Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/ADT/StringMap.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include <utility>
     19 using namespace llvm;
     20 
     21 
     22 /// getRegisterValueType - Look up and return the ValueType of the specified
     23 /// register. If the register is a member of multiple register classes which
     24 /// have different associated types, return MVT::Other.
     25 static MVT::SimpleValueType getRegisterValueType(Record *R,
     26                                                  const CodeGenTarget &T) {
     27   bool FoundRC = false;
     28   MVT::SimpleValueType VT = MVT::Other;
     29   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     30 
     31   for (const auto &RC : T.getRegBank().getRegClasses()) {
     32     if (!RC.contains(Reg))
     33       continue;
     34 
     35     if (!FoundRC) {
     36       FoundRC = true;
     37       VT = RC.getValueTypeNum(0);
     38       continue;
     39     }
     40 
     41     // If this occurs in multiple register classes, they all have to agree.
     42     assert(VT == RC.getValueTypeNum(0));
     43   }
     44   return VT;
     45 }
     46 
     47 
     48 namespace {
     49   class MatcherGen {
     50     const PatternToMatch &Pattern;
     51     const CodeGenDAGPatterns &CGP;
     52 
     53     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     54     /// out with all of the types removed.  This allows us to insert type checks
     55     /// as we scan the tree.
     56     TreePatternNode *PatWithNoTypes;
     57 
     58     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     59     /// number that they were captured as.  These are biased by 1 to make
     60     /// insertion easier.
     61     StringMap<unsigned> VariableMap;
     62 
     63     /// This maintains the recorded operand number that OPC_CheckComplexPattern
     64     /// drops each sub-operand into. We don't want to insert these into
     65     /// VariableMap because that leads to identity checking if they are
     66     /// encountered multiple times. Biased by 1 like VariableMap for
     67     /// consistency.
     68     StringMap<unsigned> NamedComplexPatternOperands;
     69 
     70     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     71     /// the RecordedNodes array, this keeps track of which slot will be next to
     72     /// record into.
     73     unsigned NextRecordedOperandNo;
     74 
     75     /// MatchedChainNodes - This maintains the position in the recorded nodes
     76     /// array of all of the recorded input nodes that have chains.
     77     SmallVector<unsigned, 2> MatchedChainNodes;
     78 
     79     /// MatchedGlueResultNodes - This maintains the position in the recorded
     80     /// nodes array of all of the recorded input nodes that have glue results.
     81     SmallVector<unsigned, 2> MatchedGlueResultNodes;
     82 
     83     /// MatchedComplexPatterns - This maintains a list of all of the
     84     /// ComplexPatterns that we need to check. The second element of each pair
     85     /// is the recorded operand number of the input node.
     86     SmallVector<std::pair<const TreePatternNode*,
     87                           unsigned>, 2> MatchedComplexPatterns;
     88 
     89     /// PhysRegInputs - List list has an entry for each explicitly specified
     90     /// physreg input to the pattern.  The first elt is the Register node, the
     91     /// second is the recorded slot number the input pattern match saved it in.
     92     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     93 
     94     /// Matcher - This is the top level of the generated matcher, the result.
     95     Matcher *TheMatcher;
     96 
     97     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     98     /// which should have future checks stuck into its Next position.
     99     Matcher *CurPredicate;
    100   public:
    101     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
    102 
    103     ~MatcherGen() {
    104       delete PatWithNoTypes;
    105     }
    106 
    107     bool EmitMatcherCode(unsigned Variant);
    108     void EmitResultCode();
    109 
    110     Matcher *GetMatcher() const { return TheMatcher; }
    111   private:
    112     void AddMatcher(Matcher *NewNode);
    113     void InferPossibleTypes();
    114 
    115     // Matcher Generation.
    116     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    117     void EmitLeafMatchCode(const TreePatternNode *N);
    118     void EmitOperatorMatchCode(const TreePatternNode *N,
    119                                TreePatternNode *NodeNoTypes);
    120 
    121     /// If this is the first time a node with unique identifier Name has been
    122     /// seen, record it. Otherwise, emit a check to make sure this is the same
    123     /// node. Returns true if this is the first encounter.
    124     bool recordUniqueNode(std::string Name);
    125 
    126     // Result Code Generation.
    127     unsigned getNamedArgumentSlot(StringRef Name) {
    128       unsigned VarMapEntry = VariableMap[Name];
    129       assert(VarMapEntry != 0 &&
    130              "Variable referenced but not defined and not caught earlier!");
    131       return VarMapEntry-1;
    132     }
    133 
    134     /// GetInstPatternNode - Get the pattern for an instruction.
