Home | History | Annotate | Download | only in AST
      1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with generation of the layout of virtual tables.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/VTableBuilder.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/RecordLayout.h"
     18 #include "clang/Basic/TargetInfo.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/Support/Format.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include <algorithm>
     23 #include <cstdio>
     24 
     25 using namespace clang;
     26 
     27 #define DUMP_OVERRIDERS 0
     28 
     29 namespace {
     30 
     31 /// BaseOffset - Represents an offset from a derived class to a direct or
     32 /// indirect base class.
     33 struct BaseOffset {
     34   /// DerivedClass - The derived class.
     35   const CXXRecordDecl *DerivedClass;
     36 
     37   /// VirtualBase - If the path from the derived class to the base class
     38   /// involves virtual base classes, this holds the declaration of the last
     39   /// virtual base in this path (i.e. closest to the base class).
     40   const CXXRecordDecl *VirtualBase;
     41 
     42   /// NonVirtualOffset - The offset from the derived class to the base class.
     43   /// (Or the offset from the virtual base class to the base class, if the
     44   /// path from the derived class to the base class involves a virtual base
     45   /// class.
     46   CharUnits NonVirtualOffset;
     47 
     48   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
     49                  NonVirtualOffset(CharUnits::Zero()) { }
     50   BaseOffset(const CXXRecordDecl *DerivedClass,
     51              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
     52     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
     53     NonVirtualOffset(NonVirtualOffset) { }
     54 
     55   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
     56 };
     57 
     58 /// FinalOverriders - Contains the final overrider member functions for all
     59 /// member functions in the base subobjects of a class.
     60 class FinalOverriders {
     61 public:
     62   /// OverriderInfo - Information about a final overrider.
     63   struct OverriderInfo {
     64     /// Method - The method decl of the overrider.
     65     const CXXMethodDecl *Method;
     66 
     67     /// VirtualBase - The virtual base class subobject of this overrider.
     68     /// Note that this records the closest derived virtual base class subobject.
     69     const CXXRecordDecl *VirtualBase;
     70 
     71     /// Offset - the base offset of the overrider's parent in the layout class.
     72     CharUnits Offset;
     73 
     74     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
     75                       Offset(CharUnits::Zero()) { }
     76   };
     77 
     78 private:
     79   /// MostDerivedClass - The most derived class for which the final overriders
     80   /// are stored.
     81   const CXXRecordDecl *MostDerivedClass;
     82 
     83   /// MostDerivedClassOffset - If we're building final overriders for a
     84   /// construction vtable, this holds the offset from the layout class to the
     85   /// most derived class.
     86   const CharUnits MostDerivedClassOffset;
     87 
     88   /// LayoutClass - The class we're using for layout information. Will be
     89   /// different than the most derived class if the final overriders are for a
     90   /// construction vtable.
     91   const CXXRecordDecl *LayoutClass;
     92 
     93   ASTContext &Context;
     94 
     95   /// MostDerivedClassLayout - the AST record layout of the most derived class.
     96   const ASTRecordLayout &MostDerivedClassLayout;
     97 
     98   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
     99   /// in a base subobject.
    100   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
    101 
    102   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
    103                          OverriderInfo> OverridersMapTy;
    104 
    105   /// OverridersMap - The final overriders for all virtual member functions of
    106   /// all the base subobjects of the most derived class.
    107   OverridersMapTy OverridersMap;
    108 
    109   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
    110   /// as a record decl and a subobject number) and its offsets in the most
    111   /// derived class as well as the layout class.
    112   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
    113                          CharUnits> SubobjectOffsetMapTy;
    114 
    115   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
    116 
    117   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
    118   /// given base.
    119   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
    120                           CharUnits OffsetInLayoutClass,
    121                           SubobjectOffsetMapTy &SubobjectOffsets,
    122                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
    123                           SubobjectCountMapTy &SubobjectCounts);
    124 
    125   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
    126 
    127   /// dump - dump the final overriders for a base subobject, and all its direct
    128   /// and indirect base subobjects.
    129   void dump(raw_ostream &Out, BaseSubobject Base,
    130             VisitedVirtualBasesSetTy& VisitedVirtualBases);
    131 
    132 public:
    133   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
    134                   CharUnits MostDerivedClassOffset,
    135                   const CXXRecordDecl *LayoutClass);
    136 
    137   /// getOverrider - Get the final overrider for the given method declaration in
    138   /// the subobject with the given base offset.
    139   OverriderInfo getOverrider(const CXXMethodDecl *MD,
    140                              CharUnits BaseOffset) const {
    141     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
    142            "Did not find overrider!");
    143 
    144     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
    145   }
    146 
    147   /// dump - dump the final overriders.
    148   void dump() {
    149     VisitedVirtualBasesSetTy VisitedVirtualBases;
    150     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
    151          VisitedVirtualBases);
    152   }
    153 
    154 };
    155 
    156 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
    157                                  CharUnits MostDerivedClassOffset,
    158                                  const CXXRecordDecl *LayoutClass)
    159   : MostDerivedClass(MostDerivedClass),
    160   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
    161   Context(MostDerivedClass->getASTContext()),
    162   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
    163 
    164   // Compute base offsets.
    165   SubobjectOffsetMapTy SubobjectOffsets;
    166   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
    167   SubobjectCountMapTy SubobjectCounts;
    168   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
    169                      /*IsVirtual=*/false,
    170                      MostDerivedClassOffset,
    171                      SubobjectOffsets, SubobjectLayoutClassOffsets,
    172                      SubobjectCounts);
    173 
    174   // Get the final overriders.
    175   CXXFinalOverriderMap FinalOverriders;
    176   MostDerivedClass->getFinalOverriders(FinalOverriders);
    177 
    178   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
    179        E = FinalOverriders.end(); I != E; ++I) {
    180     const CXXMethodDecl *MD = I->first;
    181     const OverridingMethods& Methods = I->second;
    182 
    183     for (OverridingMethods::const_iterator I = Methods.begin(),
    184          E = Methods.end(); I != E; ++I) {
    185       unsigned SubobjectNumber = I->first;
    186       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
    187                                                    SubobjectNumber)) &&
    188              "Did not find subobject offset!");
    189 
    190       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
    191                                                             SubobjectNumber)];
    192 
    193       assert(I->second.size() == 1 && "Final overrider is not unique!");
    194       const UniqueVirtualMethod &Method = I->second.front();
    195 
    196       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
    197       assert(SubobjectLayoutClassOffsets.count(
    198              std::make_pair(OverriderRD, Method.Subobject))
    199              && "Did not find subobject offset!");
    200       CharUnits OverriderOffset =
    201         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
    202                                                    Method.Subobject)];
    203 
    204       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
    205       assert(!Overrider.Method && "Overrider should not exist yet!");
    206 
    207       Overrider.Offset = OverriderOffset;
    208       Overrider.Method = Method.Method;
    209       Overrider.VirtualBase = Method.InVirtualSubobject;
    210     }
    211   }
    212 
    213 #if DUMP_OVERRIDERS
    214   // And dump them (for now).
    215   dump();
    216 #endif
    217 }
    218 
    219 static BaseOffset ComputeBaseOffset(ASTContext &Context,
    220                                     const CXXRecordDecl *DerivedRD,
    221                                     const CXXBasePath &Path) {
    222   CharUnits NonVirtualOffset = CharUnits::Zero();
    223 
    224   unsigned NonVirtualStart = 0;
    225   const CXXRecordDecl *VirtualBase = nullptr;
    226 
    227   // First, look for the virtual base class.
    228   for (int I = Path.size(), E = 0; I != E; --I) {
    229     const CXXBasePathElement &Element = Path[I - 1];
    230 
    231     if (Element.Base->isVirtual()) {
    232       NonVirtualStart = I;
    233       QualType VBaseType = Element.Base->getType();
    234       VirtualBase = VBaseType->getAsCXXRecordDecl();
    235       break;
    236     }
    237   }
    238 
    239   // Now compute the non-virtual offset.
    240   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
    241     const CXXBasePathElement &Element = Path[I];
    242 
    243     // Check the base class offset.
    244     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
    245 
    246     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
    247 
    248     NonVirtualOffset += Layout.getBaseClassOffset(Base);
    249   }
    250 
    251   // FIXME: This should probably use CharUnits or something. Maybe we should
    252   // even change the base offsets in ASTRecordLayout to be specified in
    253   // CharUnits.
    254   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
    255 
    256 }
    257 
    258 static BaseOffset ComputeBaseOffset(ASTContext &Context,
    259                                     const CXXRecordDecl *BaseRD,
    260                                     const CXXRecordDecl *DerivedRD) {
    261   CXXBasePaths Paths(/*FindAmbiguities=*/false,
    262                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
    263 
    264   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
    265     llvm_unreachable("Class must be derived from the passed in base class!");
    266 
    267   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
    268 }
    269 
    270 static BaseOffset
    271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
    272                                   const CXXMethodDecl *DerivedMD,
    273                                   const CXXMethodDecl *BaseMD) {
    274   const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
    275   const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
    276 
    277   // Canonicalize the return types.
    278   CanQualType CanDerivedReturnType =
    279       Context.getCanonicalType(DerivedFT->getReturnType());
    280   CanQualType CanBaseReturnType =
    281       Context.getCanonicalType(BaseFT->getReturnType());
    282 
    283   assert(CanDerivedReturnType->getTypeClass() ==
    284          CanBaseReturnType->getTypeClass() &&
    285          "Types must have same type class!");
    286 
    287   if (CanDerivedReturnType == CanBaseReturnType) {
    288     // No adjustment needed.
    289     return BaseOffset();
    290   }
    291 
    292   if (isa<ReferenceType>(CanDerivedReturnType)) {
    293     CanDerivedReturnType =
    294       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
    295     CanBaseReturnType =
    296       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
    297   } else if (isa<PointerType>(CanDerivedReturnType)) {
    298     CanDerivedReturnType =
    299       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
    300     CanBaseReturnType =
    301       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
    302   } else {
    303     llvm_unreachable("Unexpected return type!");
    304   }
    305 
    306   // We need to compare unqualified types here; consider
    307   //   const T *Base::foo();
    308   //   T *Derived::foo();
    309   if (CanDerivedReturnType.getUnqualifiedType() ==
    310       CanBaseReturnType.getUnqualifiedType()) {
    311     // No adjustment needed.
    312     return BaseOffset();
    313   }
    314 
    315   const CXXRecordDecl *DerivedRD =
    316     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
    317 
    318   const CXXRecordDecl *BaseRD =
    319     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
    320 
    321   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
    322 }
    323 
    324 void
    325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
    326                               CharUnits OffsetInLayoutClass,
    327                               SubobjectOffsetMapTy &SubobjectOffsets,
    328                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
    329                               SubobjectCountMapTy &SubobjectCounts) {
    330   const CXXRecordDecl *RD = Base.getBase();
    331 
    332   unsigned SubobjectNumber = 0;
    333   if (!IsVirtual)
    334     SubobjectNumber = ++SubobjectCounts[RD];
    335 
    336   // Set up the subobject to offset mapping.
    337   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
    338          && "Subobject offset already exists!");
    339   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
    340          && "Subobject offset already exists!");
    341 
    342   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
    343   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
    344     OffsetInLayoutClass;
    345 
    346   // Traverse our bases.
    347   for (const auto &B : RD->bases()) {
    348     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
    349 
    350     CharUnits BaseOffset;
    351     CharUnits BaseOffsetInLayoutClass;
    352     if (B.isVirtual()) {
    353       // Check if we've visited this virtual base before.
    354       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
    355         continue;
    356 
    357       const ASTRecordLayout &LayoutClassLayout =
    358         Context.getASTRecordLayout(LayoutClass);
    359 
    360       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
    361       BaseOffsetInLayoutClass =
    362         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
    363     } else {
    364       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    365       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
    366 
    367       BaseOffset = Base.getBaseOffset() + Offset;
    368       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
    369     }
    370 
    371     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
    372                        B.isVirtual(), BaseOffsetInLayoutClass,
    373                        SubobjectOffsets, SubobjectLayoutClassOffsets,
    374                        SubobjectCounts);
    375   }
    376 }
    377 
    378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
    379                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
    380   const CXXRecordDecl *RD = Base.getBase();
    381   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    382 
    383   for (const auto &B : RD->bases()) {
    384     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
    385 
    386     // Ignore bases that don't have any virtual member functions.
    387     if (!BaseDecl->isPolymorphic())
    388       continue;
    389 
    390     CharUnits BaseOffset;
    391     if (B.isVirtual()) {
    392       if (!VisitedVirtualBases.insert(BaseDecl).second) {
    393         // We've visited this base before.
    394         continue;
    395       }
    396 
    397       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
    398     } else {
    399       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
    400     }
    401 
    402     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
    403   }
    404 
    405   Out << "Final overriders for (";
    406   RD->printQualifiedName(Out);
    407   Out << ", ";
    408   Out << Base.getBaseOffset().getQuantity() << ")\n";
    409 
    410   // Now dump the overriders for this base subobject.
    411   for (const auto *MD : RD->methods()) {
    412     if (!MD->isVirtual())
    413       continue;
    414     MD = MD->getCanonicalDecl();
    415 
    416     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
    417 
    418     Out << "  ";
    419     MD->printQualifiedName(Out);
    420     Out << " - (";
    421     Overrider.Method->printQualifiedName(Out);
    422     Out << ", " << Overrider.Offset.getQuantity() << ')';
    423 
    424     BaseOffset Offset;
    425     if (!Overrider.Method->isPure())
    426       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
    427 
    428     if (!Offset.isEmpty()) {
    429       Out << " [ret-adj: ";
    430       if (Offset.VirtualBase) {
    431         Offset.VirtualBase->printQualifiedName(Out);
    432         Out << " vbase, ";
    433       }
    434 
    435       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
    436     }
    437 
    438     Out << "\n";
    439   }
    440 }
    441 
    442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
    443 struct VCallOffsetMap {
    444 
    445   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
    446 
    447   /// Offsets - Keeps track of methods and their offsets.
    448   // FIXME: This should be a real map and not a vector.
