Home | History | Annotate | Download | only in Sema
      1 //===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines FunctionScopeInfo and its subclasses, which contain
     11 // information about a single function, block, lambda, or method body.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
     16 #define LLVM_CLANG_SEMA_SCOPEINFO_H
     17 
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/Type.h"
     20 #include "clang/Basic/CapturedStmt.h"
     21 #include "clang/Basic/PartialDiagnostic.h"
     22 #include "clang/Sema/Ownership.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/SmallSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include <algorithm>
     27 
     28 namespace clang {
     29 
     30 class Decl;
     31 class BlockDecl;
     32 class CapturedDecl;
     33 class CXXMethodDecl;
     34 class FieldDecl;
     35 class ObjCPropertyDecl;
     36 class IdentifierInfo;
     37 class ImplicitParamDecl;
     38 class LabelDecl;
     39 class ReturnStmt;
     40 class Scope;
     41 class SwitchStmt;
     42 class TemplateTypeParmDecl;
     43 class TemplateParameterList;
     44 class VarDecl;
     45 class ObjCIvarRefExpr;
     46 class ObjCPropertyRefExpr;
     47 class ObjCMessageExpr;
     48 
     49 namespace sema {
     50 
     51 /// \brief Contains information about the compound statement currently being
     52 /// parsed.
     53 class CompoundScopeInfo {
     54 public:
     55   CompoundScopeInfo()
     56     : HasEmptyLoopBodies(false) { }
     57 
     58   /// \brief Whether this compound stamement contains `for' or `while' loops
     59   /// with empty bodies.
     60   bool HasEmptyLoopBodies;
     61 
     62   void setHasEmptyLoopBodies() {
     63     HasEmptyLoopBodies = true;
     64   }
     65 };
     66 
     67 class PossiblyUnreachableDiag {
     68 public:
     69   PartialDiagnostic PD;
     70   SourceLocation Loc;
     71   const Stmt *stmt;
     72 
     73   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
     74                           const Stmt *stmt)
     75     : PD(PD), Loc(Loc), stmt(stmt) {}
     76 };
     77 
     78 /// \brief Retains information about a function, method, or block that is
     79 /// currently being parsed.
     80 class FunctionScopeInfo {
     81 protected:
     82   enum ScopeKind {
     83     SK_Function,
     84     SK_Block,
     85     SK_Lambda,
     86     SK_CapturedRegion
     87   };
     88 
     89 public:
     90   /// \brief What kind of scope we are describing.
     91   ///
     92   ScopeKind Kind;
     93 
     94   /// \brief Whether this function contains a VLA, \@try, try, C++
     95   /// initializer, or anything else that can't be jumped past.
     96   bool HasBranchProtectedScope;
     97 
     98   /// \brief Whether this function contains any switches or direct gotos.
     99   bool HasBranchIntoScope;
    100 
    101   /// \brief Whether this function contains any indirect gotos.
    102   bool HasIndirectGoto;
    103 
    104   /// \brief Whether a statement was dropped because it was invalid.
    105   bool HasDroppedStmt;
    106 
    107   /// A flag that is set when parsing a method that must call super's
    108   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
    109   /// with \c __attribute__((objc_requires_super)).
    110   bool ObjCShouldCallSuper;
    111 
    112   /// True when this is a method marked as a designated initializer.
    113   bool ObjCIsDesignatedInit;
    114   /// This starts true for a method marked as designated initializer and will
    115   /// be set to false if there is an invocation to a designated initializer of
    116   /// the super class.
    117   bool ObjCWarnForNoDesignatedInitChain;
    118 
    119   /// True when this is an initializer method not marked as a designated
    120   /// initializer within a class that has at least one initializer marked as a
    121   /// designated initializer.
    122   bool ObjCIsSecondaryInit;
    123   /// This starts true for a secondary initializer method and will be set to
    124   /// false if there is an invocation of an initializer on 'self'.
    125   bool ObjCWarnForNoInitDelegation;
    126 
    127   /// First C++ 'try' statement in the current function.
