Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Claire Maurice
      5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_COMPLEX_SCHUR_H
     13 #define EIGEN_COMPLEX_SCHUR_H
     14 
     15 #include "./HessenbergDecomposition.h"
     16 
     17 namespace Eigen {
     18 
     19 namespace internal {
     20 template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
     21 }
     22 
     23 /** \eigenvalues_module \ingroup Eigenvalues_Module
     24   *
     25   *
     26   * \class ComplexSchur
     27   *
     28   * \brief Performs a complex Schur decomposition of a real or complex square matrix
     29   *
     30   * \tparam _MatrixType the type of the matrix of which we are
     31   * computing the Schur decomposition; this is expected to be an
     32   * instantiation of the Matrix class template.
     33   *
     34   * Given a real or complex square matrix A, this class computes the
     35   * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
     36   * complex matrix, and T is a complex upper triangular matrix.  The
     37   * diagonal of the matrix T corresponds to the eigenvalues of the
     38   * matrix A.
     39   *
     40   * Call the function compute() to compute the Schur decomposition of
     41   * a given matrix. Alternatively, you can use the
     42   * ComplexSchur(const MatrixType&, bool) constructor which computes
     43   * the Schur decomposition at construction time. Once the
     44   * decomposition is computed, you can use the matrixU() and matrixT()
     45   * functions to retrieve the matrices U and V in the decomposition.
     46   *
     47   * \note This code is inspired from Jampack
     48   *
     49   * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
     50   */
     51 template<typename _MatrixType> class ComplexSchur
     52 {
     53   public:
     54     typedef _MatrixType MatrixType;
     55     enum {
     56       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     57       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     58       Options = MatrixType::Options,
     59       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     60       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     61     };
     62 
     63     /** \brief Scalar type for matrices of type \p _MatrixType. */
     64     typedef typename MatrixType::Scalar Scalar;
     65     typedef typename NumTraits<Scalar>::Real RealScalar;
     66     typedef typename MatrixType::Index Index;
     67 
     68     /** \brief Complex scalar type for \p _MatrixType.
     69       *
     70       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
     71       * \c float or \c double) and just \c Scalar if #Scalar is
     72       * complex.
     73       */
     74     typedef std::complex<RealScalar> ComplexScalar;
     75 
     76     /** \brief Type for the matrices in the Schur decomposition.
     77       *
     78       * This is a square matrix with entries of type #ComplexScalar.
     79       * The size is the same as the size of \p _MatrixType.
     80       */
     81     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
     82 
     83     /** \brief Default constructor.
     84       *
     85       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
     86       *
     87       * The default constructor is useful in cases in which the user
     88       * intends to perform decompositions via compute().  The \p size
     89       * parameter is only used as a hint. It is not an error to give a
     90       * wrong \p size, but it may impair performance.
     91       *
     92       * \sa compute() for an example.
     93       */
     94     ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
     95       : m_matT(size,size),
     96         m_matU(size,size),
     97         m_hess(size),
     98         m_isInitialized(false),
     99         m_matUisUptodate(false),
    100         m_maxIters(-1)
    101     {}
    102 
    103     /** \brief Constructor; computes Schur decomposition of given matrix.
    104       *
    105       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
    106       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    107       *
    108       * This constructor calls compute() to compute the Schur decomposition.
    109       *
    110       * \sa matrixT() and matrixU() for examples.
    111       */
    112     ComplexSchur(const MatrixType& matrix, bool computeU = true)
    113       : m_matT(matrix.rows(),matrix.cols()),
    114         m_matU(matrix.rows(),matrix.cols()),
    115         m_hess(matrix.rows()),
    116         m_isInitialized(false),
    117         m_matUisUptodate(false),
    118         m_maxIters(-1)
    119     {
    120       compute(matrix, computeU);
    121     }
    122 
    123     /** \brief Returns the unitary matrix in the Schur decomposition.
    124       *
    125       * \returns A const reference to the matrix U.
    126       *
    127       * It is assumed that either the constructor
    128       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
    129       * member function compute(const MatrixType& matrix, bool computeU)
    130       * has been called before to compute the Schur decomposition of a
    131       * matrix, and that \p computeU was set to true (the default
    132       * value).
    133       *
    134       * Example: \include ComplexSchur_matrixU.cpp
    135       * Output: \verbinclude ComplexSchur_matrixU.out
    136       */
    137     const ComplexMatrixType& matrixU() const
    138     {
    139       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    140       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
    141       return m_matU;
    142     }
    143 
    144     /** \brief Returns the triangular matrix in the Schur decomposition.
    145       *
    146       * \returns A const reference to the matrix T.