    449   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
    450 
    451   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
    452   /// can share the same vcall offset.
    453   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
    454                                          const CXXMethodDecl *RHS);
    455 
    456 public:
    457   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
    458   /// add was successful, or false if there was already a member function with
    459   /// the same signature in the map.
    460   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
    461 
    462   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
    463   /// vtable address point) for the given virtual member function.
    464   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
    465 
    466   // empty - Return whether the offset map is empty or not.
    467   bool empty() const { return Offsets.empty(); }
    468 };
    469 
    470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
    471                                     const CXXMethodDecl *RHS) {
    472   const FunctionProtoType *LT =
    473     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
    474   const FunctionProtoType *RT =
    475     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
    476 
    477   // Fast-path matches in the canonical types.
    478   if (LT == RT) return true;
    479 
    480   // Force the signatures to match.  We can't rely on the overrides
    481   // list here because there isn't necessarily an inheritance
    482   // relationship between the two methods.
    483   if (LT->getTypeQuals() != RT->getTypeQuals() ||
    484       LT->getNumParams() != RT->getNumParams())
    485     return false;
    486   for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
    487     if (LT->getParamType(I) != RT->getParamType(I))
    488       return false;
    489   return true;
    490 }
    491 
    492 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
    493                                                 const CXXMethodDecl *RHS) {
    494   assert(LHS->isVirtual() && "LHS must be virtual!");
    495   assert(RHS->isVirtual() && "LHS must be virtual!");
    496 
    497   // A destructor can share a vcall offset with another destructor.
    498   if (isa<CXXDestructorDecl>(LHS))
    499     return isa<CXXDestructorDecl>(RHS);
    500 
    501   // FIXME: We need to check more things here.
    502 
    503   // The methods must have the same name.
    504   DeclarationName LHSName = LHS->getDeclName();
    505   DeclarationName RHSName = RHS->getDeclName();
    506   if (LHSName != RHSName)
    507     return false;
    508 
    509   // And the same signatures.
    510   return HasSameVirtualSignature(LHS, RHS);
    511 }
    512 
    513 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
    514                                     CharUnits OffsetOffset) {
    515   // Check if we can reuse an offset.
    516   for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
    517     if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
    518       return false;
    519   }
    520 
    521   // Add the offset.
    522   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
    523   return true;
    524 }
    525 
    526 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
    527   // Look for an offset.
    528   for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
    529     if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
    530       return Offsets[I].second;
    531   }
    532 
    533   llvm_unreachable("Should always find a vcall offset offset!");
    534 }
    535 
    536 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
    537 class VCallAndVBaseOffsetBuilder {
    538 public:
    539   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
    540     VBaseOffsetOffsetsMapTy;
    541 
    542 private:
    543   /// MostDerivedClass - The most derived class for which we're building vcall
    544   /// and vbase offsets.
    545   const CXXRecordDecl *MostDerivedClass;
    546 
    547   /// LayoutClass - The class we're using for layout information. Will be
    548   /// different than the most derived class if we're building a construction
    549   /// vtable.
    550   const CXXRecordDecl *LayoutClass;
    551 
    552   /// Context - The ASTContext which we will use for layout information.
    553   ASTContext &Context;
    554 
    555   /// Components - vcall and vbase offset components
    556   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
    557   VTableComponentVectorTy Components;
    558 
    559   /// VisitedVirtualBases - Visited virtual bases.
    560   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    561 
    562   /// VCallOffsets - Keeps track of vcall offsets.
    563   VCallOffsetMap VCallOffsets;
    564 
    565 
    566   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
    567   /// relative to the address point.
    568   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
    569 
    570   /// FinalOverriders - The final overriders of the most derived class.
    571   /// (Can be null when we're not building a vtable of the most derived class).
    572   const FinalOverriders *Overriders;
    573 
    574   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
    575   /// given base subobject.
    576   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
    577                                CharUnits RealBaseOffset);
    578 
    579   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
    580   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
    581 
    582   /// AddVBaseOffsets - Add vbase offsets for the given class.
    583   void AddVBaseOffsets(const CXXRecordDecl *Base,
    584                        CharUnits OffsetInLayoutClass);
    585 
    586   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
    587   /// chars, relative to the vtable address point.
    588   CharUnits getCurrentOffsetOffset() const;
    589 
    590 public:
    591   VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
    592                              const CXXRecordDecl *LayoutClass,
    593                              const FinalOverriders *Overriders,
    594                              BaseSubobject Base, bool BaseIsVirtual,
    595                              CharUnits OffsetInLayoutClass)
    596     : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
    597     Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
    598 
    599     // Add vcall and vbase offsets.
    600     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
    601   }
    602 
    603   /// Methods for iterating over the components.
    604   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
    605   const_iterator components_begin() const { return Components.rbegin(); }
    606   const_iterator components_end() const { return Components.rend(); }
    607 
    608   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
    609   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
    610     return VBaseOffsetOffsets;
    611   }
    612 };
    613 
    614 void
    615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
    616                                                     bool BaseIsVirtual,
    617                                                     CharUnits RealBaseOffset) {
    618   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
    619 
    620   // Itanium C++ ABI 2.5.2:
    621   //   ..in classes sharing a virtual table with a primary base class, the vcall
    622   //   and vbase offsets added by the derived class all come before the vcall
    623   //   and vbase offsets required by the base class, so that the latter may be
    624   //   laid out as required by the base class without regard to additions from
    625   //   the derived class(es).
    626 
    627   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
    628   // emit them for the primary base first).
    629   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
    630     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
    631 
    632     CharUnits PrimaryBaseOffset;
    633 
    634     // Get the base offset of the primary base.
    635     if (PrimaryBaseIsVirtual) {
    636       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
    637              "Primary vbase should have a zero offset!");
    638 
    639       const ASTRecordLayout &MostDerivedClassLayout =
    640         Context.getASTRecordLayout(MostDerivedClass);
    641 
    642       PrimaryBaseOffset =
    643         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
    644     } else {
    645       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
    646              "Primary base should have a zero offset!");
    647 
    648       PrimaryBaseOffset = Base.getBaseOffset();
    649     }
    650 
    651     AddVCallAndVBaseOffsets(
    652       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
    653       PrimaryBaseIsVirtual, RealBaseOffset);
    654   }
    655 
    656   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
    657 
    658   // We only want to add vcall offsets for virtual bases.
    659   if (BaseIsVirtual)
    660     AddVCallOffsets(Base, RealBaseOffset);
    661 }
    662 
    663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
    664   // OffsetIndex is the index of this vcall or vbase offset, relative to the
    665   // vtable address point. (We subtract 3 to account for the information just
    666   // above the address point, the RTTI info, the offset to top, and the
    667   // vcall offset itself).
    668   int64_t OffsetIndex = -(int64_t)(3 + Components.size());
    669 
    670   CharUnits PointerWidth =
    671     Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    672   CharUnits OffsetOffset = PointerWidth * OffsetIndex;
    673   return OffsetOffset;
    674 }
    675 
    676 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
    677                                                  CharUnits VBaseOffset) {
    678   const CXXRecordDecl *RD = Base.getBase();
    679   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    680 
    681   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
    682 
    683   // Handle the primary base first.
    684   // We only want to add vcall offsets if the base is non-virtual; a virtual
    685   // primary base will have its vcall and vbase offsets emitted already.
    686   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
    687     // Get the base offset of the primary base.
    688     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
    689            "Primary base should have a zero offset!");
    690 
    691     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
    692                     VBaseOffset);
    693   }
    694 
    695   // Add the vcall offsets.
    696   for (const auto *MD : RD->methods()) {
    697     if (!MD->isVirtual())
    698       continue;
    699     MD = MD->getCanonicalDecl();
    700 
    701     CharUnits OffsetOffset = getCurrentOffsetOffset();
    702 
    703     // Don't add a vcall offset if we already have one for this member function
    704     // signature.
    705     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
    706       continue;
    707 
    708     CharUnits Offset = CharUnits::Zero();
    709 
    710     if (Overriders) {
    711       // Get the final overrider.
    712       FinalOverriders::OverriderInfo Overrider =
    713         Overriders->getOverrider(MD, Base.getBaseOffset());
    714 
    715       /// The vcall offset is the offset from the virtual base to the object
    716       /// where the function was overridden.
    717       Offset = Overrider.Offset - VBaseOffset;
    718     }
    719 
    720     Components.push_back(
    721       VTableComponent::MakeVCallOffset(Offset));
    722   }
    723 
    724   // And iterate over all non-virtual bases (ignoring the primary base).
    725   for (const auto &B : RD->bases()) {
    726     if (B.isVirtual())
    727       continue;
    728 
    729     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
    730     if (BaseDecl == PrimaryBase)
    731       continue;
    732 
    733     // Get the base offset of this base.
    734     CharUnits BaseOffset = Base.getBaseOffset() +
    735       Layout.getBaseClassOffset(BaseDecl);
    736 
    737     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
    738                     VBaseOffset);
    739   }
    740 }
    741 
    742 void
    743 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
    744                                             CharUnits OffsetInLayoutClass) {
    745   const ASTRecordLayout &LayoutClassLayout =
    746     Context.getASTRecordLayout(LayoutClass);
    747 
    748   // Add vbase offsets.
    749   for (const auto &B : RD->bases()) {
    750     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
    751 
    752     // Check if this is a virtual base that we haven't visited before.
    753     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
    754       CharUnits Offset =
    755         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
    756 
    757       // Add the vbase offset offset.
    758       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
    759              "vbase offset offset already exists!");
    760 
    761       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
    762       VBaseOffsetOffsets.insert(
    763           std::make_pair(BaseDecl, VBaseOffsetOffset));
    764 
    765       Components.push_back(
    766           VTableComponent::MakeVBaseOffset(Offset));
    767     }
    768 
    769     // Check the base class looking for more vbase offsets.
    770     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
    771   }
    772 }
    773 
    774 /// ItaniumVTableBuilder - Class for building vtable layout information.
    775 class ItaniumVTableBuilder {
    776 public:
    777   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
    778   /// primary bases.
    779   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
    780     PrimaryBasesSetVectorTy;
    781 
    782   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
    783     VBaseOffsetOffsetsMapTy;
    784 
    785   typedef llvm::DenseMap<BaseSubobject, uint64_t>
    786     AddressPointsMapTy;
    787 
    788   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
    789 
    790 private:
    791   /// VTables - Global vtable information.
    792   ItaniumVTableContext &VTables;
    793 
    794   /// MostDerivedClass - The most derived class for which we're building this
    795   /// vtable.
    796   const CXXRecordDecl *MostDerivedClass;
    797 
    798   /// MostDerivedClassOffset - If we're building a construction vtable, this
    799   /// holds the offset from the layout class to the most derived class.
    800   const CharUnits MostDerivedClassOffset;
    801 
    802   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
    803   /// base. (This only makes sense when building a construction vtable).
    804   bool MostDerivedClassIsVirtual;
    805 
    806   /// LayoutClass - The class we're using for layout information. Will be
    807   /// different than the most derived class if we're building a construction
    808   /// vtable.
    809   const CXXRecordDecl *LayoutClass;
    810 
    811   /// Context - The ASTContext which we will use for layout information.
    812   ASTContext &Context;
    813 
    814   /// FinalOverriders - The final overriders of the most derived class.
    815   const FinalOverriders Overriders;
    816 
    817   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
    818   /// bases in this vtable.
    819   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
    820 
    821   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
    822   /// the most derived class.
    823   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
    824 
    825   /// Components - The components of the vtable being built.
    826   SmallVector<VTableComponent, 64> Components;
    827 
    828   /// AddressPoints - Address points for the vtable being built.
    829   AddressPointsMapTy AddressPoints;
    830 
    831   /// MethodInfo - Contains information about a method in a vtable.
    832   /// (Used for computing 'this' pointer adjustment thunks.
    833   struct MethodInfo {
    834     /// BaseOffset - The base offset of this method.
    835     const CharUnits BaseOffset;
    836 
    837     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
    838     /// method.
    839     const CharUnits BaseOffsetInLayoutClass;
    840 
    841     /// VTableIndex - The index in the vtable that this method has.
    842     /// (For destructors, this is the index of the complete destructor).
    843     const uint64_t VTableIndex;
    844 
    845     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
    846                uint64_t VTableIndex)
    847       : BaseOffset(BaseOffset),
    848       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
    849       VTableIndex(VTableIndex) { }
    850 
    851     MethodInfo()
    852       : BaseOffset(CharUnits::Zero()),
    853       BaseOffsetInLayoutClass(CharUnits::Zero()),
    854       VTableIndex(0) { }
    855   };
    856 
    857   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
    858 
    859   /// MethodInfoMap - The information for all methods in the vtable we're
    860   /// currently building.
    861   MethodInfoMapTy MethodInfoMap;
    862 
    863   /// MethodVTableIndices - Contains the index (relative to the vtable address
    864   /// point) where the function pointer for a virtual function is stored.
    865   MethodVTableIndicesTy MethodVTableIndices;
    866 
    867   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
    868 
    869   /// VTableThunks - The thunks by vtable index in the vtable currently being
    870   /// built.
    871   VTableThunksMapTy VTableThunks;
    872 
    873   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
    874   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
    875 
    876   /// Thunks - A map that contains all the thunks needed for all methods in the
    877   /// most derived class for which the vtable is currently being built.
    878   ThunksMapTy Thunks;
    879 
    880   /// AddThunk - Add a thunk for the given method.
    881   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
    882 
    883   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
    884   /// part of the vtable we're currently building.
    885   void ComputeThisAdjustments();
    886 
    887   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
    888 
    889   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
    890   /// some other base.
    891   VisitedVirtualBasesSetTy PrimaryVirtualBases;
    892 
    893   /// ComputeReturnAdjustment - Compute the return adjustment given a return
    894   /// adjustment base offset.
    895   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
    896 
    897   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
    898   /// the 'this' pointer from the base subobject to the derived subobject.
    899   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
    900                                              BaseSubobject Derived) const;
    901 
    902   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
    903   /// given virtual member function, its offset in the layout class and its
    904   /// final overrider.