    128   SourceLocation FirstCXXTryLoc;
    129 
    130   /// First SEH '__try' statement in the current function.
    131   SourceLocation FirstSEHTryLoc;
    132 
    133   /// \brief Used to determine if errors occurred in this function or block.
    134   DiagnosticErrorTrap ErrorTrap;
    135 
    136   /// SwitchStack - This is the current set of active switch statements in the
    137   /// block.
    138   SmallVector<SwitchStmt*, 8> SwitchStack;
    139 
    140   /// \brief The list of return statements that occur within the function or
    141   /// block, if there is any chance of applying the named return value
    142   /// optimization, or if we need to infer a return type.
    143   SmallVector<ReturnStmt*, 4> Returns;
    144 
    145   /// \brief The stack of currently active compound stamement scopes in the
    146   /// function.
    147   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
    148 
    149   /// \brief A list of PartialDiagnostics created but delayed within the
    150   /// current function scope.  These diagnostics are vetted for reachability
    151   /// prior to being emitted.
    152   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
    153 
    154   /// \brief A list of parameters which have the nonnull attribute and are
    155   /// modified in the function.
    156   llvm::SmallPtrSet<const ParmVarDecl*, 8>  ModifiedNonNullParams;
    157 
    158 public:
    159   /// Represents a simple identification of a weak object.
    160   ///
    161   /// Part of the implementation of -Wrepeated-use-of-weak.
    162   ///
    163   /// This is used to determine if two weak accesses refer to the same object.
    164   /// Here are some examples of how various accesses are "profiled":
    165   ///
    166   /// Access Expression |     "Base" Decl     |          "Property" Decl
    167   /// :---------------: | :-----------------: | :------------------------------:
    168   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
    169   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
    170   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
    171   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
    172   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
    173   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
    174   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
    175   /// weakVar           | 0 (known)           | weakVar (VarDecl)
    176   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
    177   ///
    178   /// Objects are identified with only two Decls to make it reasonably fast to
    179   /// compare them.
    180   class WeakObjectProfileTy {
    181     /// The base object decl, as described in the class documentation.
    182     ///
    183     /// The extra flag is "true" if the Base and Property are enough to uniquely
    184     /// identify the object in memory.
    185     ///
    186     /// \sa isExactProfile()
    187     typedef llvm::PointerIntPair<const NamedDecl *, 1, bool> BaseInfoTy;
    188     BaseInfoTy Base;
    189 
    190     /// The "property" decl, as described in the class documentation.
    191     ///
    192     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
    193     /// case of "implicit" properties (regular methods accessed via dot syntax).
    194     const NamedDecl *Property;
    195 
    196     /// Used to find the proper base profile for a given base expression.
    197     static BaseInfoTy getBaseInfo(const Expr *BaseE);
    198 
    199     inline WeakObjectProfileTy();
    200     static inline WeakObjectProfileTy getSentinel();
    201 
    202   public:
    203     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
    204     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
    205     WeakObjectProfileTy(const DeclRefExpr *RE);
    206     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
    207 
    208     const NamedDecl *getBase() const { return Base.getPointer(); }
    209     const NamedDecl *getProperty() const { return Property; }
    210 
    211     /// Returns true if the object base specifies a known object in memory,
    212     /// rather than, say, an instance variable or property of another object.
    213     ///
    214     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
    215     /// considered an exact profile if \c foo is a local variable, even if
    216     /// another variable \c foo2 refers to the same object as \c foo.
    217     ///
    218     /// For increased precision, accesses with base variables that are
    219     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
    220     /// be exact, though this is not true for arbitrary variables
    221     /// (foo.prop1.prop2).
    222     bool isExactProfile() const {
    223       return Base.getInt();
    224     }
    225 
    226     bool operator==(const WeakObjectProfileTy &Other) const {
    227       return Base == Other.Base && Property == Other.Property;
    228     }
    229 
    230     // For use in DenseMap.
    231     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
    232     // because by that point the DenseMap in FunctionScopeInfo has already been
    233     // instantiated.