    135     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    136                                               const TreePatternNode *N);
    137 
    138     void EmitResultOperand(const TreePatternNode *N,
    139                            SmallVectorImpl<unsigned> &ResultOps);
    140     void EmitResultOfNamedOperand(const TreePatternNode *N,
    141                                   SmallVectorImpl<unsigned> &ResultOps);
    142     void EmitResultLeafAsOperand(const TreePatternNode *N,
    143                                  SmallVectorImpl<unsigned> &ResultOps);
    144     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    145                                         SmallVectorImpl<unsigned> &ResultOps);
    146     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    147                                         SmallVectorImpl<unsigned> &ResultOps);
    148     };
    149 
    150 } // end anon namespace.
    151 
    152 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    153                        const CodeGenDAGPatterns &cgp)
    154 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    155   TheMatcher(nullptr), CurPredicate(nullptr) {
    156   // We need to produce the matcher tree for the patterns source pattern.  To do
    157   // this we need to match the structure as well as the types.  To do the type
    158   // matching, we want to figure out the fewest number of type checks we need to
    159   // emit.  For example, if there is only one integer type supported by a
    160   // target, there should be no type comparisons at all for integer patterns!
    161   //
    162   // To figure out the fewest number of type checks needed, clone the pattern,
    163   // remove the types, then perform type inference on the pattern as a whole.
    164   // If there are unresolved types, emit an explicit check for those types,
    165   // apply the type to the tree, then rerun type inference.  Iterate until all
    166   // types are resolved.
    167   //
    168   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    169   PatWithNoTypes->RemoveAllTypes();
    170 
    171   // If there are types that are manifestly known, infer them.
    172   InferPossibleTypes();
    173 }
    174 
    175 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    176 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    177 /// want to propagate implied types as far throughout the tree as possible so
    178 /// that we avoid doing redundant type checks.  This does the type propagation.
    179 void MatcherGen::InferPossibleTypes() {
    180   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    181   // diagnostics, which we know are impossible at this point.
    182   TreePattern &TP = *CGP.pf_begin()->second;
    183 
    184   bool MadeChange = true;
    185   while (MadeChange)
    186     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    187                                               true/*Ignore reg constraints*/);
    188 }
    189 
    190 
    191 /// AddMatcher - Add a matcher node to the current graph we're building.
    192 void MatcherGen::AddMatcher(Matcher *NewNode) {
    193   if (CurPredicate)
    194     CurPredicate->setNext(NewNode);
    195   else
    196     TheMatcher = NewNode;
    197   CurPredicate = NewNode;
    198 }
    199 
    200 
    201 //===----------------------------------------------------------------------===//
    202 // Pattern Match Generation
    203 //===----------------------------------------------------------------------===//
    204 
    205 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    206 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    207   assert(N->isLeaf() && "Not a leaf?");
    208 
    209   // Direct match against an integer constant.
    210   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    211     // If this is the root of the dag we're matching, we emit a redundant opcode
    212     // check to ensure that this gets folded into the normal top-level
    213     // OpcodeSwitch.
    214     if (N == Pattern.getSrcPattern()) {
    215       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    216       AddMatcher(new CheckOpcodeMatcher(NI));
    217     }
    218 
    219     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    220   }
    221 
    222   // An UnsetInit represents a named node without any constraints.
    223   if (N->getLeafValue() == UnsetInit::get()) {
    224     assert(N->hasName() && "Unnamed ? leaf");
    225     return;
    226   }
    227 
    228   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    229   if (!DI) {
    230     errs() << "Unknown leaf kind: " << *N << "\n";
    231     abort();
    232   }
    233 
    234   Record *LeafRec = DI->getDef();
    235 
    236   // A ValueType leaf node can represent a register when named, or itself when
    237   // unnamed.
    238   if (LeafRec->isSubClassOf("ValueType")) {
    239     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    240     if (N->hasName())
    241       return;
    242     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    243     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    244   }
    245 
    246   if (// Handle register references.  Nothing to do here, they always match.
    247       LeafRec->isSubClassOf("RegisterClass") ||
    248       LeafRec->isSubClassOf("RegisterOperand") ||
    249       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    250       LeafRec->isSubClassOf("SubRegIndex") ||
    251       // Place holder for SRCVALUE nodes. Nothing to do here.