    905   ThisAdjustment
    906   ComputeThisAdjustment(const CXXMethodDecl *MD,
    907                         CharUnits BaseOffsetInLayoutClass,
    908                         FinalOverriders::OverriderInfo Overrider);
    909 
    910   /// AddMethod - Add a single virtual member function to the vtable
    911   /// components vector.
    912   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
    913 
    914   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
    915   /// part of the vtable.
    916   ///
    917   /// Itanium C++ ABI 2.5.2:
    918   ///
    919   ///   struct A { virtual void f(); };
    920   ///   struct B : virtual public A { int i; };
    921   ///   struct C : virtual public A { int j; };
    922   ///   struct D : public B, public C {};
    923   ///
    924   ///   When B and C are declared, A is a primary base in each case, so although
    925   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
    926   ///   adjustment is required and no thunk is generated. However, inside D
    927   ///   objects, A is no longer a primary base of C, so if we allowed calls to
    928   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
    929   ///   to adjust this from C* to B::A*, which would require a third-party
    930   ///   thunk. Since we require that a call to C::f() first convert to A*,
    931   ///   C-in-D's copy of A's vtable is never referenced, so this is not
    932   ///   necessary.
    933   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
    934                        CharUnits BaseOffsetInLayoutClass,
    935                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
    936                        CharUnits FirstBaseOffsetInLayoutClass) const;
    937 
    938 
    939   /// AddMethods - Add the methods of this base subobject and all its
    940   /// primary bases to the vtable components vector.
    941   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
    942                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
    943                   CharUnits FirstBaseOffsetInLayoutClass,
    944                   PrimaryBasesSetVectorTy &PrimaryBases);
    945 
    946   // LayoutVTable - Layout the vtable for the given base class, including its
    947   // secondary vtables and any vtables for virtual bases.
    948   void LayoutVTable();
    949 
    950   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
    951   /// given base subobject, as well as all its secondary vtables.
    952   ///
    953   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
    954   /// or a direct or indirect base of a virtual base.
    955   ///
    956   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
    957   /// in the layout class.
    958   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
    959                                         bool BaseIsMorallyVirtual,
    960                                         bool BaseIsVirtualInLayoutClass,
    961                                         CharUnits OffsetInLayoutClass);
    962 
    963   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
    964   /// subobject.
    965   ///
    966   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
    967   /// or a direct or indirect base of a virtual base.
    968   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
    969                               CharUnits OffsetInLayoutClass);
    970 
    971   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
    972   /// class hierarchy.
    973   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
    974                                     CharUnits OffsetInLayoutClass,
    975                                     VisitedVirtualBasesSetTy &VBases);
    976 
    977   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
    978   /// given base (excluding any primary bases).
    979   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
    980                                     VisitedVirtualBasesSetTy &VBases);
    981 
    982   /// isBuildingConstructionVTable - Return whether this vtable builder is
    983   /// building a construction vtable.
    984   bool isBuildingConstructorVTable() const {
    985     return MostDerivedClass != LayoutClass;
    986   }
    987 
    988 public:
    989   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
    990                        const CXXRecordDecl *MostDerivedClass,
    991                        CharUnits MostDerivedClassOffset,
    992                        bool MostDerivedClassIsVirtual,
    993                        const CXXRecordDecl *LayoutClass)
    994       : VTables(VTables), MostDerivedClass(MostDerivedClass),
    995         MostDerivedClassOffset(MostDerivedClassOffset),
    996         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
    997         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
    998         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
    999     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
   1000 
   1001     LayoutVTable();
   1002 
   1003     if (Context.getLangOpts().DumpVTableLayouts)
   1004       dumpLayout(llvm::outs());
   1005   }
   1006 
   1007   uint64_t getNumThunks() const {
   1008     return Thunks.size();
   1009   }
   1010 
   1011   ThunksMapTy::const_iterator thunks_begin() const {
   1012     return Thunks.begin();
   1013   }
   1014 
   1015   ThunksMapTy::const_iterator thunks_end() const {
   1016     return Thunks.end();
   1017   }
   1018 
   1019   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
   1020     return VBaseOffsetOffsets;
   1021   }
   1022 
   1023   const AddressPointsMapTy &getAddressPoints() const {
   1024     return AddressPoints;
   1025   }
   1026 
   1027   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
   1028     return MethodVTableIndices.begin();
   1029   }
   1030 
   1031   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
   1032     return MethodVTableIndices.end();
   1033   }
   1034 
   1035   /// getNumVTableComponents - Return the number of components in the vtable
   1036   /// currently built.
   1037   uint64_t getNumVTableComponents() const {
   1038     return Components.size();
   1039   }
   1040 
   1041   const VTableComponent *vtable_component_begin() const {
   1042     return Components.begin();
   1043   }
   1044 
   1045   const VTableComponent *vtable_component_end() const {
   1046     return Components.end();
   1047   }
   1048 
   1049   AddressPointsMapTy::const_iterator address_points_begin() const {
   1050     return AddressPoints.begin();
   1051   }
   1052 
   1053   AddressPointsMapTy::const_iterator address_points_end() const {
   1054     return AddressPoints.end();
   1055   }
   1056 
   1057   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
   1058     return VTableThunks.begin();
   1059   }
   1060 
   1061   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
   1062     return VTableThunks.end();
   1063   }
   1064 
   1065   /// dumpLayout - Dump the vtable layout.
   1066   void dumpLayout(raw_ostream&);
   1067 };
   1068 
   1069 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
   1070                                     const ThunkInfo &Thunk) {
   1071   assert(!isBuildingConstructorVTable() &&
   1072          "Can't add thunks for construction vtable");
   1073 
   1074   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
   1075 
   1076   // Check if we have this thunk already.
   1077   if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
   1078       ThunksVector.end())
   1079     return;
   1080 
   1081   ThunksVector.push_back(Thunk);
   1082 }
   1083 
   1084 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
   1085 
   1086 /// Visit all the methods overridden by the given method recursively,
   1087 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
   1088 /// indicating whether to continue the recursion for the given overridden
   1089 /// method (i.e. returning false stops the iteration).
   1090 template <class VisitorTy>
   1091 static void
   1092 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
   1093   assert(MD->isVirtual() && "Method is not virtual!");
   1094 
   1095   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   1096        E = MD->end_overridden_methods(); I != E; ++I) {
   1097     const CXXMethodDecl *OverriddenMD = *I;
   1098     if (!Visitor.visit(OverriddenMD))
   1099       continue;
   1100     visitAllOverriddenMethods(OverriddenMD, Visitor);
   1101   }
   1102 }
   1103 
   1104 namespace {
   1105   struct OverriddenMethodsCollector {
   1106     OverriddenMethodsSetTy *Methods;
   1107 
   1108     bool visit(const CXXMethodDecl *MD) {
   1109       // Don't recurse on this method if we've already collected it.
   1110       return Methods->insert(MD).second;
   1111     }
   1112   };
   1113 }
   1114 
   1115 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
   1116 /// the overridden methods that the function decl overrides.
   1117 static void
   1118 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
   1119                             OverriddenMethodsSetTy& OverriddenMethods) {
   1120   OverriddenMethodsCollector Collector = { &OverriddenMethods };
   1121   visitAllOverriddenMethods(MD, Collector);
   1122 }
   1123 
   1124 void ItaniumVTableBuilder::ComputeThisAdjustments() {
   1125   // Now go through the method info map and see if any of the methods need
   1126   // 'this' pointer adjustments.
   1127   for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
   1128        E = MethodInfoMap.end(); I != E; ++I) {
   1129     const CXXMethodDecl *MD = I->first;
   1130     const MethodInfo &MethodInfo = I->second;
   1131 
   1132     // Ignore adjustments for unused function pointers.
   1133     uint64_t VTableIndex = MethodInfo.VTableIndex;
   1134     if (Components[VTableIndex].getKind() ==
   1135         VTableComponent::CK_UnusedFunctionPointer)
   1136       continue;
   1137 
   1138     // Get the final overrider for this method.
   1139     FinalOverriders::OverriderInfo Overrider =
   1140       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
   1141 
   1142     // Check if we need an adjustment at all.
   1143     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
   1144       // When a return thunk is needed by a derived class that overrides a
   1145       // virtual base, gcc uses a virtual 'this' adjustment as well.
   1146       // While the thunk itself might be needed by vtables in subclasses or
   1147       // in construction vtables, there doesn't seem to be a reason for using
   1148       // the thunk in this vtable. Still, we do so to match gcc.
   1149       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
   1150         continue;
   1151     }
   1152 
   1153     ThisAdjustment ThisAdjustment =
   1154       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
   1155 
   1156     if (ThisAdjustment.isEmpty())
   1157       continue;
   1158 
   1159     // Add it.
   1160     VTableThunks[VTableIndex].This = ThisAdjustment;
   1161 
   1162     if (isa<CXXDestructorDecl>(MD)) {
   1163       // Add an adjustment for the deleting destructor as well.
   1164       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
   1165     }
   1166   }
   1167 
   1168   /// Clear the method info map.
   1169   MethodInfoMap.clear();
   1170 
   1171   if (isBuildingConstructorVTable()) {
   1172     // We don't need to store thunk information for construction vtables.
   1173     return;
   1174   }
   1175 
   1176   for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
   1177        E = VTableThunks.end(); I != E; ++I) {
   1178     const VTableComponent &Component = Components[I->first];
   1179     const ThunkInfo &Thunk = I->second;
   1180     const CXXMethodDecl *MD;
   1181 
   1182     switch (Component.getKind()) {
   1183     default:
   1184       llvm_unreachable("Unexpected vtable component kind!");
   1185     case VTableComponent::CK_FunctionPointer:
   1186       MD = Component.getFunctionDecl();
   1187       break;
   1188     case VTableComponent::CK_CompleteDtorPointer:
   1189       MD = Component.getDestructorDecl();
   1190       break;
   1191     case VTableComponent::CK_DeletingDtorPointer:
   1192       // We've already added the thunk when we saw the complete dtor pointer.
   1193       continue;
   1194     }
   1195 
   1196     if (MD->getParent() == MostDerivedClass)
   1197       AddThunk(MD, Thunk);
   1198   }
   1199 }
   1200 
   1201 ReturnAdjustment
   1202 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
   1203   ReturnAdjustment Adjustment;
   1204 
   1205   if (!Offset.isEmpty()) {
   1206     if (Offset.VirtualBase) {
   1207       // Get the virtual base offset offset.
   1208       if (Offset.DerivedClass == MostDerivedClass) {
   1209         // We can get the offset offset directly from our map.
   1210         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
   1211           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
   1212       } else {
   1213         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
   1214           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
   1215                                              Offset.VirtualBase).getQuantity();
   1216       }
   1217     }
   1218 
   1219     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
   1220   }
   1221 
   1222   return Adjustment;
   1223 }
   1224 
   1225 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
   1226     BaseSubobject Base, BaseSubobject Derived) const {
   1227   const CXXRecordDecl *BaseRD = Base.getBase();
   1228   const CXXRecordDecl *DerivedRD = Derived.getBase();
   1229 
   1230   CXXBasePaths Paths(/*FindAmbiguities=*/true,
   1231                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
   1232 
   1233   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
   1234     llvm_unreachable("Class must be derived from the passed in base class!");
   1235 
   1236   // We have to go through all the paths, and see which one leads us to the
   1237   // right base subobject.
   1238   for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
   1239        I != E; ++I) {
   1240     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
   1241 
   1242     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
   1243 
   1244     if (Offset.VirtualBase) {
   1245       // If we have a virtual base class, the non-virtual offset is relative
   1246       // to the virtual base class offset.
   1247       const ASTRecordLayout &LayoutClassLayout =
   1248         Context.getASTRecordLayout(LayoutClass);
   1249 
   1250       /// Get the virtual base offset, relative to the most derived class
   1251       /// layout.
   1252       OffsetToBaseSubobject +=
   1253         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
   1254     } else {
   1255       // Otherwise, the non-virtual offset is relative to the derived class
   1256       // offset.
   1257       OffsetToBaseSubobject += Derived.getBaseOffset();
   1258     }
   1259 
   1260     // Check if this path gives us the right base subobject.
   1261     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
   1262       // Since we're going from the base class _to_ the derived class, we'll
   1263       // invert the non-virtual offset here.
   1264       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
   1265       return Offset;
   1266     }
   1267   }
   1268 
   1269   return BaseOffset();
   1270 }
   1271 
   1272 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
   1273     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
   1274     FinalOverriders::OverriderInfo Overrider) {
   1275   // Ignore adjustments for pure virtual member functions.
   1276   if (Overrider.Method->isPure())
   1277     return ThisAdjustment();
   1278 
   1279   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
   1280                                         BaseOffsetInLayoutClass);
   1281 
   1282   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
   1283                                        Overrider.Offset);
   1284 
   1285   // Compute the adjustment offset.
   1286   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
   1287                                                       OverriderBaseSubobject);
   1288   if (Offset.isEmpty())
   1289     return ThisAdjustment();
   1290 
   1291   ThisAdjustment Adjustment;
   1292 
   1293   if (Offset.VirtualBase) {
   1294     // Get the vcall offset map for this virtual base.
   1295     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
   1296 
   1297     if (VCallOffsets.empty()) {
   1298       // We don't have vcall offsets for this virtual base, go ahead and
   1299       // build them.
   1300       VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
   1301                                          /*FinalOverriders=*/nullptr,
   1302                                          BaseSubobject(Offset.VirtualBase,
   1303                                                        CharUnits::Zero()),
   1304                                          /*BaseIsVirtual=*/true,
   1305                                          /*OffsetInLayoutClass=*/
   1306                                              CharUnits::Zero());
   1307 
   1308       VCallOffsets = Builder.getVCallOffsets();
   1309     }
   1310 
   1311     Adjustment.Virtual.Itanium.VCallOffsetOffset =
   1312       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
   1313   }
   1314 
   1315   // Set the non-virtual part of the adjustment.
   1316   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
   1317 
   1318   return Adjustment;
   1319 }
   1320 
   1321 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
   1322                                      ReturnAdjustment ReturnAdjustment) {
   1323   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   1324     assert(ReturnAdjustment.isEmpty() &&
   1325            "Destructor can't have return adjustment!");
   1326 
   1327     // Add both the complete destructor and the deleting destructor.