    234     class DenseMapInfo {
    235     public:
    236       static inline WeakObjectProfileTy getEmptyKey() {
    237         return WeakObjectProfileTy();
    238       }
    239       static inline WeakObjectProfileTy getTombstoneKey() {
    240         return WeakObjectProfileTy::getSentinel();
    241       }
    242 
    243       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
    244         typedef std::pair<BaseInfoTy, const NamedDecl *> Pair;
    245         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
    246                                                            Val.Property));
    247       }
    248 
    249       static bool isEqual(const WeakObjectProfileTy &LHS,
    250                           const WeakObjectProfileTy &RHS) {
    251         return LHS == RHS;
    252       }
    253     };
    254   };
    255 
    256   /// Represents a single use of a weak object.
    257   ///
    258   /// Stores both the expression and whether the access is potentially unsafe
    259   /// (i.e. it could potentially be warned about).
    260   ///
    261   /// Part of the implementation of -Wrepeated-use-of-weak.
    262   class WeakUseTy {
    263     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
    264   public:
    265     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
    266 
    267     const Expr *getUseExpr() const { return Rep.getPointer(); }
    268     bool isUnsafe() const { return Rep.getInt(); }
    269     void markSafe() { Rep.setInt(false); }
    270 
    271     bool operator==(const WeakUseTy &Other) const {
    272       return Rep == Other.Rep;
    273     }
    274   };
    275 
    276   /// Used to collect uses of a particular weak object in a function body.
    277   ///
    278   /// Part of the implementation of -Wrepeated-use-of-weak.
    279   typedef SmallVector<WeakUseTy, 4> WeakUseVector;
    280 
    281   /// Used to collect all uses of weak objects in a function body.
    282   ///
    283   /// Part of the implementation of -Wrepeated-use-of-weak.
    284   typedef llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
    285                               WeakObjectProfileTy::DenseMapInfo>
    286           WeakObjectUseMap;
    287 
    288 private:
    289   /// Used to collect all uses of weak objects in this function body.
    290   ///
    291   /// Part of the implementation of -Wrepeated-use-of-weak.
    292   WeakObjectUseMap WeakObjectUses;
    293 
    294 public:
    295   /// Record that a weak object was accessed.
    296   ///
    297   /// Part of the implementation of -Wrepeated-use-of-weak.
    298   template <typename ExprT>
    299   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
    300 
    301   void recordUseOfWeak(const ObjCMessageExpr *Msg,
    302                        const ObjCPropertyDecl *Prop);
    303 
    304   /// Record that a given expression is a "safe" access of a weak object (e.g.
    305   /// assigning it to a strong variable.)
    306   ///
    307   /// Part of the implementation of -Wrepeated-use-of-weak.
    308   void markSafeWeakUse(const Expr *E);
    309 
    310   const WeakObjectUseMap &getWeakObjectUses() const {
    311     return WeakObjectUses;
    312   }
    313 
    314   void setHasBranchIntoScope() {
    315     HasBranchIntoScope = true;
    316   }
    317 
    318   void setHasBranchProtectedScope() {
    319     HasBranchProtectedScope = true;
    320   }
    321 
    322   void setHasIndirectGoto() {
    323     HasIndirectGoto = true;
    324   }
    325 
    326   void setHasDroppedStmt() {
    327     HasDroppedStmt = true;
    328   }
    329 
    330   void setHasCXXTry(SourceLocation TryLoc) {
    331     setHasBranchProtectedScope();
    332     FirstCXXTryLoc = TryLoc;
    333   }
    334 
    335   void setHasSEHTry(SourceLocation TryLoc) {
    336     setHasBranchProtectedScope();
    337     FirstSEHTryLoc = TryLoc;
    338   }
    339 
    340   bool NeedsScopeChecking() const {
    341     return !HasDroppedStmt &&
    342         (HasIndirectGoto ||
    343           (HasBranchProtectedScope && HasBranchIntoScope));
    344   }
    345 
    346   FunctionScopeInfo(DiagnosticsEngine &Diag)
    347     : Kind(SK_Function),
    348       HasBranchProtectedScope(false),
    349       HasBranchIntoScope(false),
    350       HasIndirectGoto(false),
    351       HasDroppedStmt(false),
    352       ObjCShouldCallSuper(false),
    353       ObjCIsDesignatedInit(false),
    354       ObjCWarnForNoDesignatedInitChain(false),
    355       ObjCIsSecondaryInit(false),
    356       ObjCWarnForNoInitDelegation(false),
    357       ErrorTrap(Diag) { }
    358 
    359   virtual ~FunctionScopeInfo();
    360 
    361   /// \brief Clear out the information in this function scope, making it
    362   /// suitable for reuse.
