DumpStats();
   2514   }
   2515   return oss.str();
   2516 }
   2517 
   2518 bool CompilerDriver::IsStringTypeIndex(uint16_t type_index, const DexFile* dex_file) {
   2519   const char* type = dex_file->GetTypeDescriptor(dex_file->GetTypeId(type_index));
   2520   return strcmp(type, "Ljava/lang/String;") == 0;
   2521 }
   2522 
   2523 bool CompilerDriver::IsStringInit(uint32_t method_index, const DexFile* dex_file, int32_t* offset) {
   2524   DexFileMethodInliner* inliner = GetMethodInlinerMap()->GetMethodInliner(dex_file);
   2525   size_t pointer_size = InstructionSetPointerSize(GetInstructionSet());
   2526   *offset = inliner->GetOffsetForStringInit(method_index, pointer_size);
   2527   return inliner->IsStringInitMethodIndex(method_index);
   2528 }
   2529 
   2530 }  // namespace art
   2531