    252       LeafRec->getName() == "srcvalue")
    253     return;
    254 
    255   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    256   // record the register
    257   if (LeafRec->isSubClassOf("Register")) {
    258     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    259                                  NextRecordedOperandNo));
    260     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    261     return;
    262   }
    263 
    264   if (LeafRec->isSubClassOf("CondCode"))
    265     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    266 
    267   if (LeafRec->isSubClassOf("ComplexPattern")) {
    268     // We can't model ComplexPattern uses that don't have their name taken yet.
    269     // The OPC_CheckComplexPattern operation implicitly records the results.
    270     if (N->getName().empty()) {
    271       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
    272       exit(1);
    273     }
    274 
    275     // Remember this ComplexPattern so that we can emit it after all the other
    276     // structural matches are done.
    277     unsigned InputOperand = VariableMap[N->getName()] - 1;
    278     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
    279     return;
    280   }
    281 
    282   errs() << "Unknown leaf kind: " << *N << "\n";
    283   abort();
    284 }
    285 
    286 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    287                                        TreePatternNode *NodeNoTypes) {
    288   assert(!N->isLeaf() && "Not an operator?");
    289 
    290   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
    291     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
    292     // "MY_PAT:op1:op2". We should already have validated that the uses are
    293     // consistent.
    294     std::string PatternName = N->getOperator()->getName();
    295     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    296       PatternName += ":";
    297       PatternName += N->getChild(i)->getName();
    298     }
    299 
    300     if (recordUniqueNode(PatternName)) {
    301       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
    302       MatchedComplexPatterns.push_back(NodeAndOpNum);
    303     }
    304 
    305     return;
    306   }
    307 
    308   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    309 
    310   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    311   // a constant without a predicate fn that has more that one bit set, handle
    312   // this as a special case.  This is usually for targets that have special
    313   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    314   // handling stuff).  Using these instructions is often far more efficient
    315   // than materializing the constant.  Unfortunately, both the instcombiner
    316   // and the dag combiner can often infer that bits are dead, and thus drop
    317   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    318   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    319   // to handle this.
    320   if ((N->getOperator()->getName() == "and" ||
    321        N->getOperator()->getName() == "or") &&
    322       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    323       N->getPredicateFns().empty()) {
    324     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    325       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    326         // If this is at the root of the pattern, we emit a redundant
    327         // CheckOpcode so that the following checks get factored properly under
    328         // a single opcode check.
    329         if (N == Pattern.getSrcPattern())
    330           AddMatcher(new CheckOpcodeMatcher(CInfo));
    331 
    332         // Emit the CheckAndImm/CheckOrImm node.
    333         if (N->getOperator()->getName() == "and")
    334           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    335         else
    336           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    337 
    338         // Match the LHS of the AND as appropriate.
    339         AddMatcher(new MoveChildMatcher(0));
    340         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    341         AddMatcher(new MoveParentMatcher());
    342         return;
    343       }
    344     }
    345   }
    346 
    347   // Check that the current opcode lines up.
    348   AddMatcher(new CheckOpcodeMatcher(CInfo));
    349 
    350   // If this node has memory references (i.e. is a load or store), tell the
    351   // interpreter to capture them in the memref array.
    352   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    353     AddMatcher(new RecordMemRefMatcher());
    354 
    355   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    356   // the child numbers of the node are all offset by one.
    357   unsigned OpNo = 0;
    358   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    359     // Record the node and remember it in our chained nodes list.
    360     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    361                                          "' chained node",
    362                                  NextRecordedOperandNo));
    363     // Remember all of the input chains our pattern will match.
    364     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    365 
    366     // Don't look at the input chain when matching the tree pattern to the
    367     // SDNode.
    368     OpNo = 1;
    369 
    370     // If this node is not the root and the subtree underneath it produces a
    371     // chain, then the result of matching the node is also produce a chain.
    372     // Beyond that, this means that we're also folding (at least) the root node
    373     // into the node that produce the chain (for example, matching
    374     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    375     // problematic, if the 'reg' node also uses the load (say, its chain).
    376     // Graphically:
    377     //
    378     //         [LD]
    379     //         ^  ^
    380     //         |  \                              DAG's like cheese.
    381     //        /    |
    382     //       /    [YY]
    383     //       |     ^
    384     //      [XX]--/
    385     //
    386     // It would be invalid to fold XX and LD.  In this case, folding the two
    387     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    388     // To prevent this, we emit a dynamic check for legality before allowing
    389     // this to be folded.