    363   void Clear();
    364 };
    365 
    366 class CapturingScopeInfo : public FunctionScopeInfo {
    367 public:
    368   enum ImplicitCaptureStyle {
    369     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
    370     ImpCap_CapturedRegion
    371   };
    372 
    373   ImplicitCaptureStyle ImpCaptureStyle;
    374 
    375   class Capture {
    376     // There are three categories of capture: capturing 'this', capturing
    377     // local variables, and C++1y initialized captures (which can have an
    378     // arbitrary initializer, and don't really capture in the traditional
    379     // sense at all).
    380     //
    381     // There are three ways to capture a local variable:
    382     //  - capture by copy in the C++11 sense,
    383     //  - capture by reference in the C++11 sense, and
    384     //  - __block capture.
    385     // Lambdas explicitly specify capture by copy or capture by reference.
    386     // For blocks, __block capture applies to variables with that annotation,
    387     // variables of reference type are captured by reference, and other
    388     // variables are captured by copy.
    389     enum CaptureKind {
    390       Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_This
    391     };
    392 
    393     /// The variable being captured (if we are not capturing 'this') and whether
    394     /// this is a nested capture.
    395     llvm::PointerIntPair<VarDecl*, 1, bool> VarAndNested;
    396 
    397     /// Expression to initialize a field of the given type, and the kind of
    398     /// capture (if this is a capture and not an init-capture). The expression
    399     /// is only required if we are capturing ByVal and the variable's type has
    400     /// a non-trivial copy constructor.
    401     llvm::PointerIntPair<void *, 2, CaptureKind> InitExprAndCaptureKind;
    402 
    403     /// \brief The source location at which the first capture occurred.
    404     SourceLocation Loc;
    405 
    406     /// \brief The location of the ellipsis that expands a parameter pack.
    407     SourceLocation EllipsisLoc;
    408 
    409     /// \brief The type as it was captured, which is in effect the type of the
    410     /// non-static data member that would hold the capture.
    411     QualType CaptureType;
    412 
    413   public:
    414     Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
    415             SourceLocation Loc, SourceLocation EllipsisLoc,
    416             QualType CaptureType, Expr *Cpy)
    417         : VarAndNested(Var, IsNested),
    418           InitExprAndCaptureKind(Cpy, Block ? Cap_Block :
    419                                       ByRef ? Cap_ByRef : Cap_ByCopy),
    420           Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType) {}
    421 
    422     enum IsThisCapture { ThisCapture };
    423     Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
    424             QualType CaptureType, Expr *Cpy)
    425         : VarAndNested(nullptr, IsNested),
    426           InitExprAndCaptureKind(Cpy, Cap_This),
    427           Loc(Loc), EllipsisLoc(), CaptureType(CaptureType) {}
    428 
    429     bool isThisCapture() const {
    430       return InitExprAndCaptureKind.getInt() == Cap_This;
    431     }
    432     bool isVariableCapture() const {
    433       return InitExprAndCaptureKind.getInt() != Cap_This && !isVLATypeCapture();
    434     }
    435     bool isCopyCapture() const {
    436       return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
    437              !isVLATypeCapture();
    438     }
    439     bool isReferenceCapture() const {
    440       return InitExprAndCaptureKind.getInt() == Cap_ByRef;
    441     }
    442     bool isBlockCapture() const {
    443       return InitExprAndCaptureKind.getInt() == Cap_Block;
    444     }
    445     bool isVLATypeCapture() const {
    446       return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
    447              getVariable() == nullptr;
    448     }
    449     bool isNested() const { return VarAndNested.getInt(); }
    450 
    451     VarDecl *getVariable() const {
    452       return VarAndNested.getPointer();
    453     }
    454 
    455     /// \brief Retrieve the location at which this variable was captured.