   1328     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
   1329     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
   1330   } else {
   1331     // Add the return adjustment if necessary.
   1332     if (!ReturnAdjustment.isEmpty())
   1333       VTableThunks[Components.size()].Return = ReturnAdjustment;
   1334 
   1335     // Add the function.
   1336     Components.push_back(VTableComponent::MakeFunction(MD));
   1337   }
   1338 }
   1339 
   1340 /// OverridesIndirectMethodInBase - Return whether the given member function
   1341 /// overrides any methods in the set of given bases.
   1342 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
   1343 /// For example, if we have:
   1344 ///
   1345 /// struct A { virtual void f(); }
   1346 /// struct B : A { virtual void f(); }
   1347 /// struct C : B { virtual void f(); }
   1348 ///
   1349 /// OverridesIndirectMethodInBase will return true if given C::f as the method
   1350 /// and { A } as the set of bases.
   1351 static bool OverridesIndirectMethodInBases(
   1352     const CXXMethodDecl *MD,
   1353     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
   1354   if (Bases.count(MD->getParent()))
   1355     return true;
   1356 
   1357   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   1358        E = MD->end_overridden_methods(); I != E; ++I) {
   1359     const CXXMethodDecl *OverriddenMD = *I;
   1360 
   1361     // Check "indirect overriders".
   1362     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
   1363       return true;
   1364   }
   1365 
   1366   return false;
   1367 }
   1368 
   1369 bool ItaniumVTableBuilder::IsOverriderUsed(
   1370     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
   1371     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
   1372     CharUnits FirstBaseOffsetInLayoutClass) const {
   1373   // If the base and the first base in the primary base chain have the same
   1374   // offsets, then this overrider will be used.
   1375   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
   1376    return true;
   1377 
   1378   // We know now that Base (or a direct or indirect base of it) is a primary
   1379   // base in part of the class hierarchy, but not a primary base in the most
   1380   // derived class.
   1381 
   1382   // If the overrider is the first base in the primary base chain, we know
   1383   // that the overrider will be used.
   1384   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
   1385     return true;
   1386 
   1387   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
   1388 
   1389   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
   1390   PrimaryBases.insert(RD);
   1391 
   1392   // Now traverse the base chain, starting with the first base, until we find
   1393   // the base that is no longer a primary base.
   1394   while (true) {
   1395     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1396     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   1397 
   1398     if (!PrimaryBase)
   1399       break;
   1400 
   1401     if (Layout.isPrimaryBaseVirtual()) {
   1402       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
   1403              "Primary base should always be at offset 0!");
   1404 
   1405       const ASTRecordLayout &LayoutClassLayout =
   1406         Context.getASTRecordLayout(LayoutClass);
   1407 
   1408       // Now check if this is the primary base that is not a primary base in the
   1409       // most derived class.
   1410       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
   1411           FirstBaseOffsetInLayoutClass) {
   1412         // We found it, stop walking the chain.
   1413         break;
   1414       }
   1415     } else {
   1416       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
   1417              "Primary base should always be at offset 0!");
   1418     }
   1419 
   1420     if (!PrimaryBases.insert(PrimaryBase))
   1421       llvm_unreachable("Found a duplicate primary base!");
   1422 
   1423     RD = PrimaryBase;
   1424   }
   1425 
   1426   // If the final overrider is an override of one of the primary bases,
   1427   // then we know that it will be used.
   1428   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
   1429 }
   1430 
   1431 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
   1432 
   1433 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
   1434 /// from the nearest base. Returns null if no method was found.
   1435 /// The Bases are expected to be sorted in a base-to-derived order.
   1436 static const CXXMethodDecl *
   1437 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
   1438                             BasesSetVectorTy &Bases) {
   1439   OverriddenMethodsSetTy OverriddenMethods;
   1440   ComputeAllOverriddenMethods(MD, OverriddenMethods);
   1441 
   1442   for (int I = Bases.size(), E = 0; I != E; --I) {
   1443     const CXXRecordDecl *PrimaryBase = Bases[I - 1];
   1444 
   1445     // Now check the overridden methods.
   1446     for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
   1447          E = OverriddenMethods.end(); I != E; ++I) {
   1448       const CXXMethodDecl *OverriddenMD = *I;
   1449 
   1450       // We found our overridden method.
   1451       if (OverriddenMD->getParent() == PrimaryBase)
   1452         return OverriddenMD;
   1453     }
   1454   }
   1455 
   1456   return nullptr;
   1457 }
   1458 
   1459 void ItaniumVTableBuilder::AddMethods(
   1460     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
   1461     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
   1462     CharUnits FirstBaseOffsetInLayoutClass,
   1463     PrimaryBasesSetVectorTy &PrimaryBases) {
   1464   // Itanium C++ ABI 2.5.2:
   1465   //   The order of the virtual function pointers in a virtual table is the
   1466   //   order of declaration of the corresponding member functions in the class.
   1467   //
   1468   //   There is an entry for any virtual function declared in a class,
   1469   //   whether it is a new function or overrides a base class function,
   1470   //   unless it overrides a function from the primary base, and conversion
   1471   //   between their return types does not require an adjustment.
   1472 
   1473   const CXXRecordDecl *RD = Base.getBase();
   1474   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1475 
   1476   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
   1477     CharUnits PrimaryBaseOffset;
   1478     CharUnits PrimaryBaseOffsetInLayoutClass;
   1479     if (Layout.isPrimaryBaseVirtual()) {
   1480       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
   1481              "Primary vbase should have a zero offset!");
   1482 
   1483       const ASTRecordLayout &MostDerivedClassLayout =
   1484         Context.getASTRecordLayout(MostDerivedClass);
   1485 
   1486       PrimaryBaseOffset =
   1487         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
   1488 
   1489       const ASTRecordLayout &LayoutClassLayout =
   1490         Context.getASTRecordLayout(LayoutClass);
   1491 
   1492       PrimaryBaseOffsetInLayoutClass =
   1493         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
   1494     } else {
   1495       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
   1496              "Primary base should have a zero offset!");
   1497 
   1498       PrimaryBaseOffset = Base.getBaseOffset();
   1499       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
   1500     }
   1501 
   1502     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
   1503                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
   1504                FirstBaseOffsetInLayoutClass, PrimaryBases);
   1505 
   1506     if (!PrimaryBases.insert(PrimaryBase))
   1507       llvm_unreachable("Found a duplicate primary base!");
   1508   }
   1509 
   1510   const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
   1511 
   1512   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
   1513   NewVirtualFunctionsTy NewVirtualFunctions;
   1514 
   1515   // Now go through all virtual member functions and add them.
   1516   for (const auto *MD : RD->methods()) {
   1517     if (!MD->isVirtual())
   1518       continue;
   1519     MD = MD->getCanonicalDecl();
   1520 
   1521     // Get the final overrider.
   1522     FinalOverriders::OverriderInfo Overrider =
   1523       Overriders.getOverrider(MD, Base.getBaseOffset());
   1524 
   1525     // Check if this virtual member function overrides a method in a primary
   1526     // base. If this is the case, and the return type doesn't require adjustment
   1527     // then we can just use the member function from the primary base.
   1528     if (const CXXMethodDecl *OverriddenMD =
   1529           FindNearestOverriddenMethod(MD, PrimaryBases)) {
   1530       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
   1531                                             OverriddenMD).isEmpty()) {
   1532         // Replace the method info of the overridden method with our own
   1533         // method.
   1534         assert(MethodInfoMap.count(OverriddenMD) &&
   1535                "Did not find the overridden method!");
   1536         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
   1537 
   1538         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
   1539                               OverriddenMethodInfo.VTableIndex);
   1540 
   1541         assert(!MethodInfoMap.count(MD) &&
   1542                "Should not have method info for this method yet!");
   1543 
   1544         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
   1545         MethodInfoMap.erase(OverriddenMD);
   1546 
   1547         // If the overridden method exists in a virtual base class or a direct
   1548         // or indirect base class of a virtual base class, we need to emit a
   1549         // thunk if we ever have a class hierarchy where the base class is not
   1550         // a primary base in the complete object.
   1551         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
   1552           // Compute the this adjustment.
   1553           ThisAdjustment ThisAdjustment =
   1554             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
   1555                                   Overrider);
   1556 
   1557           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
   1558               Overrider.Method->getParent() == MostDerivedClass) {
   1559 
   1560             // There's no return adjustment from OverriddenMD and MD,
   1561             // but that doesn't mean there isn't one between MD and
   1562             // the final overrider.
   1563             BaseOffset ReturnAdjustmentOffset =
   1564               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
   1565             ReturnAdjustment ReturnAdjustment =
   1566               ComputeReturnAdjustment(ReturnAdjustmentOffset);
   1567 
   1568             // This is a virtual thunk for the most derived class, add it.
   1569             AddThunk(Overrider.Method,
   1570                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
   1571           }
   1572         }
   1573 
   1574         continue;
   1575       }
   1576     }
   1577 
   1578     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   1579       if (MD->isImplicit()) {
   1580         // Itanium C++ ABI 2.5.2:
   1581         //   If a class has an implicitly-defined virtual destructor,
   1582         //   its entries come after the declared virtual function pointers.
   1583 
   1584         assert(!ImplicitVirtualDtor &&
   1585                "Did already see an implicit virtual dtor!");
   1586         ImplicitVirtualDtor = DD;
   1587         continue;
   1588       }
   1589     }
   1590 
   1591     NewVirtualFunctions.push_back(MD);
   1592   }
   1593 
   1594   if (ImplicitVirtualDtor)
   1595     NewVirtualFunctions.push_back(ImplicitVirtualDtor);
   1596 
   1597   for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
   1598        E = NewVirtualFunctions.end(); I != E; ++I) {
   1599     const CXXMethodDecl *MD = *I;
   1600 
   1601     // Get the final overrider.
   1602     FinalOverriders::OverriderInfo Overrider =
   1603       Overriders.getOverrider(MD, Base.getBaseOffset());
   1604 
   1605     // Insert the method info for this method.
   1606     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
   1607                           Components.size());
   1608 
   1609     assert(!MethodInfoMap.count(MD) &&
   1610            "Should not have method info for this method yet!");
   1611     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
   1612 
   1613     // Check if this overrider is going to be used.
   1614     const CXXMethodDecl *OverriderMD = Overrider.Method;
   1615     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
   1616                          FirstBaseInPrimaryBaseChain,
   1617                          FirstBaseOffsetInLayoutClass)) {
   1618       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
   1619       continue;
   1620     }
   1621 
   1622     // Check if this overrider needs a return adjustment.
   1623     // We don't want to do this for pure virtual member functions.
   1624     BaseOffset ReturnAdjustmentOffset;
   1625     if (!OverriderMD->isPure()) {
   1626       ReturnAdjustmentOffset =
   1627         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
   1628     }
   1629 
   1630     ReturnAdjustment ReturnAdjustment =
   1631       ComputeReturnAdjustment(ReturnAdjustmentOffset);
   1632 
   1633     AddMethod(Overrider.Method, ReturnAdjustment);
   1634   }
   1635 }
   1636 
   1637 void ItaniumVTableBuilder::LayoutVTable() {
   1638   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
   1639                                                  CharUnits::Zero()),
   1640                                    /*BaseIsMorallyVirtual=*/false,
   1641                                    MostDerivedClassIsVirtual,
   1642                                    MostDerivedClassOffset);
   1643 
   1644   VisitedVirtualBasesSetTy VBases;
   1645 
   1646   // Determine the primary virtual bases.
   1647   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
   1648                                VBases);
   1649   VBases.clear();
   1650 
   1651   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
   1652 
   1653   // -fapple-kext adds an extra entry at end of vtbl.
   1654   bool IsAppleKext = Context.getLangOpts().AppleKext;
   1655   if (IsAppleKext)
   1656     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
   1657 }
   1658 
   1659 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
   1660     BaseSubobject Base, bool BaseIsMorallyVirtual,
   1661     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
   1662   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
   1663 
   1664   // Add vcall and vbase offsets for this vtable.
   1665   VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
   1666                                      Base, BaseIsVirtualInLayoutClass,
   1667                                      OffsetInLayoutClass);
   1668   Components.append(Builder.components_begin(), Builder.components_end());
   1669 
   1670   // Check if we need to add these vcall offsets.
   1671   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
   1672     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
   1673 
   1674     if (VCallOffsets.empty())
   1675       VCallOffsets = Builder.getVCallOffsets();
   1676   }
   1677 
   1678   // If we're laying out the most derived class we want to keep track of the
   1679   // virtual base class offset offsets.
   1680   if (Base.getBase() == MostDerivedClass)
   1681     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
   1682 
   1683   // Add the offset to top.
   1684   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
   1685   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
   1686 
   1687   // Next, add the RTTI.
   1688   Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
   1689 
   1690   uint64_t AddressPoint = Components.size();
   1691 
   1692   // Now go through all virtual member functions and add them.
   1693   PrimaryBasesSetVectorTy PrimaryBases;
   1694   AddMethods(Base, OffsetInLayoutClass,
   1695              Base.getBase(), OffsetInLayoutClass,
   1696              PrimaryBases);
   1697 
   1698   const CXXRecordDecl *RD = Base.getBase();
   1699   if (RD == MostDerivedClass) {
   1700     assert(MethodVTableIndices.empty());
   1701     for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
   1702          E = MethodInfoMap.end(); I != E; ++I) {
   1703       const CXXMethodDecl *MD = I->first;
   1704       const MethodInfo &MI = I->second;
   1705       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   1706         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
   1707             = MI.VTableIndex - AddressPoint;
   1708         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
   1709             = MI.VTableIndex + 1 - AddressPoint;
   1710       } else {
   1711         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
   1712       }
   1713     }
   1714   }
   1715 
   1716   // Compute 'this' pointer adjustments.
   1717   ComputeThisAdjustments();
   1718 
   1719   // Add all address points.