    390     //
    391     const TreePatternNode *Root = Pattern.getSrcPattern();
    392     if (N != Root) {                             // Not the root of the pattern.
    393       // If there is a node between the root and this node, then we definitely
    394       // need to emit the check.
    395       bool NeedCheck = !Root->hasChild(N);
    396 
    397       // If it *is* an immediate child of the root, we can still need a check if
    398       // the root SDNode has multiple inputs.  For us, this means that it is an
    399       // intrinsic, has multiple operands, or has other inputs like chain or
    400       // glue).
    401       if (!NeedCheck) {
    402         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    403         NeedCheck =
    404           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    405           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    406           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    407           PInfo.getNumOperands() > 1 ||
    408           PInfo.hasProperty(SDNPHasChain) ||
    409           PInfo.hasProperty(SDNPInGlue) ||
    410           PInfo.hasProperty(SDNPOptInGlue);
    411       }
    412 
    413       if (NeedCheck)
    414         AddMatcher(new CheckFoldableChainNodeMatcher());
    415     }
    416   }
    417 
    418   // If this node has an output glue and isn't the root, remember it.
    419   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    420       N != Pattern.getSrcPattern()) {
    421     // TODO: This redundantly records nodes with both glues and chains.
    422 
    423     // Record the node and remember it in our chained nodes list.
    424     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    425                                          "' glue output node",
    426                                  NextRecordedOperandNo));
    427     // Remember all of the nodes with output glue our pattern will match.
    428     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
    429   }
    430 
    431   // If this node is known to have an input glue or if it *might* have an input
    432   // glue, capture it as the glue input of the pattern.
    433   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    434       N->NodeHasProperty(SDNPInGlue, CGP))
    435     AddMatcher(new CaptureGlueInputMatcher());
    436 
    437   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    438     // Get the code suitable for matching this child.  Move to the child, check
    439     // it then move back to the parent.
    440     AddMatcher(new MoveChildMatcher(OpNo));
    441     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    442     AddMatcher(new MoveParentMatcher());
    443   }
    444 }
    445 
    446 bool MatcherGen::recordUniqueNode(std::string Name) {
    447   unsigned &VarMapEntry = VariableMap[Name];
    448   if (VarMapEntry == 0) {
    449     // If it is a named node, we must emit a 'Record' opcode.
    450     AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
    451     VarMapEntry = ++NextRecordedOperandNo;
    452     return true;
    453   }
    454 
    455   // If we get here, this is a second reference to a specific name.  Since
    456   // we already have checked that the first reference is valid, we don't
    457   // have to recursively match it, just check that it's the same as the
    458   // previously named thing.
    459   AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    460   return false;
    461 }
    462 
    463 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    464                                TreePatternNode *NodeNoTypes) {
    465   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    466   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
    467   // reinfer any correlated types.
    468   SmallVector<unsigned, 2> ResultsToTypeCheck;
    469 
    470   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    471     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    472     NodeNoTypes->setType(i, N->getExtType(i));
    473     InferPossibleTypes();
    474     ResultsToTypeCheck.push_back(i);
    475   }
    476 
    477   // If this node has a name associated with it, capture it in VariableMap. If
    478   // we already saw this in the pattern, emit code to verify dagness.
    479   if (!N->getName().empty())
    480     if (!recordUniqueNode(N->getName()))
    481       return;
    482 
    483   if (N->isLeaf())
    484     EmitLeafMatchCode(N);
    485   else
    486     EmitOperatorMatchCode(N, NodeNoTypes);
    487 
    488   // If there are node predicates for this node, generate their checks.
    489   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    490     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    491 
    492   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    493     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    494                                     ResultsToTypeCheck[i]));
    495 }
    496 
    497 /// EmitMatcherCode - Generate the code that matches the predicate of this
    498 /// pattern for the specified Variant.  If the variant is invalid this returns
    499 /// true and does not generate code, if it is valid, it returns false.
    500 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    501   // If the root of the pattern is a ComplexPattern and if it is specified to
    502   // match some number of root opcodes, these are considered to be our variants.
    503   // Depending on which variant we're generating code for, emit the root opcode
    504   // check.
    505   if (const ComplexPattern *CP =
    506                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    507     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    508     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    509     if (Variant >= OpNodes.size()) return true;
    510 
    511     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    512   } else {
    513     if (Variant != 0) return true;
    514   }
    515 
    516   // Emit the matcher for the pattern structure and types.