    147       *
    148       * It is assumed that either the constructor
    149       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
    150       * member function compute(const MatrixType& matrix, bool computeU)
    151       * has been called before to compute the Schur decomposition of a
    152       * matrix.
    153       *
    154       * Note that this function returns a plain square matrix. If you want to reference
    155       * only the upper triangular part, use:
    156       * \code schur.matrixT().triangularView<Upper>() \endcode
    157       *
    158       * Example: \include ComplexSchur_matrixT.cpp
    159       * Output: \verbinclude ComplexSchur_matrixT.out
    160       */
    161     const ComplexMatrixType& matrixT() const
    162     {
    163       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    164       return m_matT;
    165     }
    166 
    167     /** \brief Computes Schur decomposition of given matrix.
    168       *
    169       * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
    170       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    171 
    172       * \returns    Reference to \c *this
    173       *
    174       * The Schur decomposition is computed by first reducing the
    175       * matrix to Hessenberg form using the class
    176       * HessenbergDecomposition. The Hessenberg matrix is then reduced
    177       * to triangular form by performing QR iterations with a single
    178       * shift. The cost of computing the Schur decomposition depends
    179       * on the number of iterations; as a rough guide, it may be taken
    180       * on the number of iterations; as a rough guide, it may be taken
    181       * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
    182       * if \a computeU is false.
    183       *
    184       * Example: \include ComplexSchur_compute.cpp
    185       * Output: \verbinclude ComplexSchur_compute.out
    186       *
    187       * \sa compute(const MatrixType&, bool, Index)
    188       */
    189     ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
    190 
    191     /** \brief Compute Schur decomposition from a given Hessenberg matrix
    192      *  \param[in] matrixH Matrix in Hessenberg form H
    193      *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
    194      *  \param computeU Computes the matriX U of the Schur vectors
    195      * \return Reference to \c *this
    196      *
    197      *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
    198      *  using either the class HessenbergDecomposition or another mean.
    199      *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
    200      *  When computeU is true, this routine computes the matrix U such that
    201      *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
    202      *
    203      * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
    204      * is not available, the user should give an identity matrix (Q.setIdentity())
    205      *
    206      * \sa compute(const MatrixType&, bool)
    207      */
    208     template<typename HessMatrixType, typename OrthMatrixType>
    209     ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
    210 
    211     /** \brief Reports whether previous computation was successful.
    212       *
    213       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
    214       */
    215     ComputationInfo info() const
    216     {
    217       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    218       return m_info;
    219     }
    220 
    221     /** \brief Sets the maximum number of iterations allowed.
    222       *
    223       * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
    224       * of the matrix.
    225       */
    226     ComplexSchur& setMaxIterations(Index maxIters)
    227     {
    228       m_maxIters = maxIters;
    229       return *this;
    230     }
    231 
    232     /** \brief Returns the maximum number of iterations. */
    233     Index getMaxIterations()
    234     {
    235       return m_maxIters;
    236     }
    237 
    238     /** \brief Maximum number of iterations per row.
    239       *
    240       * If not otherwise specified, the maximum number of iterations is this number times the size of the
    241       * matrix. It is currently set to 30.
    242       */
    243     static const int m_maxIterationsPerRow = 30;
    244 
    245   protected:
    246     ComplexMatrixType m_matT, m_matU;
    247     HessenbergDecomposition<MatrixType> m_hess;
    248     ComputationInfo m_info;
    249     bool m_isInitialized;
    250     bool m_matUisUptodate;
    251     Index m_maxIters;
    252 
    253   private:
    254     bool subdiagonalEntryIsNeglegible(Index i);
    255     ComplexScalar computeShift(Index iu, Index iter);
    256     void reduceToTriangularForm(bool computeU);
    257     friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
    258 };
    259 
    260 /** If m_matT(i+1,i) is neglegible in floating point arithmetic
    261   * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
    262   * return true, else return false. */
    263 template<typename MatrixType>
    264 inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
    265 {
    266   RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
    267   RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
    268   if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
    269   {
    270     m_matT.coeffRef(i+1,i) = ComplexScalar(0);
    271     return true;
    272   }
    273   return false;
    274 }
    275 
    276 
    277 /** Compute the shift in the current QR iteration. */
    278 template<typename MatrixType>
    279 typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
    280 {
    281   using std::abs;
    282   if (iter == 10 || iter == 20)
    283   {
    284     // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
    285     return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
    286   }
    287 
    288   // compute the shift as one of the eigenvalues of t, the 2x2
    289   // diagonal block on the bottom of the active submatrix
    290   Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