   1720   while (true) {
   1721     AddressPoints.insert(std::make_pair(
   1722       BaseSubobject(RD, OffsetInLayoutClass),
   1723       AddressPoint));
   1724 
   1725     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1726     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   1727 
   1728     if (!PrimaryBase)
   1729       break;
   1730 
   1731     if (Layout.isPrimaryBaseVirtual()) {
   1732       // Check if this virtual primary base is a primary base in the layout
   1733       // class. If it's not, we don't want to add it.
   1734       const ASTRecordLayout &LayoutClassLayout =
   1735         Context.getASTRecordLayout(LayoutClass);
   1736 
   1737       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
   1738           OffsetInLayoutClass) {
   1739         // We don't want to add this class (or any of its primary bases).
   1740         break;
   1741       }
   1742     }
   1743 
   1744     RD = PrimaryBase;
   1745   }
   1746 
   1747   // Layout secondary vtables.
   1748   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
   1749 }
   1750 
   1751 void
   1752 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
   1753                                              bool BaseIsMorallyVirtual,
   1754                                              CharUnits OffsetInLayoutClass) {
   1755   // Itanium C++ ABI 2.5.2:
   1756   //   Following the primary virtual table of a derived class are secondary
   1757   //   virtual tables for each of its proper base classes, except any primary
   1758   //   base(s) with which it shares its primary virtual table.
   1759 
   1760   const CXXRecordDecl *RD = Base.getBase();
   1761   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1762   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   1763 
   1764   for (const auto &B : RD->bases()) {
   1765     // Ignore virtual bases, we'll emit them later.
   1766     if (B.isVirtual())
   1767       continue;
   1768 
   1769     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
   1770 
   1771     // Ignore bases that don't have a vtable.
   1772     if (!BaseDecl->isDynamicClass())
   1773       continue;
   1774 
   1775     if (isBuildingConstructorVTable()) {
   1776       // Itanium C++ ABI 2.6.4:
   1777       //   Some of the base class subobjects may not need construction virtual
   1778       //   tables, which will therefore not be present in the construction
   1779       //   virtual table group, even though the subobject virtual tables are
   1780       //   present in the main virtual table group for the complete object.
   1781       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
   1782         continue;
   1783     }
   1784 
   1785     // Get the base offset of this base.
   1786     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
   1787     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
   1788 
   1789     CharUnits BaseOffsetInLayoutClass =
   1790       OffsetInLayoutClass + RelativeBaseOffset;
   1791 
   1792     // Don't emit a secondary vtable for a primary base. We might however want
   1793     // to emit secondary vtables for other bases of this base.
   1794     if (BaseDecl == PrimaryBase) {
   1795       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
   1796                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
   1797       continue;
   1798     }
   1799 
   1800     // Layout the primary vtable (and any secondary vtables) for this base.
   1801     LayoutPrimaryAndSecondaryVTables(
   1802       BaseSubobject(BaseDecl, BaseOffset),
   1803       BaseIsMorallyVirtual,
   1804       /*BaseIsVirtualInLayoutClass=*/false,
   1805       BaseOffsetInLayoutClass);
   1806   }
   1807 }
   1808 
   1809 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
   1810     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
   1811     VisitedVirtualBasesSetTy &VBases) {
   1812   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1813 
   1814   // Check if this base has a primary base.
   1815   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
   1816 
   1817     // Check if it's virtual.
   1818     if (Layout.isPrimaryBaseVirtual()) {
   1819       bool IsPrimaryVirtualBase = true;
   1820 
   1821       if (isBuildingConstructorVTable()) {
   1822         // Check if the base is actually a primary base in the class we use for
   1823         // layout.
   1824         const ASTRecordLayout &LayoutClassLayout =
   1825           Context.getASTRecordLayout(LayoutClass);
   1826 
   1827         CharUnits PrimaryBaseOffsetInLayoutClass =
   1828           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
   1829 
   1830         // We know that the base is not a primary base in the layout class if
   1831         // the base offsets are different.
   1832         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
   1833           IsPrimaryVirtualBase = false;
   1834       }
   1835 
   1836       if (IsPrimaryVirtualBase)
   1837         PrimaryVirtualBases.insert(PrimaryBase);
   1838     }
   1839   }
   1840 
   1841   // Traverse bases, looking for more primary virtual bases.
   1842   for (const auto &B : RD->bases()) {
   1843     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
   1844 
   1845     CharUnits BaseOffsetInLayoutClass;
   1846 
   1847     if (B.isVirtual()) {
   1848       if (!VBases.insert(BaseDecl).second)
   1849         continue;
   1850 
   1851       const ASTRecordLayout &LayoutClassLayout =
   1852         Context.getASTRecordLayout(LayoutClass);
   1853 
   1854       BaseOffsetInLayoutClass =
   1855         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
   1856     } else {
   1857       BaseOffsetInLayoutClass =
   1858         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
   1859     }
   1860 
   1861     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
   1862   }
   1863 }
   1864 
   1865 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
   1866     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
   1867   // Itanium C++ ABI 2.5.2:
   1868   //   Then come the virtual base virtual tables, also in inheritance graph
   1869   //   order, and again excluding primary bases (which share virtual tables with
   1870   //   the classes for which they are primary).
   1871   for (const auto &B : RD->bases()) {
   1872     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
   1873 
   1874     // Check if this base needs a vtable. (If it's virtual, not a primary base
   1875     // of some other class, and we haven't visited it before).
   1876     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
   1877         !PrimaryVirtualBases.count(BaseDecl) &&
   1878         VBases.insert(BaseDecl).second) {
   1879       const ASTRecordLayout &MostDerivedClassLayout =
   1880         Context.getASTRecordLayout(MostDerivedClass);
   1881       CharUnits BaseOffset =
   1882         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
   1883 
   1884       const ASTRecordLayout &LayoutClassLayout =
   1885         Context.getASTRecordLayout(LayoutClass);
   1886       CharUnits BaseOffsetInLayoutClass =
   1887         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
   1888 
   1889       LayoutPrimaryAndSecondaryVTables(
   1890         BaseSubobject(BaseDecl, BaseOffset),
   1891         /*BaseIsMorallyVirtual=*/true,
   1892         /*BaseIsVirtualInLayoutClass=*/true,
   1893         BaseOffsetInLayoutClass);
   1894     }
   1895 
   1896     // We only need to check the base for virtual base vtables if it actually
   1897     // has virtual bases.
   1898     if (BaseDecl->getNumVBases())
   1899       LayoutVTablesForVirtualBases(BaseDecl, VBases);
   1900   }
   1901 }
   1902 
   1903 /// dumpLayout - Dump the vtable layout.
   1904 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
   1905   // FIXME: write more tests that actually use the dumpLayout output to prevent
   1906   // ItaniumVTableBuilder regressions.
   1907 
   1908   if (isBuildingConstructorVTable()) {
   1909     Out << "Construction vtable for ('";
   1910     MostDerivedClass->printQualifiedName(Out);
   1911     Out << "', ";
   1912     Out << MostDerivedClassOffset.getQuantity() << ") in '";
   1913     LayoutClass->printQualifiedName(Out);
   1914   } else {
   1915     Out << "Vtable for '";
   1916     MostDerivedClass->printQualifiedName(Out);
   1917   }
   1918   Out << "' (" << Components.size() << " entries).\n";
   1919 
   1920   // Iterate through the address points and insert them into a new map where
   1921   // they are keyed by the index and not the base object.
   1922   // Since an address point can be shared by multiple subobjects, we use an
   1923   // STL multimap.
   1924   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
   1925   for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
   1926        E = AddressPoints.end(); I != E; ++I) {
   1927     const BaseSubobject& Base = I->first;
   1928     uint64_t Index = I->second;
   1929 
   1930     AddressPointsByIndex.insert(std::make_pair(Index, Base));
   1931   }
   1932 
   1933   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
   1934     uint64_t Index = I;
   1935 
   1936     Out << llvm::format("%4d | ", I);
   1937 
   1938     const VTableComponent &Component = Components[I];
   1939 
   1940     // Dump the component.
   1941     switch (Component.getKind()) {
   1942 
   1943     case VTableComponent::CK_VCallOffset:
   1944       Out << "vcall_offset ("
   1945           << Component.getVCallOffset().getQuantity()
   1946           << ")";
   1947       break;
   1948 
   1949     case VTableComponent::CK_VBaseOffset:
   1950       Out << "vbase_offset ("
   1951           << Component.getVBaseOffset().getQuantity()
   1952           << ")";
   1953       break;
   1954 
   1955     case VTableComponent::CK_OffsetToTop:
   1956       Out << "offset_to_top ("
   1957           << Component.getOffsetToTop().getQuantity()
   1958           << ")";
   1959       break;
   1960 
   1961     case VTableComponent::CK_RTTI:
   1962       Component.getRTTIDecl()->printQualifiedName(Out);
   1963       Out << " RTTI";
   1964       break;
   1965 
   1966     case VTableComponent::CK_FunctionPointer: {
   1967       const CXXMethodDecl *MD = Component.getFunctionDecl();
   1968 
   1969       std::string Str =
   1970         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
   1971                                     MD);
   1972       Out << Str;
   1973       if (MD->isPure())
   1974         Out << " [pure]";
   1975 
   1976       if (MD->isDeleted())
   1977         Out << " [deleted]";
   1978 
   1979       ThunkInfo Thunk = VTableThunks.lookup(I);
   1980       if (!Thunk.isEmpty()) {
   1981         // If this function pointer has a return adjustment, dump it.
   1982         if (!Thunk.Return.isEmpty()) {
   1983           Out << "\n       [return adjustment: ";
   1984           Out << Thunk.Return.NonVirtual << " non-virtual";
   1985 
   1986           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
   1987             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
   1988             Out << " vbase offset offset";
   1989           }
   1990 
   1991           Out << ']';
   1992         }
   1993 
   1994         // If this function pointer has a 'this' pointer adjustment, dump it.
   1995         if (!Thunk.This.isEmpty()) {
   1996           Out << "\n       [this adjustment: ";
   1997           Out << Thunk.This.NonVirtual << " non-virtual";
   1998 
   1999           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
   2000             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
   2001             Out << " vcall offset offset";
   2002           }
   2003 
   2004           Out << ']';
   2005         }
   2006       }
   2007 
   2008       break;
   2009     }
   2010 
   2011     case VTableComponent::CK_CompleteDtorPointer:
   2012     case VTableComponent::CK_DeletingDtorPointer: {
   2013       bool IsComplete =
   2014         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
   2015 
   2016       const CXXDestructorDecl *DD = Component.getDestructorDecl();
   2017 
   2018       DD->printQualifiedName(Out);
   2019       if (IsComplete)
   2020         Out << "() [complete]";
   2021       else
   2022         Out << "() [deleting]";
   2023 
   2024       if (DD->isPure())
   2025         Out << " [pure]";
   2026 
   2027       ThunkInfo Thunk = VTableThunks.lookup(I);
   2028       if (!Thunk.isEmpty()) {
   2029         // If this destructor has a 'this' pointer adjustment, dump it.
   2030         if (!Thunk.This.isEmpty()) {
   2031           Out << "\n       [this adjustment: ";
   2032           Out << Thunk.This.NonVirtual << " non-virtual";
   2033 
   2034           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
   2035             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
   2036             Out << " vcall offset offset";
   2037           }
   2038 
   2039           Out << ']';
   2040         }
   2041       }
   2042 
   2043       break;
   2044     }
   2045 
   2046     case VTableComponent::CK_UnusedFunctionPointer: {
   2047       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
   2048 
   2049       std::string Str =
   2050         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
   2051                                     MD);
   2052       Out << "[unused] " << Str;
   2053       if (MD->isPure())
   2054         Out << " [pure]";
   2055     }
   2056 
   2057     }
   2058 
   2059     Out << '\n';
   2060 
   2061     // Dump the next address point.
   2062     uint64_t NextIndex = Index + 1;
   2063     if (AddressPointsByIndex.count(NextIndex)) {
   2064       if (AddressPointsByIndex.count(NextIndex) == 1) {
   2065         const BaseSubobject &Base =
   2066           AddressPointsByIndex.find(NextIndex)->second;
   2067 
   2068         Out << "       -- (";
   2069         Base.getBase()->printQualifiedName(Out);
   2070         Out << ", " << Base.getBaseOffset().getQuantity();
   2071         Out << ") vtable address --\n";
   2072       } else {
   2073         CharUnits BaseOffset =
   2074           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
   2075 
   2076         // We store the class names in a set to get a stable order.
   2077         std::set<std::string> ClassNames;
   2078         for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
   2079              AddressPointsByIndex.lower_bound(NextIndex), E =
   2080              AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
   2081           assert(I->second.getBaseOffset() == BaseOffset &&
   2082                  "Invalid base offset!");
   2083           const CXXRecordDecl *RD = I->second.getBase();
   2084           ClassNames.insert(RD->getQualifiedNameAsString());
   2085         }
   2086 
   2087         for (std::set<std::string>::const_iterator I = ClassNames.begin(),
   2088              E = ClassNames.end(); I != E; ++I) {
   2089           Out << "       -- (" << *I;
   2090           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
   2091         }
   2092       }
   2093     }
   2094   }
   2095 
   2096   Out << '\n';
   2097 
   2098   if (isBuildingConstructorVTable())
   2099     return;
   2100 
   2101   if (MostDerivedClass->getNumVBases()) {
   2102     // We store the virtual base class names and their offsets in a map to get
   2103     // a stable order.
   2104 
   2105     std::map<std::string, CharUnits> ClassNamesAndOffsets;
   2106     for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
   2107          E = VBaseOffsetOffsets.end(); I != E; ++I) {
   2108       std::string ClassName = I->first->getQualifiedNameAsString();
   2109       CharUnits OffsetOffset = I->second;
   2110       ClassNamesAndOffsets.insert(
   2111           std::make_pair(ClassName, OffsetOffset));
   2112     }
   2113 
   2114     Out << "Virtual base offset offsets for '";
   2115     MostDerivedClass->printQualifiedName(Out);
   2116     Out << "' (";
   2117     Out << ClassNamesAndOffsets.size();
   2118     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
   2119 
   2120     for (std::map<std::string, CharUnits>::const_iterator I =
   2121          ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
   2122          I != E; ++I)
   2123       Out << "   " << I->first << " | " << I->second.getQuantity() << '\n';
   2124 
   2125     Out << "\n";
   2126   }
   2127 
   2128   if (!Thunks.empty()) {
   2129     // We store the method names in a map to get a stable order.