    456     SourceLocation getLocation() const { return Loc; }
    457 
    458     /// \brief Retrieve the source location of the ellipsis, whose presence
    459     /// indicates that the capture is a pack expansion.
    460     SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
    461 
    462     /// \brief Retrieve the capture type for this capture, which is effectively
    463     /// the type of the non-static data member in the lambda/block structure
    464     /// that would store this capture.
    465     QualType getCaptureType() const { return CaptureType; }
    466 
    467     Expr *getInitExpr() const {
    468       assert(!isVLATypeCapture() && "no init expression for type capture");
    469       return static_cast<Expr *>(InitExprAndCaptureKind.getPointer());
    470     }
    471   };
    472 
    473   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
    474     : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0),
    475       HasImplicitReturnType(false)
    476      {}
    477 
    478   /// CaptureMap - A map of captured variables to (index+1) into Captures.
    479   llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
    480 
    481   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
    482   /// zero if 'this' is not captured.
    483   unsigned CXXThisCaptureIndex;
    484 
    485   /// Captures - The captures.
    486   SmallVector<Capture, 4> Captures;
    487 
    488   /// \brief - Whether the target type of return statements in this context
    489   /// is deduced (e.g. a lambda or block with omitted return type).
    490   bool HasImplicitReturnType;
    491 
    492   /// ReturnType - The target type of return statements in this context,
    493   /// or null if unknown.
    494   QualType ReturnType;
    495 
    496   void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
    497                   SourceLocation Loc, SourceLocation EllipsisLoc,
    498                   QualType CaptureType, Expr *Cpy) {
    499     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
    500                                EllipsisLoc, CaptureType, Cpy));
    501     CaptureMap[Var] = Captures.size();
    502   }
    503 
    504   void addVLATypeCapture(SourceLocation Loc, QualType CaptureType) {
    505     Captures.push_back(Capture(/*Var*/ nullptr, /*isBlock*/ false,
    506                                /*isByref*/ false, /*isNested*/ false, Loc,
    507                                /*EllipsisLoc*/ SourceLocation(), CaptureType,
    508                                /*Cpy*/ nullptr));
    509   }
    510 
    511   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
    512                       Expr *Cpy);
    513 
    514   /// \brief Determine whether the C++ 'this' is captured.
    515   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
    516 
    517   /// \brief Retrieve the capture of C++ 'this', if it has been captured.
    518   Capture &getCXXThisCapture() {
    519     assert(isCXXThisCaptured() && "this has not been captured");
    520     return Captures[CXXThisCaptureIndex - 1];
    521   }
    522 
    523   /// \brief Determine whether the given variable has been captured.
    524   bool isCaptured(VarDecl *Var) const {
    525     return CaptureMap.count(Var);
    526   }
    527 
    528   /// \brief Determine whether the given variable-array type has been captured.
    529   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
    530 
    531   /// \brief Retrieve the capture of the given variable, if it has been
    532   /// captured already.
    533   Capture &getCapture(VarDecl *Var) {
    534     assert(isCaptured(Var) && "Variable has not been captured");
    535     return Captures[CaptureMap[Var] - 1];
    536   }
    537 
    538   const Capture &getCapture(VarDecl *Var) const {
    539     llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
    540       = CaptureMap.find(Var);
    541     assert(Known != CaptureMap.end() && "Variable has not been captured");
    542     return Captures[Known->second - 1];
    543   }
    544 
    545   static bool classof(const FunctionScopeInfo *FSI) {
    546     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
    547                                  || FSI->Kind == SK_CapturedRegion;
    548   }
    549 };
    550 
    551 /// \brief Retains information about a block that is currently being parsed.