    517   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    518 
    519   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    520   // feature is around, do the check).
    521   if (!Pattern.getPredicateCheck().empty())
    522     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    523 
    524   // Now that we've completed the structural type match, emit any ComplexPattern
    525   // checks (e.g. addrmode matches).  We emit this after the structural match
    526   // because they are generally more expensive to evaluate and more difficult to
    527   // factor.
    528   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    529     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    530 
    531     // Remember where the results of this match get stuck.
    532     if (N->isLeaf()) {
    533       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
    534     } else {
    535       unsigned CurOp = NextRecordedOperandNo;
    536       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    537         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
    538         CurOp += N->getChild(i)->getNumMIResults(CGP);
    539       }
    540     }
    541 
    542     // Get the slot we recorded the value in from the name on the node.
    543     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
    544 
    545     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
    546 
    547     // Emit a CheckComplexPat operation, which does the match (aborting if it
    548     // fails) and pushes the matched operands onto the recorded nodes list.
    549     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    550                                           N->getName(), NextRecordedOperandNo));
    551 
    552     // Record the right number of operands.
    553     NextRecordedOperandNo += CP.getNumOperands();
    554     if (CP.hasProperty(SDNPHasChain)) {
    555       // If the complex pattern has a chain, then we need to keep track of the
    556       // fact that we just recorded a chain input.  The chain input will be
    557       // matched as the last operand of the predicate if it was successful.
    558       ++NextRecordedOperandNo; // Chained node operand.
    559 
    560       // It is the last operand recorded.
    561       assert(NextRecordedOperandNo > 1 &&
    562              "Should have recorded input/result chains at least!");
    563       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    564     }
    565 
    566     // TODO: Complex patterns can't have output glues, if they did, we'd want
    567     // to record them.
    568   }
    569 
    570   return false;
    571 }
    572 
    573 
    574 //===----------------------------------------------------------------------===//
    575 // Node Result Generation
    576 //===----------------------------------------------------------------------===//
    577 
    578 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    579                                           SmallVectorImpl<unsigned> &ResultOps){
    580   assert(!N->getName().empty() && "Operand not named!");
    581 
    582   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
    583     // Complex operands have already been completely selected, just find the
    584     // right slot ant add the arguments directly.
    585     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    586       ResultOps.push_back(SlotNo - 1 + i);
    587 
    588     return;
    589   }
    590 
    591   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    592 
    593   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    594   // version of the immediate so that it doesn't get selected due to some other
    595   // node use.
    596   if (!N->isLeaf()) {
    597     StringRef OperatorName = N->getOperator()->getName();
    598     if (OperatorName == "imm" || OperatorName == "fpimm") {
    599       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    600       ResultOps.push_back(NextRecordedOperandNo++);
    601       return;
    602     }
    603   }
    604 
    605   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    606     ResultOps.push_back(SlotNo + i);
    607 }
    608 
    609 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    610                                          SmallVectorImpl<unsigned> &ResultOps) {
    611   assert(N->isLeaf() && "Must be a leaf");
    612 
    613   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    614     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    615     ResultOps.push_back(NextRecordedOperandNo++);
    616     return;
    617   }
    618 
    619   // If this is an explicit register reference, handle it.
    620   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    621     Record *Def = DI->getDef();
    622     if (Def->isSubClassOf("Register")) {
    623       const CodeGenRegister *Reg =
    624         CGP.getTargetInfo().getRegBank().getReg(Def);
    625       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    626       ResultOps.push_back(NextRecordedOperandNo++);
    627       return;
    628     }
    629 
    630     if (Def->getName() == "zero_reg") {
    631       AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
    632       ResultOps.push_back(NextRecordedOperandNo++);
    633       return;
    634     }
    635 
    636     // Handle a reference to a register class. This is used
    637     // in COPY_TO_SUBREG instructions.
    638     if (Def->isSubClassOf("RegisterOperand"))
    639       Def = Def->getValueAsDef("RegClass");
    640     if (Def->isSubClassOf("RegisterClass")) {
    641       std::string Value = getQualifiedName(Def) + "RegClassID";
    642       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    643       ResultOps.push_back(NextRecordedOperandNo++);
    644       return;
    645     }
    646 
    647     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    648     if (Def->isSubClassOf("SubRegIndex")) {
    649       std::string Value = getQualifiedName(Def);
    650       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    651       ResultOps.push_back(NextRecordedOperandNo++);
    652       return;
    653     }
    654   }
    655 
    656   errs() << "unhandled leaf node: \n";
    657   N->dump();
    658 }
    659 
    660 /// GetInstPatternNode - Get the pattern for an instruction.