   2130     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
   2131 
   2132     for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
   2133          I != E; ++I) {
   2134       const CXXMethodDecl *MD = I->first;
   2135       std::string MethodName =
   2136         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
   2137                                     MD);
   2138 
   2139       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
   2140     }
   2141 
   2142     for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
   2143          MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
   2144          I != E; ++I) {
   2145       const std::string &MethodName = I->first;
   2146       const CXXMethodDecl *MD = I->second;
   2147 
   2148       ThunkInfoVectorTy ThunksVector = Thunks[MD];
   2149       std::sort(ThunksVector.begin(), ThunksVector.end(),
   2150                 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
   2151         assert(LHS.Method == nullptr && RHS.Method == nullptr);
   2152         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
   2153       });
   2154 
   2155       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
   2156       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
   2157 
   2158       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
   2159         const ThunkInfo &Thunk = ThunksVector[I];
   2160 
   2161         Out << llvm::format("%4d | ", I);
   2162 
   2163         // If this function pointer has a return pointer adjustment, dump it.
   2164         if (!Thunk.Return.isEmpty()) {
   2165           Out << "return adjustment: " << Thunk.Return.NonVirtual;
   2166           Out << " non-virtual";
   2167           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
   2168             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
   2169             Out << " vbase offset offset";
   2170           }
   2171 
   2172           if (!Thunk.This.isEmpty())
   2173             Out << "\n       ";
   2174         }
   2175 
   2176         // If this function pointer has a 'this' pointer adjustment, dump it.
   2177         if (!Thunk.This.isEmpty()) {
   2178           Out << "this adjustment: ";
   2179           Out << Thunk.This.NonVirtual << " non-virtual";
   2180 
   2181           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
   2182             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
   2183             Out << " vcall offset offset";
   2184           }
   2185         }
   2186 
   2187         Out << '\n';
   2188       }
   2189 
   2190       Out << '\n';
   2191     }
   2192   }
   2193 
   2194   // Compute the vtable indices for all the member functions.
   2195   // Store them in a map keyed by the index so we'll get a sorted table.
   2196   std::map<uint64_t, std::string> IndicesMap;
   2197 
   2198   for (const auto *MD : MostDerivedClass->methods()) {
   2199     // We only want virtual member functions.
   2200     if (!MD->isVirtual())
   2201       continue;
   2202     MD = MD->getCanonicalDecl();
   2203 
   2204     std::string MethodName =
   2205       PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
   2206                                   MD);
   2207 
   2208     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   2209       GlobalDecl GD(DD, Dtor_Complete);
   2210       assert(MethodVTableIndices.count(GD));
   2211       uint64_t VTableIndex = MethodVTableIndices[GD];
   2212       IndicesMap[VTableIndex] = MethodName + " [complete]";
   2213       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
   2214     } else {
   2215       assert(MethodVTableIndices.count(MD));
   2216       IndicesMap[MethodVTableIndices[MD]] = MethodName;
   2217     }
   2218   }
   2219 
   2220   // Print the vtable indices for all the member functions.
   2221   if (!IndicesMap.empty()) {
   2222     Out << "VTable indices for '";
   2223     MostDerivedClass->printQualifiedName(Out);
   2224     Out << "' (" << IndicesMap.size() << " entries).\n";
   2225 
   2226     for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
   2227          E = IndicesMap.end(); I != E; ++I) {
   2228       uint64_t VTableIndex = I->first;
   2229       const std::string &MethodName = I->second;
   2230 
   2231       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
   2232           << '\n';
   2233     }
   2234   }
   2235 
   2236   Out << '\n';
   2237 }
   2238 }
   2239 
   2240 VTableLayout::VTableLayout(uint64_t NumVTableComponents,
   2241                            const VTableComponent *VTableComponents,
   2242                            uint64_t NumVTableThunks,
   2243                            const VTableThunkTy *VTableThunks,
   2244                            const AddressPointsMapTy &AddressPoints,
   2245                            bool IsMicrosoftABI)
   2246   : NumVTableComponents(NumVTableComponents),
   2247     VTableComponents(new VTableComponent[NumVTableComponents]),
   2248     NumVTableThunks(NumVTableThunks),
   2249     VTableThunks(new VTableThunkTy[NumVTableThunks]),
   2250     AddressPoints(AddressPoints),
   2251     IsMicrosoftABI(IsMicrosoftABI) {
   2252   std::copy(VTableComponents, VTableComponents+NumVTableComponents,
   2253             this->VTableComponents.get());
   2254   std::copy(VTableThunks, VTableThunks+NumVTableThunks,
   2255             this->VTableThunks.get());
   2256   std::sort(this->VTableThunks.get(),
   2257             this->VTableThunks.get() + NumVTableThunks,
   2258             [](const VTableLayout::VTableThunkTy &LHS,
   2259                const VTableLayout::VTableThunkTy &RHS) {
   2260     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
   2261            "Different thunks should have unique indices!");
   2262     return LHS.first < RHS.first;
   2263   });
   2264 }
   2265 
   2266 VTableLayout::~VTableLayout() { }
   2267 
   2268 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
   2269     : VTableContextBase(/*MS=*/false) {}
   2270 
   2271 ItaniumVTableContext::~ItaniumVTableContext() {
   2272   llvm::DeleteContainerSeconds(VTableLayouts);
   2273 }
   2274 
   2275 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
   2276   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
   2277   if (I != MethodVTableIndices.end())
   2278     return I->second;
   2279 
   2280   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
   2281 
   2282   computeVTableRelatedInformation(RD);
   2283 
   2284   I = MethodVTableIndices.find(GD);
   2285   assert(I != MethodVTableIndices.end() && "Did not find index!");
   2286   return I->second;
   2287 }
   2288 
   2289 CharUnits
   2290 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
   2291                                                  const CXXRecordDecl *VBase) {
   2292   ClassPairTy ClassPair(RD, VBase);
   2293 
   2294   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
   2295     VirtualBaseClassOffsetOffsets.find(ClassPair);
   2296   if (I != VirtualBaseClassOffsetOffsets.end())
   2297     return I->second;
   2298 
   2299   VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
   2300                                      BaseSubobject(RD, CharUnits::Zero()),
   2301                                      /*BaseIsVirtual=*/false,
   2302                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
   2303 
   2304   for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
   2305        Builder.getVBaseOffsetOffsets().begin(),
   2306        E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
   2307     // Insert all types.
   2308     ClassPairTy ClassPair(RD, I->first);
   2309 
   2310     VirtualBaseClassOffsetOffsets.insert(
   2311         std::make_pair(ClassPair, I->second));
   2312   }
   2313 
   2314   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
   2315   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
   2316 
   2317   return I->second;
   2318 }
   2319 
   2320 static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
   2321   SmallVector<VTableLayout::VTableThunkTy, 1>
   2322     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
   2323 
   2324   return new VTableLayout(Builder.getNumVTableComponents(),
   2325                           Builder.vtable_component_begin(),
   2326                           VTableThunks.size(),
   2327                           VTableThunks.data(),
   2328                           Builder.getAddressPoints(),
   2329                           /*IsMicrosoftABI=*/false);
   2330 }
   2331 
   2332 void
   2333 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
   2334   const VTableLayout *&Entry = VTableLayouts[RD];
   2335 
   2336   // Check if we've computed this information before.
   2337   if (Entry)
   2338     return;
   2339 
   2340   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
   2341                                /*MostDerivedClassIsVirtual=*/0, RD);
   2342   Entry = CreateVTableLayout(Builder);
   2343 
   2344   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
   2345                              Builder.vtable_indices_end());
   2346 
   2347   // Add the known thunks.
   2348   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
   2349 
   2350   // If we don't have the vbase information for this class, insert it.
   2351   // getVirtualBaseOffsetOffset will compute it separately without computing
   2352   // the rest of the vtable related information.
   2353   if (!RD->getNumVBases())
   2354     return;
   2355 
   2356   const CXXRecordDecl *VBase =
   2357     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
   2358 
   2359   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
   2360     return;
   2361 
   2362   for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
   2363            I = Builder.getVBaseOffsetOffsets().begin(),
   2364            E = Builder.getVBaseOffsetOffsets().end();
   2365        I != E; ++I) {
   2366     // Insert all types.
   2367     ClassPairTy ClassPair(RD, I->first);
   2368 
   2369     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
   2370   }
   2371 }
   2372 
   2373 VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
   2374     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
   2375     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
   2376   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
   2377                                MostDerivedClassIsVirtual, LayoutClass);
   2378   return CreateVTableLayout(Builder);
   2379 }
   2380 
   2381 namespace {
   2382 
   2383 // Vtables in the Microsoft ABI are different from the Itanium ABI.
   2384 //
   2385 // The main differences are:
   2386 //  1. Separate vftable and vbtable.
   2387 //
   2388 //  2. Each subobject with a vfptr gets its own vftable rather than an address
   2389 //     point in a single vtable shared between all the subobjects.
   2390 //     Each vftable is represented by a separate section and virtual calls
   2391 //     must be done using the vftable which has a slot for the function to be
   2392 //     called.
   2393 //
   2394 //  3. Virtual method definitions expect their 'this' parameter to point to the
   2395 //     first vfptr whose table provides a compatible overridden method.  In many
   2396 //     cases, this permits the original vf-table entry to directly call
   2397 //     the method instead of passing through a thunk.
   2398 //     See example before VFTableBuilder::ComputeThisOffset below.
   2399 //
   2400 //     A compatible overridden method is one which does not have a non-trivial
   2401 //     covariant-return adjustment.
   2402 //
   2403 //     The first vfptr is the one with the lowest offset in the complete-object
   2404 //     layout of the defining class, and the method definition will subtract
   2405 //     that constant offset from the parameter value to get the real 'this'
   2406 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
   2407 //     function defined in a virtual base is overridden in a more derived
   2408 //     virtual base and these bases have a reverse order in the complete
   2409 //     object), the vf-table may require a this-adjustment thunk.
   2410 //
   2411 //  4. vftables do not contain new entries for overrides that merely require
   2412 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
   2413 //     eliminates the need for this-adjustment thunks in many cases, at the cost
   2414 //     of often requiring redundant work to adjust the "this" pointer.
   2415 //
   2416 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
   2417 //     Vtordisps are emitted into the class layout if a class has
   2418 //      a) a user-defined ctor/dtor
   2419 //     and
   2420 //      b) a method overriding a method in a virtual base.
   2421 //
   2422 //  To get a better understanding of this code,
   2423 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
   2424 
   2425 class VFTableBuilder {
   2426 public:
   2427   typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
   2428 
   2429   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
   2430     MethodVFTableLocationsTy;
   2431 
   2432   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
   2433     method_locations_range;
   2434 
   2435 private:
   2436   /// VTables - Global vtable information.
   2437   MicrosoftVTableContext &VTables;
   2438 
   2439   /// Context - The ASTContext which we will use for layout information.
   2440   ASTContext &Context;
   2441 
   2442   /// MostDerivedClass - The most derived class for which we're building this
   2443   /// vtable.
   2444   const CXXRecordDecl *MostDerivedClass;
   2445 
   2446   const ASTRecordLayout &MostDerivedClassLayout;
   2447 
   2448   const VPtrInfo &WhichVFPtr;
   2449 
   2450   /// FinalOverriders - The final overriders of the most derived class.
   2451   const FinalOverriders Overriders;
   2452 
   2453   /// Components - The components of the vftable being built.
   2454   SmallVector<VTableComponent, 64> Components;
   2455 
   2456   MethodVFTableLocationsTy MethodVFTableLocations;
   2457 
   2458   /// \brief Does this class have an RTTI component?
   2459   bool HasRTTIComponent;
   2460 
   2461   /// MethodInfo - Contains information about a method in a vtable.
   2462   /// (Used for computing 'this' pointer adjustment thunks.
   2463   struct MethodInfo {
   2464     /// VBTableIndex - The nonzero index in the vbtable that
   2465     /// this method's base has, or zero.
   2466     const uint64_t VBTableIndex;
   2467 
   2468     /// VFTableIndex - The index in the vftable that this method has.
   2469     const uint64_t VFTableIndex;
   2470 
   2471     /// Shadowed - Indicates if this vftable slot is shadowed by
   2472     /// a slot for a covariant-return override. If so, it shouldn't be printed
   2473     /// or used for vcalls in the most derived class.
   2474     bool Shadowed;
   2475 
   2476     /// UsesExtraSlot - Indicates if this vftable slot was created because
   2477     /// any of the overridden slots required a return adjusting thunk.
   2478     bool UsesExtraSlot;
   2479 
   2480     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
   2481                bool UsesExtraSlot = false)
   2482         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
   2483           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
   2484 
   2485     MethodInfo()
   2486         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
   2487           UsesExtraSlot(false) {}
   2488   };
   2489 
   2490   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
   2491 
   2492   /// MethodInfoMap - The information for all methods in the vftable we're
   2493   /// currently building.
   2494   MethodInfoMapTy MethodInfoMap;
   2495 
   2496   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
   2497 
   2498   /// VTableThunks - The thunks by vftable index in the vftable currently being
   2499   /// built.
   2500   VTableThunksMapTy VTableThunks;
   2501 
   2502   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
   2503   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
   2504 
   2505   /// Thunks - A map that contains all the thunks needed for all methods in the
   2506   /// most derived class for which the vftable is currently being built.
   2507   ThunksMapTy Thunks;
   2508 
   2509   /// AddThunk - Add a thunk for the given method.
   2510   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
   2511     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
   2512 
   2513     // Check if we have this thunk already.
   2514     if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
   2515         ThunksVector.end())
   2516       return;
   2517 
   2518     ThunksVector.push_back(Thunk);
   2519   }
   2520 
   2521   /// ComputeThisOffset - Returns the 'this' argument offset for the given
   2522   /// method, relative to the beginning of the MostDerivedClass.