    291   RealScalar normt = t.cwiseAbs().sum();
    292   t /= normt;     // the normalization by sf is to avoid under/overflow
    293 
    294   ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
    295   ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
    296   ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
    297   ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
    298   ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
    299   ComplexScalar eival1 = (trace + disc) / RealScalar(2);
    300   ComplexScalar eival2 = (trace - disc) / RealScalar(2);
    301 
    302   if(numext::norm1(eival1) > numext::norm1(eival2))
    303     eival2 = det / eival1;
    304   else
    305     eival1 = det / eival2;
    306 
    307   // choose the eigenvalue closest to the bottom entry of the diagonal
    308   if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
    309     return normt * eival1;
    310   else
    311     return normt * eival2;
    312 }
    313 
    314 
    315 template<typename MatrixType>
    316 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
    317 {
    318   m_matUisUptodate = false;
    319   eigen_assert(matrix.cols() == matrix.rows());
    320 
    321   if(matrix.cols() == 1)
    322   {
    323     m_matT = matrix.template cast<ComplexScalar>();
    324     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
    325     m_info = Success;
    326     m_isInitialized = true;
    327     m_matUisUptodate = computeU;
    328     return *this;
    329   }
    330 
    331   internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
    332   computeFromHessenberg(m_matT, m_matU, computeU);
    333   return *this;
    334 }
    335 
    336 template<typename MatrixType>
    337 template<typename HessMatrixType, typename OrthMatrixType>
    338 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
    339 {
    340   m_matT = matrixH;
    341   if(computeU)
    342     m_matU = matrixQ;
    343   reduceToTriangularForm(computeU);
    344   return *this;
    345 }
    346 namespace internal {
    347 
    348 /* Reduce given matrix to Hessenberg form */
    349 template<typename MatrixType, bool IsComplex>
    350 struct complex_schur_reduce_to_hessenberg
    351 {
    352   // this is the implementation for the case IsComplex = true
    353   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
    354   {
    355     _this.m_hess.compute(matrix);
    356     _this.m_matT = _this.m_hess.matrixH();
    357     if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
    358   }
    359 };
    360 
    361 template<typename MatrixType>
    362 struct complex_schur_reduce_to_hessenberg<MatrixType, false>
    363 {
    364   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
    365   {
    366     typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
    367 
    368     // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
    369     _this.m_hess.compute(matrix);
    370     _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
    371     if(computeU)
    372     {
    373       // This may cause an allocation which seems to be avoidable
    374       MatrixType Q = _this.m_hess.matrixQ();
    375       _this.m_matU = Q.template cast<ComplexScalar>();
    376     }
    377   }
    378 };
    379 
    380 } // end namespace internal
    381 
    382 // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
    383 template<typename MatrixType>
    384 void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
    385 {
    386   Index maxIters = m_maxIters;
    387   if (maxIters == -1)
    388     maxIters = m_maxIterationsPerRow * m_matT.rows();
    389 
    390   // The matrix m_matT is divided in three parts.
    391   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
    392   // Rows il,...,iu is the part we are working on (the active submatrix).
    393   // Rows iu+1,...,end are already brought in triangular form.
    394   Index iu = m_matT.cols() - 1;
    395   Index il;
    396   Index iter = 0; // number of iterations we are working on the (iu,iu) element
    397   Index totalIter = 0; // number of iterations for whole matrix
    398 
    399   while(true)
    400   {
    401     // find iu, the bottom row of the active submatrix
    402     while(iu > 0)
    403     {
    404       if(!subdiagonalEntryIsNeglegible(iu-1)) break;
    405       iter = 0;
    406       --iu;
    407     }
    408 
    409     // if iu is zero then we are done; the whole matrix is triangularized
    410     if(iu==0) break;
    411 
    412     // if we spent too many iterations, we give up
    413     iter++;
    414     totalIter++;
    415     if(totalIter > maxIters) break;
    416 
    417     // find il, the top row of the active submatrix
    418     il = iu-1;
    419     while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
    420     {
    421       --il;
    422     }
    423 
    424     /* perform the QR step using Givens rotations. The first rotation
    425        creates a bulge; the (il+2,il) element becomes nonzero. This
    426        bulge is chased down to the bottom of the active submatrix. */
    427 
    428     ComplexScalar shift = computeShift(iu, iter);
    429     JacobiRotation<ComplexScalar> rot;
    430     rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
    431     m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
    432     m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
    433     if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
    434 
    435     for(Index i=il+1 ; i<iu ; i++)
    436     {
    437       rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
    438       m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
    439       m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
    440       m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
    441       if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
    442     }
    443   }
    444 
    445   if(totalIter <= maxIters)
    446     m_info = Success;
    447   else
    448     m_info = NoConvergence;
    449 
    450   m_isInitialized = true;
    451   m_matUisUptodate = computeU;
    452 }
    453 
    454 } // end namespace Eigen
    455 
    456 #endif // EIGEN_COMPLEX_SCHUR_H
    457