    661 ///
    662 const TreePatternNode *MatcherGen::
    663 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    664   const TreePattern *InstPat = Inst.getPattern();
    665 
    666   // FIXME2?: Assume actual pattern comes before "implicit".
    667   TreePatternNode *InstPatNode;
    668   if (InstPat)
    669     InstPatNode = InstPat->getTree(0);
    670   else if (/*isRoot*/ N == Pattern.getDstPattern())
    671     InstPatNode = Pattern.getSrcPattern();
    672   else
    673     return nullptr;
    674 
    675   if (InstPatNode && !InstPatNode->isLeaf() &&
    676       InstPatNode->getOperator()->getName() == "set")
    677     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    678 
    679   return InstPatNode;
    680 }
    681 
    682 static bool
    683 mayInstNodeLoadOrStore(const TreePatternNode *N,
    684                        const CodeGenDAGPatterns &CGP) {
    685   Record *Op = N->getOperator();
    686   const CodeGenTarget &CGT = CGP.getTargetInfo();
    687   CodeGenInstruction &II = CGT.getInstruction(Op);
    688   return II.mayLoad || II.mayStore;
    689 }
    690 
    691 static unsigned
    692 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    693                            const CodeGenDAGPatterns &CGP) {
    694   if (N->isLeaf())
    695     return 0;
    696 
    697   Record *OpRec = N->getOperator();
    698   if (!OpRec->isSubClassOf("Instruction"))
    699     return 0;
    700 
    701   unsigned Count = 0;
    702   if (mayInstNodeLoadOrStore(N, CGP))
    703     ++Count;
    704 
    705   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    706     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    707 
    708   return Count;
    709 }
    710 
    711 void MatcherGen::
    712 EmitResultInstructionAsOperand(const TreePatternNode *N,
    713                                SmallVectorImpl<unsigned> &OutputOps) {
    714   Record *Op = N->getOperator();
    715   const CodeGenTarget &CGT = CGP.getTargetInfo();
    716   CodeGenInstruction &II = CGT.getInstruction(Op);
    717   const DAGInstruction &Inst = CGP.getInstruction(Op);
    718 
    719   // If we can, get the pattern for the instruction we're generating. We derive
    720   // a variety of information from this pattern, such as whether it has a chain.
    721   //
    722   // FIXME2: This is extremely dubious for several reasons, not the least of
    723   // which it gives special status to instructions with patterns that Pat<>
    724   // nodes can't duplicate.
    725   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    726 
    727   // NodeHasChain - Whether the instruction node we're creating takes chains.
    728   bool NodeHasChain = InstPatNode &&
    729                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    730 
    731   // Instructions which load and store from memory should have a chain,
    732   // regardless of whether they happen to have an internal pattern saying so.
    733   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
    734       && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    735           II.hasSideEffects))
    736       NodeHasChain = true;
    737 
    738   bool isRoot = N == Pattern.getDstPattern();
    739 
    740   // TreeHasOutGlue - True if this tree has glue.
    741   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    742   if (isRoot) {
    743     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    744     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    745                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    746 
    747     // FIXME2: this is checking the entire pattern, not just the node in
    748     // question, doing this just for the root seems like a total hack.
    749     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    750   }
    751 
    752   // NumResults - This is the number of results produced by the instruction in
    753   // the "outs" list.
    754   unsigned NumResults = Inst.getNumResults();
    755 
    756   // Number of operands we know the output instruction must have. If it is
    757   // variadic, we could have more operands.
    758   unsigned NumFixedOperands = II.Operands.size();
    759 
    760   SmallVector<unsigned, 8> InstOps;
    761 
    762   // Loop over all of the fixed operands of the instruction pattern, emitting
    763   // code to fill them all in. The node 'N' usually has number children equal to
    764   // the number of input operands of the instruction.  However, in cases where
    765   // there are predicate operands for an instruction, we need to fill in the
    766   // 'execute always' values. Match up the node operands to the instruction
    767   // operands to do this.
    768   unsigned ChildNo = 0;
    769   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
    770        InstOpNo != e; ++InstOpNo) {
    771     // Determine what to emit for this operand.