   2523   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
   2524 
   2525   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
   2526                                    CharUnits ThisOffset, ThisAdjustment &TA);
   2527 
   2528   /// AddMethod - Add a single virtual member function to the vftable
   2529   /// components vector.
   2530   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
   2531     if (!TI.isEmpty()) {
   2532       VTableThunks[Components.size()] = TI;
   2533       AddThunk(MD, TI);
   2534     }
   2535     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   2536       assert(TI.Return.isEmpty() &&
   2537              "Destructor can't have return adjustment!");
   2538       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
   2539     } else {
   2540       Components.push_back(VTableComponent::MakeFunction(MD));
   2541     }
   2542   }
   2543 
   2544   /// AddMethods - Add the methods of this base subobject and the relevant
   2545   /// subbases to the vftable we're currently laying out.
   2546   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
   2547                   const CXXRecordDecl *LastVBase,
   2548                   BasesSetVectorTy &VisitedBases);
   2549 
   2550   void LayoutVFTable() {
   2551     // RTTI data goes before all other entries.
   2552     if (HasRTTIComponent)
   2553       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
   2554 
   2555     BasesSetVectorTy VisitedBases;
   2556     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
   2557                VisitedBases);
   2558     assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
   2559            "vftable can't be empty");
   2560 
   2561     assert(MethodVFTableLocations.empty());
   2562     for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
   2563          E = MethodInfoMap.end(); I != E; ++I) {
   2564       const CXXMethodDecl *MD = I->first;
   2565       const MethodInfo &MI = I->second;
   2566       // Skip the methods that the MostDerivedClass didn't override
   2567       // and the entries shadowed by return adjusting thunks.
   2568       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
   2569         continue;
   2570       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
   2571                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
   2572       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   2573         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
   2574       } else {
   2575         MethodVFTableLocations[MD] = Loc;
   2576       }
   2577     }
   2578   }
   2579 
   2580 public:
   2581   VFTableBuilder(MicrosoftVTableContext &VTables,
   2582                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
   2583       : VTables(VTables),
   2584         Context(MostDerivedClass->getASTContext()),
   2585         MostDerivedClass(MostDerivedClass),
   2586         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
   2587         WhichVFPtr(*Which),
   2588         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
   2589     // Only include the RTTI component if we know that we will provide a
   2590     // definition of the vftable.
   2591     HasRTTIComponent = Context.getLangOpts().RTTIData &&
   2592                        !MostDerivedClass->hasAttr<DLLImportAttr>() &&
   2593                        MostDerivedClass->getTemplateSpecializationKind() !=
   2594                            TSK_ExplicitInstantiationDeclaration;
   2595 
   2596     LayoutVFTable();
   2597 
   2598     if (Context.getLangOpts().DumpVTableLayouts)
   2599       dumpLayout(llvm::outs());
   2600   }
   2601 
   2602   uint64_t getNumThunks() const { return Thunks.size(); }
   2603 
   2604   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
   2605 
   2606   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
   2607 
   2608   method_locations_range vtable_locations() const {
   2609     return method_locations_range(MethodVFTableLocations.begin(),
   2610                                   MethodVFTableLocations.end());
   2611   }
   2612 
   2613   uint64_t getNumVTableComponents() const { return Components.size(); }
   2614 
   2615   const VTableComponent *vtable_component_begin() const {
   2616     return Components.begin();
   2617   }
   2618 
   2619   const VTableComponent *vtable_component_end() const {
   2620     return Components.end();
   2621   }
   2622 
   2623   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
   2624     return VTableThunks.begin();
   2625   }
   2626 
   2627   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
   2628     return VTableThunks.end();
   2629   }
   2630 
   2631   void dumpLayout(raw_ostream &);
   2632 };
   2633 
   2634 /// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
   2635 /// that define the given method.
   2636 struct InitialOverriddenDefinitionCollector {
   2637   BasesSetVectorTy Bases;
   2638   OverriddenMethodsSetTy VisitedOverriddenMethods;
   2639 
   2640   bool visit(const CXXMethodDecl *OverriddenMD) {
   2641     if (OverriddenMD->size_overridden_methods() == 0)
   2642       Bases.insert(OverriddenMD->getParent());
   2643     // Don't recurse on this method if we've already collected it.
   2644     return VisitedOverriddenMethods.insert(OverriddenMD).second;
   2645   }
   2646 };
   2647 
   2648 } // end namespace
   2649 
   2650 static bool BaseInSet(const CXXBaseSpecifier *Specifier,
   2651                       CXXBasePath &Path, void *BasesSet) {
   2652   BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
   2653   return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
   2654 }
   2655 
   2656 // Let's study one class hierarchy as an example:
   2657 //   struct A {
   2658 //     virtual void f();
   2659 //     int x;
   2660 //   };
   2661 //
   2662 //   struct B : virtual A {
   2663 //     virtual void f();
   2664 //   };
   2665 //
   2666 // Record layouts:
   2667 //   struct A:
   2668 //   0 |   (A vftable pointer)
   2669 //   4 |   int x
   2670 //
   2671 //   struct B:
   2672 //   0 |   (B vbtable pointer)
   2673 //   4 |   struct A (virtual base)
   2674 //   4 |     (A vftable pointer)
   2675 //   8 |     int x
   2676 //
   2677 // Let's assume we have a pointer to the A part of an object of dynamic type B:
   2678 //   B b;
   2679 //   A *a = (A*)&b;
   2680 //   a->f();
   2681 //
   2682 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
   2683 // "this" parameter to point at the A subobject, which is B+4.
   2684 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
   2685 // performed as a *static* adjustment.
   2686 //
   2687 // Interesting thing happens when we alter the relative placement of A and B
   2688 // subobjects in a class:
   2689 //   struct C : virtual B { };
   2690 //
   2691 //   C c;
   2692 //   A *a = (A*)&c;
   2693 //   a->f();
   2694 //
   2695 // Respective record layout is:
   2696 //   0 |   (C vbtable pointer)
   2697 //   4 |   struct A (virtual base)
   2698 //   4 |     (A vftable pointer)
   2699 //   8 |     int x
   2700 //  12 |   struct B (virtual base)
   2701 //  12 |     (B vbtable pointer)
   2702 //
   2703 // The final overrider of f() in class C is still B::f(), so B+4 should be
   2704 // passed as "this" to that code.  However, "a" points at B-8, so the respective
   2705 // vftable entry should hold a thunk that adds 12 to the "this" argument before
   2706 // performing a tail call to B::f().
   2707 //
   2708 // With this example in mind, we can now calculate the 'this' argument offset
   2709 // for the given method, relative to the beginning of the MostDerivedClass.
   2710 CharUnits
   2711 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
   2712   InitialOverriddenDefinitionCollector Collector;
   2713   visitAllOverriddenMethods(Overrider.Method, Collector);
   2714 
   2715   // If there are no overrides then 'this' is located
   2716   // in the base that defines the method.
   2717   if (Collector.Bases.size() == 0)
   2718     return Overrider.Offset;
   2719 
   2720   CXXBasePaths Paths;
   2721   Overrider.Method->getParent()->lookupInBases(BaseInSet, &Collector.Bases,
   2722                                                Paths);
   2723 
   2724   // This will hold the smallest this offset among overridees of MD.
   2725   // This implies that an offset of a non-virtual base will dominate an offset
   2726   // of a virtual base to potentially reduce the number of thunks required
   2727   // in the derived classes that inherit this method.
   2728   CharUnits Ret;
   2729   bool First = true;
   2730 
   2731   const ASTRecordLayout &OverriderRDLayout =
   2732       Context.getASTRecordLayout(Overrider.Method->getParent());
   2733   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
   2734        I != E; ++I) {
   2735     const CXXBasePath &Path = (*I);
   2736     CharUnits ThisOffset = Overrider.Offset;
   2737     CharUnits LastVBaseOffset;
   2738 
   2739     // For each path from the overrider to the parents of the overridden methods,
   2740     // traverse the path, calculating the this offset in the most derived class.
   2741     for (int J = 0, F = Path.size(); J != F; ++J) {
   2742       const CXXBasePathElement &Element = Path[J];
   2743       QualType CurTy = Element.Base->getType();
   2744       const CXXRecordDecl *PrevRD = Element.Class,
   2745                           *CurRD = CurTy->getAsCXXRecordDecl();
   2746       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
   2747 
   2748       if (Element.Base->isVirtual()) {
   2749         // The interesting things begin when you have virtual inheritance.
   2750         // The final overrider will use a static adjustment equal to the offset
   2751         // of the vbase in the final overrider class.
   2752         // For example, if the final overrider is in a vbase B of the most
   2753         // derived class and it overrides a method of the B's own vbase A,
   2754         // it uses A* as "this".  In its prologue, it can cast A* to B* with
   2755         // a static offset.  This offset is used regardless of the actual
   2756         // offset of A from B in the most derived class, requiring an
   2757         // this-adjusting thunk in the vftable if A and B are laid out
   2758         // differently in the most derived class.
   2759         LastVBaseOffset = ThisOffset =
   2760             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
   2761       } else {
   2762         ThisOffset += Layout.getBaseClassOffset(CurRD);
   2763       }
   2764     }
   2765 
   2766     if (isa<CXXDestructorDecl>(Overrider.Method)) {
   2767       if (LastVBaseOffset.isZero()) {
   2768         // If a "Base" class has at least one non-virtual base with a virtual
   2769         // destructor, the "Base" virtual destructor will take the address
   2770         // of the "Base" subobject as the "this" argument.
   2771         ThisOffset = Overrider.Offset;
   2772       } else {
   2773         // A virtual destructor of a virtual base takes the address of the
   2774         // virtual base subobject as the "this" argument.
   2775         ThisOffset = LastVBaseOffset;
   2776       }
   2777     }
   2778 
   2779     if (Ret > ThisOffset || First) {
   2780       First = false;
   2781       Ret = ThisOffset;
   2782     }
   2783   }
   2784 
   2785   assert(!First && "Method not found in the given subobject?");
   2786   return Ret;
   2787 }
   2788 
   2789 // Things are getting even more complex when the "this" adjustment has to
   2790 // use a dynamic offset instead of a static one, or even two dynamic offsets.
   2791 // This is sometimes required when a virtual call happens in the middle of
   2792 // a non-most-derived class construction or destruction.
   2793 //
   2794 // Let's take a look at the following example:
   2795 //   struct A {
   2796 //     virtual void f();
   2797 //   };
   2798 //
   2799 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
   2800 //
   2801 //   struct B : virtual A {
   2802 //     virtual void f();
   2803 //     B() {
   2804 //       foo(this);
   2805 //     }
   2806 //   };
   2807 //
   2808 //   struct C : virtual B {
   2809 //     virtual void f();
   2810 //   };
   2811 //
   2812 // Record layouts for these classes are:
   2813 //   struct A
   2814 //   0 |   (A vftable pointer)
   2815 //
   2816 //   struct B
   2817 //   0 |   (B vbtable pointer)
   2818 //   4 |   (vtordisp for vbase A)
   2819 //   8 |   struct A (virtual base)
   2820 //   8 |     (A vftable pointer)
   2821 //
   2822 //   struct C
   2823 //   0 |   (C vbtable pointer)
   2824 //   4 |   (vtordisp for vbase A)
   2825 //   8 |   struct A (virtual base)  // A precedes B!
   2826 //   8 |     (A vftable pointer)
   2827 //  12 |   struct B (virtual base)
   2828 //  12 |     (B vbtable pointer)
   2829 //
   2830 // When one creates an object of type C, the C constructor:
   2831 // - initializes all the vbptrs, then
   2832 // - calls the A subobject constructor
   2833 //   (initializes A's vfptr with an address of A vftable), then
   2834 // - calls the B subobject constructor
   2835 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
   2836 //   that in turn calls foo(), then
   2837 // - initializes A's vfptr with an address of C vftable and zeroes out the
   2838 //   vtordisp
   2839 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
   2840 //   without vtordisp thunks?
   2841 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
   2842 //
   2843 // When foo() is called, an object with a layout of class C has a vftable
   2844 // referencing B::f() that assumes a B layout, so the "this" adjustments are
   2845 // incorrect, unless an extra adjustment is done.  This adjustment is called
   2846 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
   2847 // actual location of a vbase in the layout class and the location assumed by
   2848 // the vftable of the class being constructed/destructed.  Vtordisp is only
   2849 // needed if "this" escapes a
   2850 // structor (or we can't prove otherwise).
   2851 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
   2852 // estimation of a dynamic adjustment]
   2853 //
   2854 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
   2855 // so it just passes that pointer as "this" in a virtual call.
   2856 // If there was no vtordisp, that would just dispatch to B::f().
   2857 // However, B::f() assumes B+8 is passed as "this",
   2858 // yet the pointer foo() passes along is B-4 (i.e. C+8).
   2859 // An extra adjustment is needed, so we emit a thunk into the B vftable.
   2860 // This vtordisp thunk subtracts the value of vtordisp
   2861 // from the "this" argument (-12) before making a tailcall to B::f().
   2862 //
   2863 // Let's consider an even more complex example:
   2864 //   struct D : virtual B, virtual C {
   2865 //     D() {
   2866 //       foo(this);
   2867 //     }
   2868 //   };
   2869 //
   2870 //   struct D
   2871 //   0 |   (D vbtable pointer)
   2872 //   4 |   (vtordisp for vbase A)
   2873 //   8 |   struct A (virtual base)  // A precedes both B and C!
   2874 //   8 |     (A vftable pointer)
   2875 //  12 |   struct B (virtual base)  // B precedes C!
   2876 //  12 |     (B vbtable pointer)
   2877 //  16 |   struct C (virtual base)
   2878 //  16 |     (C vbtable pointer)
   2879 //
   2880 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
   2881 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
   2882 // passes along A, which is C-8.  The A vtordisp holds
   2883 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
   2884 // and we statically know offset_of_A_in_D, so can get a pointer to D.
   2885 // When we know it, we can make an extra vbtable lookup to locate the C vbase
   2886 // and one extra static adjustment to calculate the expected value of C+8.