    552 class BlockScopeInfo : public CapturingScopeInfo {
    553 public:
    554   BlockDecl *TheDecl;
    555 
    556   /// TheScope - This is the scope for the block itself, which contains
    557   /// arguments etc.
    558   Scope *TheScope;
    559 
    560   /// BlockType - The function type of the block, if one was given.
    561   /// Its return type may be BuiltinType::Dependent.
    562   QualType FunctionType;
    563 
    564   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
    565     : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
    566       TheScope(BlockScope)
    567   {
    568     Kind = SK_Block;
    569   }
    570 
    571   ~BlockScopeInfo() override;
    572 
    573   static bool classof(const FunctionScopeInfo *FSI) {
    574     return FSI->Kind == SK_Block;
    575   }
    576 };
    577 
    578 /// \brief Retains information about a captured region.
    579 class CapturedRegionScopeInfo: public CapturingScopeInfo {
    580 public:
    581   /// \brief The CapturedDecl for this statement.
    582   CapturedDecl *TheCapturedDecl;
    583   /// \brief The captured record type.
    584   RecordDecl *TheRecordDecl;
    585   /// \brief This is the enclosing scope of the captured region.
    586   Scope *TheScope;
    587   /// \brief The implicit parameter for the captured variables.
    588   ImplicitParamDecl *ContextParam;
    589   /// \brief The kind of captured region.
    590   CapturedRegionKind CapRegionKind;
    591 
    592   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
    593                           RecordDecl *RD, ImplicitParamDecl *Context,
    594                           CapturedRegionKind K)
    595     : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
    596       TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
    597       ContextParam(Context), CapRegionKind(K)
    598   {
    599     Kind = SK_CapturedRegion;
    600   }
    601 
    602   ~CapturedRegionScopeInfo() override;
    603 
    604   /// \brief A descriptive name for the kind of captured region this is.
    605   StringRef getRegionName() const {
    606     switch (CapRegionKind) {
    607     case CR_Default:
    608       return "default captured statement";
    609     case CR_OpenMP:
    610       return "OpenMP region";
    611     }
    612     llvm_unreachable("Invalid captured region kind!");
    613   }
    614 
    615   static bool classof(const FunctionScopeInfo *FSI) {
    616     return FSI->Kind == SK_CapturedRegion;
    617   }
    618 };
    619 
    620 class LambdaScopeInfo : public CapturingScopeInfo {
    621 public:
    622   /// \brief The class that describes the lambda.
    623   CXXRecordDecl *Lambda;
    624 
    625   /// \brief The lambda's compiler-generated \c operator().
    626   CXXMethodDecl *CallOperator;
    627 
    628   /// \brief Source range covering the lambda introducer [...].
    629   SourceRange IntroducerRange;
    630 
    631   /// \brief Source location of the '&' or '=' specifying the default capture
    632   /// type, if any.
    633   SourceLocation CaptureDefaultLoc;
    634 
    635   /// \brief The number of captures in the \c Captures list that are
    636   /// explicit captures.
    637   unsigned NumExplicitCaptures;
    638 
    639   /// \brief Whether this is a mutable lambda.
    640   bool Mutable;
    641 
    642   /// \brief Whether the (empty) parameter list is explicit.
    643   bool ExplicitParams;
    644 
    645   /// \brief Whether any of the capture expressions requires cleanups.
    646   bool ExprNeedsCleanups;
    647 
    648   /// \brief Whether the lambda contains an unexpanded parameter pack.
    649   bool ContainsUnexpandedParameterPack;
    650 
    651   /// \brief Variables used to index into by-copy array captures.
    652   SmallVector<VarDecl *, 4> ArrayIndexVars;
    653 
    654   /// \brief Offsets into the ArrayIndexVars array at which each capture starts
    655   /// its list of array index variables.
    656   SmallVector<unsigned, 4> ArrayIndexStarts;
    657 
    658   /// \brief If this is a generic lambda, use this as the depth of
    659   /// each 'auto' parameter, during initial AST construction.