    772     Record *OperandNode = II.Operands[InstOpNo].Rec;
    773     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    774         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    775       // This is a predicate or optional def operand; emit the
    776       // 'default ops' operands.
    777       const DAGDefaultOperand &DefaultOp
    778         = CGP.getDefaultOperand(OperandNode);
    779       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    780         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    781       continue;
    782     }
    783 
    784     // Otherwise this is a normal operand or a predicate operand without
    785     // 'execute always'; emit it.
    786 
    787     // For operands with multiple sub-operands we may need to emit
    788     // multiple child patterns to cover them all.  However, ComplexPattern
    789     // children may themselves emit multiple MI operands.
    790     unsigned NumSubOps = 1;
    791     if (OperandNode->isSubClassOf("Operand")) {
    792       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
    793       if (unsigned NumArgs = MIOpInfo->getNumArgs())
    794         NumSubOps = NumArgs;
    795     }
    796 
    797     unsigned FinalNumOps = InstOps.size() + NumSubOps;
    798     while (InstOps.size() < FinalNumOps) {
    799       const TreePatternNode *Child = N->getChild(ChildNo);
    800       unsigned BeforeAddingNumOps = InstOps.size();
    801       EmitResultOperand(Child, InstOps);
    802       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    803 
    804       // If the operand is an instruction and it produced multiple results, just
    805       // take the first one.
    806       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    807         InstOps.resize(BeforeAddingNumOps+1);
    808 
    809       ++ChildNo;
    810     }
    811   }
    812 
    813   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
    814   // expand suboperands, use default operands, or other features determined from
    815   // the CodeGenInstruction after the fixed operands, which were handled
    816   // above. Emit the remaining instructions implicitly added by the use for
    817   // variable_ops.
    818   if (II.Operands.isVariadic) {
    819     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
    820       EmitResultOperand(N->getChild(I), InstOps);
    821   }
    822 
    823   // If this node has input glue or explicitly specified input physregs, we
    824   // need to add chained and glued copyfromreg nodes and materialize the glue
    825   // input.
    826   if (isRoot && !PhysRegInputs.empty()) {
    827     // Emit all of the CopyToReg nodes for the input physical registers.  These
    828     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    829     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    830       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    831                                           PhysRegInputs[i].first));
    832     // Even if the node has no other glue inputs, the resultant node must be
    833     // glued to the CopyFromReg nodes we just generated.
    834     TreeHasInGlue = true;
    835   }
    836 
    837   // Result order: node results, chain, glue
    838 
    839   // Determine the result types.
    840   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    841   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    842     ResultVTs.push_back(N->getType(i));
    843 
    844   // If this is the root instruction of a pattern that has physical registers in
    845   // its result pattern, add output VTs for them.  For example, X86 has:
    846   //   (set AL, (mul ...))
    847   // This also handles implicit results like:
    848   //   (implicit EFLAGS)
    849   if (isRoot && !Pattern.getDstRegs().empty()) {
    850     // If the root came from an implicit def in the instruction handling stuff,
    851     // don't re-add it.
    852     Record *HandledReg = nullptr;
    853     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    854       HandledReg = II.ImplicitDefs[0];
    855 
    856     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    857       Record *Reg = Pattern.getDstRegs()[i];
    858       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    859       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    860     }
    861   }
    862 
    863   // If this is the root of the pattern and the pattern we're matching includes
    864   // a node that is variadic, mark the generated node as variadic so that it
    865   // gets the excess operands from the input DAG.
    866   int NumFixedArityOperands = -1;
    867   if (isRoot &&
    868       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
    869     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    870 
    871   // If this is the root node and multiple matched nodes in the input pattern
    872   // have MemRefs in them, have the interpreter collect them and plop them onto
    873   // this node. If there is just one node with MemRefs, leave them on that node
    874   // even if it is not the root.
    875   //
    876   // FIXME3: This is actively incorrect for result patterns with multiple
    877   // memory-referencing instructions.
    878   bool PatternHasMemOperands =
    879     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    880 
    881   bool NodeHasMemRefs = false;
    882   if (PatternHasMemOperands) {
    883     unsigned NumNodesThatLoadOrStore =
    884       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    885     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    886                                    NumNodesThatLoadOrStore == 1;
    887     NodeHasMemRefs =
    888       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    889                                              NumNodesThatLoadOrStore != 1));
    890   }
    891 
    892   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    893          "Node has no result");
    894 
    895   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    896                                  ResultVTs, InstOps,
    897                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    898                                  NodeHasMemRefs, NumFixedArityOperands,
    899                                  NextRecordedOperandNo));
    900 
    901   // The non-chain and non-glue results of the newly emitted node get recorded.