    660   unsigned AutoTemplateParameterDepth;
    661 
    662   /// \brief Store the list of the auto parameters for a generic lambda.
    663   /// If this is a generic lambda, store the list of the auto
    664   /// parameters converted into TemplateTypeParmDecls into a vector
    665   /// that can be used to construct the generic lambda's template
    666   /// parameter list, during initial AST construction.
    667   SmallVector<TemplateTypeParmDecl*, 4> AutoTemplateParams;
    668 
    669   /// If this is a generic lambda, and the template parameter
    670   /// list has been created (from the AutoTemplateParams) then
    671   /// store a reference to it (cache it to avoid reconstructing it).
    672   TemplateParameterList *GLTemplateParameterList;
    673 
    674   /// \brief Contains all variable-referring-expressions (i.e. DeclRefExprs
    675   ///  or MemberExprs) that refer to local variables in a generic lambda
    676   ///  or a lambda in a potentially-evaluated-if-used context.
    677   ///
    678   ///  Potentially capturable variables of a nested lambda that might need
    679   ///   to be captured by the lambda are housed here.
    680   ///  This is specifically useful for generic lambdas or
    681   ///  lambdas within a a potentially evaluated-if-used context.
    682   ///  If an enclosing variable is named in an expression of a lambda nested
    683   ///  within a generic lambda, we don't always know know whether the variable
    684   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
    685   ///  until its instantiation. But we still need to capture it in the
    686   ///  enclosing lambda if all intervening lambdas can capture the variable.
    687 
    688   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
    689 
    690   /// \brief Contains all variable-referring-expressions that refer
    691   ///  to local variables that are usable as constant expressions and
    692   ///  do not involve an odr-use (they may still need to be captured
    693   ///  if the enclosing full-expression is instantiation dependent).
    694   llvm::SmallSet<Expr*, 8> NonODRUsedCapturingExprs;
    695 
    696   SourceLocation PotentialThisCaptureLocation;
    697 
    698   LambdaScopeInfo(DiagnosticsEngine &Diag)
    699     : CapturingScopeInfo(Diag, ImpCap_None), Lambda(nullptr),
    700       CallOperator(nullptr), NumExplicitCaptures(0), Mutable(false),
    701       ExplicitParams(false), ExprNeedsCleanups(false),
    702       ContainsUnexpandedParameterPack(false), AutoTemplateParameterDepth(0),
    703       GLTemplateParameterList(nullptr) {
    704     Kind = SK_Lambda;
    705   }
    706 
    707   ~LambdaScopeInfo() override;
    708 
    709   /// \brief Note when all explicit captures have been added.
    710   void finishedExplicitCaptures() {
    711     NumExplicitCaptures = Captures.size();
    712   }
    713 
    714   static bool classof(const FunctionScopeInfo *FSI) {
    715     return FSI->Kind == SK_Lambda;
    716   }
    717 
    718   ///
    719   /// \brief Add a variable that might potentially be captured by the
    720   /// lambda and therefore the enclosing lambdas.
    721   ///
    722   /// This is also used by enclosing lambda's to speculatively capture
    723   /// variables that nested lambda's - depending on their enclosing
    724   /// specialization - might need to capture.
    725   /// Consider:
    726   /// void f(int, int); <-- don't capture
    727   /// void f(const int&, double); <-- capture
    728   /// void foo() {
    729   ///   const int x = 10;
    730   ///   auto L = [=](auto a) { // capture 'x'
    731   ///      return [=](auto b) {
    732   ///        f(x, a);  // we may or may not need to capture 'x'
    733   ///      };
    734   ///   };
    735   /// }
    736   void addPotentialCapture(Expr *VarExpr) {
    737     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr));
    738     PotentiallyCapturingExprs.push_back(VarExpr);
    739   }
    740 
    741   void addPotentialThisCapture(SourceLocation Loc) {
    742     PotentialThisCaptureLocation = Loc;
    743   }
    744   bool hasPotentialThisCapture() const {
    745     return PotentialThisCaptureLocation.isValid();
    746   }
    747 
    748   /// \brief Mark a variable's reference in a lambda as non-odr using.
    749   ///
    750   /// For generic lambdas, if a variable is named in a potentially evaluated
    751   /// expression, where the enclosing full expression is dependent then we
    752   /// must capture the variable (given a default capture).
    753   /// This is accomplished by recording all references to variables
    754   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
    755   /// PotentialCaptures. All such variables have to be captured by that lambda,
    756   /// except for as described below.
    757   /// If that variable is usable as a constant expression and is named in a
    758   /// manner that does not involve its odr-use (e.g. undergoes
    759   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
    760   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
    761   /// if we can determine that the full expression is not instantiation-
    762   /// dependent, then we can entirely avoid its capture.
    763   ///
    764   ///   const int n = 0;
    765   ///   [&] (auto x) {
    766   ///     (void)+n + x;
    767   ///   };
    768   /// Interestingly, this strategy would involve a capture of n, even though
    769   /// it's obviously not odr-used here, because the full-expression is
    770   /// instantiation-dependent.  It could be useful to avoid capturing such
    771   /// variables, even when they are referred to in an instantiation-dependent
    772   /// expression, if we can unambiguously determine that they shall never be
    773   /// odr-used.  This would involve removal of the variable-referring-expression
    774   /// from the array of PotentialCaptures during the lvalue-to-rvalue
    775   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
    776   /// capture such variables.
    777   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
    778   /// consider the insightful warning in:
    779   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
    780   /// "The problem is that the set of captures for a lambda is part of the ABI
    781   ///  (since lambda layout can be made visible through inline functions and the
    782   ///  like), and there are no guarantees as to which cases we'll manage to build
    783   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
    784   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
    785   ///  building such a node. So we need a rule that anyone can implement and get
    786   ///  exactly the same result".
    787   ///
    788   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
    789     assert(isa<DeclRefExpr>(CapturingVarExpr)
    790         || isa<MemberExpr>(CapturingVarExpr));
    791     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
    792   }
    793   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
    794     assert(isa<DeclRefExpr>(CapturingVarExpr)
    795       || isa<MemberExpr>(CapturingVarExpr));
    796     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
    797   }
    798   void removePotentialCapture(Expr *E) {
    799     PotentiallyCapturingExprs.erase(
    800         std::remove(PotentiallyCapturingExprs.begin(),
    801             PotentiallyCapturingExprs.end(), E),
    802         PotentiallyCapturingExprs.end());
    803   }
    804   void clearPotentialCaptures() {
    805     PotentiallyCapturingExprs.clear();
    806     PotentialThisCaptureLocation = SourceLocation();
    807   }
    808   unsigned getNumPotentialVariableCaptures() const {
    809     return PotentiallyCapturingExprs.size();
    810   }
    811 
    812   bool hasPotentialCaptures() const {
    813     return getNumPotentialVariableCaptures() ||
    814                                   PotentialThisCaptureLocation.isValid();
    815   }
    816 
    817   // When passed the index, returns the VarDecl and Expr associated
    818   // with the index.
    819   void getPotentialVariableCapture(unsigned Idx, VarDecl *&VD, Expr *&E) const;
    820 };
    821 
    822 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
    823   : Base(nullptr, false), Property(nullptr) {}
    824 
    825 FunctionScopeInfo::WeakObjectProfileTy
    826 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
    827   FunctionScopeInfo::WeakObjectProfileTy Result;
    828   Result.Base.setInt(true);
    829   return Result;
    830 }
    831 
    832 template <typename ExprT>
    833 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
    834   assert(E);
    835   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
    836   Uses.push_back(WeakUseTy(E, IsRead));
    837 }
    838 
    839 inline void
    840 CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc,
    841                                    QualType CaptureType, Expr *Cpy) {
    842   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
    843                              Cpy));
    844   CXXThisCaptureIndex = Captures.size();
    845 
    846   if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(this))
    847     LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
    848 }
    849 
    850 } // end namespace sema
    851 } // end namespace clang
    852 
    853 #endif
    854