    902   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    903     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    904     OutputOps.push_back(NextRecordedOperandNo++);
    905   }
    906 }
    907 
    908 void MatcherGen::
    909 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    910                                SmallVectorImpl<unsigned> &ResultOps) {
    911   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    912 
    913   // Emit the operand.
    914   SmallVector<unsigned, 8> InputOps;
    915 
    916   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    917   // to the SDNodeXForm.  For now we just support one input and one output like
    918   // the old instruction selector.
    919   assert(N->getNumChildren() == 1);
    920   EmitResultOperand(N->getChild(0), InputOps);
    921 
    922   // The input currently must have produced exactly one result.
    923   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    924 
    925   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    926   ResultOps.push_back(NextRecordedOperandNo++);
    927 }
    928 
    929 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    930                                    SmallVectorImpl<unsigned> &ResultOps) {
    931   // This is something selected from the pattern we matched.
    932   if (!N->getName().empty())
    933     return EmitResultOfNamedOperand(N, ResultOps);
    934 
    935   if (N->isLeaf())
    936     return EmitResultLeafAsOperand(N, ResultOps);
    937 
    938   Record *OpRec = N->getOperator();
    939   if (OpRec->isSubClassOf("Instruction"))
    940     return EmitResultInstructionAsOperand(N, ResultOps);
    941   if (OpRec->isSubClassOf("SDNodeXForm"))
    942     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    943   errs() << "Unknown result node to emit code for: " << *N << '\n';
    944   PrintFatalError("Unknown node in result pattern!");
    945 }
    946 
    947 void MatcherGen::EmitResultCode() {
    948   // Patterns that match nodes with (potentially multiple) chain inputs have to
    949   // merge them together into a token factor.  This informs the generated code
    950   // what all the chained nodes are.
    951   if (!MatchedChainNodes.empty())
    952     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
    953 
    954   // Codegen the root of the result pattern, capturing the resulting values.
    955   SmallVector<unsigned, 8> Ops;
    956   EmitResultOperand(Pattern.getDstPattern(), Ops);
    957 
    958   // At this point, we have however many values the result pattern produces.
    959   // However, the input pattern might not need all of these.  If there are
    960   // excess values at the end (such as implicit defs of condition codes etc)
    961   // just lop them off.  This doesn't need to worry about glue or chains, just
    962   // explicit results.
    963   //
    964   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    965 
    966   // If the pattern also has (implicit) results, count them as well.
    967   if (!Pattern.getDstRegs().empty()) {
    968     // If the root came from an implicit def in the instruction handling stuff,
    969     // don't re-add it.
    970     Record *HandledReg = nullptr;
    971     const TreePatternNode *DstPat = Pattern.getDstPattern();
    972     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    973       const CodeGenTarget &CGT = CGP.getTargetInfo();
    974       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    975 
    976       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    977         HandledReg = II.ImplicitDefs[0];
    978     }
    979 
    980     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    981       Record *Reg = Pattern.getDstRegs()[i];
    982       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    983       ++NumSrcResults;
    984     }
    985   }
    986 
    987   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    988   Ops.resize(NumSrcResults);
    989 
    990   // If the matched pattern covers nodes which define a glue result, emit a node
    991   // that tells the matcher about them so that it can update their results.
    992   if (!MatchedGlueResultNodes.empty())
    993     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes));
    994 
    995   AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
    996 }
    997 
    998 
    999 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
   1000 /// the specified variant.  If the variant number is invalid, this returns null.
   1001 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
   1002                                        unsigned Variant,
   1003                                        const CodeGenDAGPatterns &CGP) {
   1004   MatcherGen Gen(Pattern, CGP);
   1005 
   1006   // Generate the code for the matcher.
   1007   if (Gen.EmitMatcherCode(Variant))
   1008     return nullptr;
   1009 
   1010   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
   1011   // FIXME2: Split result code out to another table, and make the matcher end
   1012   // with an "Emit <index>" command.  This allows result generation stuff to be
   1013   // shared and factored?
   1014 
   1015   // If the match succeeds, then we generate Pattern.
   1016   Gen.EmitResultCode();
   1017 
   1018   // Unconditional match.
   1019   return Gen.GetMatcher();
   1020 }
   1021