   2887 void VFTableBuilder::CalculateVtordispAdjustment(
   2888     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
   2889     ThisAdjustment &TA) {
   2890   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
   2891       MostDerivedClassLayout.getVBaseOffsetsMap();
   2892   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
   2893       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
   2894   assert(VBaseMapEntry != VBaseMap.end());
   2895 
   2896   // If there's no vtordisp or the final overrider is defined in the same vbase
   2897   // as the initial declaration, we don't need any vtordisp adjustment.
   2898   if (!VBaseMapEntry->second.hasVtorDisp() ||
   2899       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
   2900     return;
   2901 
   2902   // OK, now we know we need to use a vtordisp thunk.
   2903   // The implicit vtordisp field is located right before the vbase.
   2904   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
   2905   TA.Virtual.Microsoft.VtordispOffset =
   2906       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
   2907 
   2908   // A simple vtordisp thunk will suffice if the final overrider is defined
   2909   // in either the most derived class or its non-virtual base.
   2910   if (Overrider.Method->getParent() == MostDerivedClass ||
   2911       !Overrider.VirtualBase)
   2912     return;
   2913 
   2914   // Otherwise, we need to do use the dynamic offset of the final overrider
   2915   // in order to get "this" adjustment right.
   2916   TA.Virtual.Microsoft.VBPtrOffset =
   2917       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
   2918        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
   2919   TA.Virtual.Microsoft.VBOffsetOffset =
   2920       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
   2921       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
   2922 
   2923   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
   2924 }
   2925 
   2926 static void GroupNewVirtualOverloads(
   2927     const CXXRecordDecl *RD,
   2928     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
   2929   // Put the virtual methods into VirtualMethods in the proper order:
   2930   // 1) Group overloads by declaration name. New groups are added to the
   2931   //    vftable in the order of their first declarations in this class
   2932   //    (including overrides and non-virtual methods).
   2933   // 2) In each group, new overloads appear in the reverse order of declaration.
   2934   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
   2935   SmallVector<MethodGroup, 10> Groups;
   2936   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
   2937   VisitedGroupIndicesTy VisitedGroupIndices;
   2938   for (const auto *MD : RD->methods()) {
   2939     MD = MD->getCanonicalDecl();
   2940     VisitedGroupIndicesTy::iterator J;
   2941     bool Inserted;
   2942     std::tie(J, Inserted) = VisitedGroupIndices.insert(
   2943         std::make_pair(MD->getDeclName(), Groups.size()));
   2944     if (Inserted)
   2945       Groups.push_back(MethodGroup());
   2946     if (MD->isVirtual())
   2947       Groups[J->second].push_back(MD);
   2948   }
   2949 
   2950   for (unsigned I = 0, E = Groups.size(); I != E; ++I)
   2951     VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
   2952 }
   2953 
   2954 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
   2955   for (const auto &B : RD->bases()) {
   2956     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
   2957       return true;
   2958   }
   2959   return false;
   2960 }
   2961 
   2962 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
   2963                                 const CXXRecordDecl *LastVBase,
   2964                                 BasesSetVectorTy &VisitedBases) {
   2965   const CXXRecordDecl *RD = Base.getBase();
   2966   if (!RD->isPolymorphic())
   2967     return;
   2968 
   2969   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   2970 
   2971   // See if this class expands a vftable of the base we look at, which is either
   2972   // the one defined by the vfptr base path or the primary base of the current class.
   2973   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
   2974   CharUnits NextBaseOffset;
   2975   if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
   2976     NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
   2977     if (isDirectVBase(NextBase, RD)) {
   2978       NextLastVBase = NextBase;
   2979       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
   2980     } else {
   2981       NextBaseOffset =
   2982           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
   2983     }
   2984   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
   2985     assert(!Layout.isPrimaryBaseVirtual() &&
   2986            "No primary virtual bases in this ABI");
   2987     NextBase = PrimaryBase;
   2988     NextBaseOffset = Base.getBaseOffset();
   2989   }
   2990 
   2991   if (NextBase) {
   2992     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
   2993                NextLastVBase, VisitedBases);
   2994     if (!VisitedBases.insert(NextBase))
   2995       llvm_unreachable("Found a duplicate primary base!");
   2996   }
   2997 
   2998   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
   2999   // Put virtual methods in the proper order.
   3000   GroupNewVirtualOverloads(RD, VirtualMethods);
   3001 
   3002   // Now go through all virtual member functions and add them to the current
   3003   // vftable. This is done by
   3004   //  - replacing overridden methods in their existing slots, as long as they
   3005   //    don't require return adjustment; calculating This adjustment if needed.
   3006   //  - adding new slots for methods of the current base not present in any
   3007   //    sub-bases;
   3008   //  - adding new slots for methods that require Return adjustment.
   3009   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
   3010   for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
   3011     const CXXMethodDecl *MD = VirtualMethods[I];
   3012 
   3013     FinalOverriders::OverriderInfo FinalOverrider =
   3014         Overriders.getOverrider(MD, Base.getBaseOffset());
   3015     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
   3016     const CXXMethodDecl *OverriddenMD =
   3017         FindNearestOverriddenMethod(MD, VisitedBases);
   3018 
   3019     ThisAdjustment ThisAdjustmentOffset;
   3020     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
   3021     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
   3022     ThisAdjustmentOffset.NonVirtual =
   3023         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
   3024     if ((OverriddenMD || FinalOverriderMD != MD) &&
   3025         WhichVFPtr.getVBaseWithVPtr())
   3026       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
   3027                                   ThisAdjustmentOffset);
   3028 
   3029     if (OverriddenMD) {
   3030       // If MD overrides anything in this vftable, we need to update the entries.
   3031       MethodInfoMapTy::iterator OverriddenMDIterator =
   3032           MethodInfoMap.find(OverriddenMD);
   3033 
   3034       // If the overridden method went to a different vftable, skip it.
   3035       if (OverriddenMDIterator == MethodInfoMap.end())
   3036         continue;
   3037 
   3038       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
   3039 
   3040       // Let's check if the overrider requires any return adjustments.
   3041       // We must create a new slot if the MD's return type is not trivially
   3042       // convertible to the OverriddenMD's one.
   3043       // Once a chain of method overrides adds a return adjusting vftable slot,
   3044       // all subsequent overrides will also use an extra method slot.
   3045       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
   3046                                   Context, MD, OverriddenMD).isEmpty() ||
   3047                              OverriddenMethodInfo.UsesExtraSlot;
   3048 
   3049       if (!ReturnAdjustingThunk) {
   3050         // No return adjustment needed - just replace the overridden method info
   3051         // with the current info.
   3052         MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
   3053                       OverriddenMethodInfo.VFTableIndex);
   3054         MethodInfoMap.erase(OverriddenMDIterator);
   3055 
   3056         assert(!MethodInfoMap.count(MD) &&
   3057                "Should not have method info for this method yet!");
   3058         MethodInfoMap.insert(std::make_pair(MD, MI));
   3059         continue;
   3060       }
   3061 
   3062       // In case we need a return adjustment, we'll add a new slot for
   3063       // the overrider. Mark the overriden method as shadowed by the new slot.
   3064       OverriddenMethodInfo.Shadowed = true;
   3065 
   3066       // Force a special name mangling for a return-adjusting thunk
   3067       // unless the method is the final overrider without this adjustment.
   3068       ForceReturnAdjustmentMangling =
   3069           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
   3070     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
   3071                MD->size_overridden_methods()) {
   3072       // Skip methods that don't belong to the vftable of the current class,
   3073       // e.g. each method that wasn't seen in any of the visited sub-bases
   3074       // but overrides multiple methods of other sub-bases.
   3075       continue;
   3076     }
   3077 
   3078     // If we got here, MD is a method not seen in any of the sub-bases or
   3079     // it requires return adjustment. Insert the method info for this method.
   3080     unsigned VBIndex =
   3081         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
   3082     MethodInfo MI(VBIndex,
   3083                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
   3084                   ReturnAdjustingThunk);
   3085 
   3086     assert(!MethodInfoMap.count(MD) &&
   3087            "Should not have method info for this method yet!");
   3088     MethodInfoMap.insert(std::make_pair(MD, MI));
   3089 
   3090     // Check if this overrider needs a return adjustment.
   3091     // We don't want to do this for pure virtual member functions.
   3092     BaseOffset ReturnAdjustmentOffset;
   3093     ReturnAdjustment ReturnAdjustment;
   3094     if (!FinalOverriderMD->isPure()) {
   3095       ReturnAdjustmentOffset =
   3096           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
   3097     }
   3098     if (!ReturnAdjustmentOffset.isEmpty()) {
   3099       ForceReturnAdjustmentMangling = true;
   3100       ReturnAdjustment.NonVirtual =
   3101           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
   3102       if (ReturnAdjustmentOffset.VirtualBase) {
   3103         const ASTRecordLayout &DerivedLayout =
   3104             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
   3105         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
   3106             DerivedLayout.getVBPtrOffset().getQuantity();
   3107         ReturnAdjustment.Virtual.Microsoft.VBIndex =
   3108             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
   3109                                     ReturnAdjustmentOffset.VirtualBase);
   3110       }
   3111     }
   3112 
   3113     AddMethod(FinalOverriderMD,
   3114               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
   3115                         ForceReturnAdjustmentMangling ? MD : nullptr));
   3116   }
   3117 }
   3118 
   3119 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
   3120   for (VPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
   3121        E = Path.rend(); I != E; ++I) {
   3122     Out << "'";
   3123     (*I)->printQualifiedName(Out);
   3124     Out << "' in ";
   3125   }
   3126 }
   3127 
   3128 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
   3129                                          bool ContinueFirstLine) {
   3130   const ReturnAdjustment &R = TI.Return;
   3131   bool Multiline = false;
   3132   const char *LinePrefix = "\n       ";
   3133   if (!R.isEmpty() || TI.Method) {
   3134     if (!ContinueFirstLine)
   3135       Out << LinePrefix;
   3136     Out << "[return adjustment (to type '"
   3137         << TI.Method->getReturnType().getCanonicalType().getAsString()
   3138         << "'): ";
   3139     if (R.Virtual.Microsoft.VBPtrOffset)
   3140       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
   3141     if (R.Virtual.Microsoft.VBIndex)
   3142       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
   3143     Out << R.NonVirtual << " non-virtual]";
   3144     Multiline = true;
   3145   }
   3146 
   3147   const ThisAdjustment &T = TI.This;
   3148   if (!T.isEmpty()) {
   3149     if (Multiline || !ContinueFirstLine)
   3150       Out << LinePrefix;
   3151     Out << "[this adjustment: ";
   3152     if (!TI.This.Virtual.isEmpty()) {
   3153       assert(T.Virtual.Microsoft.VtordispOffset < 0);
   3154       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
   3155       if (T.Virtual.Microsoft.VBPtrOffset) {
   3156         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
   3157             << " to the left,";
   3158         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
   3159         Out << LinePrefix << " vboffset at "
   3160             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
   3161       }
   3162     }
   3163     Out << T.NonVirtual << " non-virtual]";
   3164   }
   3165 }
   3166 
   3167 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
   3168   Out << "VFTable for ";
   3169   PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
   3170   Out << "'";
   3171   MostDerivedClass->printQualifiedName(Out);
   3172   Out << "' (" << Components.size()
   3173       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
   3174 
   3175   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
   3176     Out << llvm::format("%4d | ", I);
   3177 
   3178     const VTableComponent &Component = Components[I];
   3179 
   3180     // Dump the component.
   3181     switch (Component.getKind()) {
   3182     case VTableComponent::CK_RTTI:
   3183       Component.getRTTIDecl()->printQualifiedName(Out);
   3184       Out << " RTTI";
   3185       break;
   3186 
   3187     case VTableComponent::CK_FunctionPointer: {
   3188       const CXXMethodDecl *MD = Component.getFunctionDecl();
   3189 
   3190       // FIXME: Figure out how to print the real thunk type, since they can
   3191       // differ in the return type.
   3192       std::string Str = PredefinedExpr::ComputeName(
   3193           PredefinedExpr::PrettyFunctionNoVirtual, MD);
   3194       Out << Str;
   3195       if (MD->isPure())
   3196         Out << " [pure]";
   3197 
   3198       if (MD->isDeleted())
   3199         Out << " [deleted]";
   3200 
   3201       ThunkInfo Thunk = VTableThunks.lookup(I);
   3202       if (!Thunk.isEmpty())
   3203         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
   3204 
   3205       break;
   3206     }
   3207 
   3208     case VTableComponent::CK_DeletingDtorPointer: {
   3209       const CXXDestructorDecl *DD = Component.getDestructorDecl();
   3210 
   3211       DD->printQualifiedName(Out);
   3212       Out << "() [scalar deleting]";
   3213 
   3214       if (DD->isPure())
   3215         Out << " [pure]";
   3216 
   3217       ThunkInfo Thunk = VTableThunks.lookup(I);
   3218       if (!Thunk.isEmpty()) {
   3219         assert(Thunk.Return.isEmpty() &&
   3220                "No return adjustment needed for destructors!");
   3221         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
   3222       }
   3223 
   3224       break;
   3225     }
   3226 
   3227     default:
   3228       DiagnosticsEngine &Diags = Context.getDiagnostics();
   3229       unsigned DiagID = Diags.getCustomDiagID(
   3230           DiagnosticsEngine::Error,
   3231           "Unexpected vftable component type %0 for component number %1");
   3232       Diags.Report(MostDerivedClass->getLocation(), DiagID)
   3233           << I << Component.getKind();
   3234     }
   3235 
   3236     Out << '\n';
   3237   }
   3238 
   3239   Out << '\n';
   3240 
   3241   if (!Thunks.empty()) {
   3242     // We store the method names in a map to get a stable order.
   3243     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
   3244 
   3245     for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
   3246          I != E; ++I) {
   3247       const CXXMethodDecl *MD = I->first;
   3248       std::string MethodName = PredefinedExpr::ComputeName(
   3249           PredefinedExpr::PrettyFunctionNoVirtual, MD);
   3250 
   3251       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
   3252     }
   3253 
   3254     for (std::map<std::string, const CXXMethodDecl *>::const_iterator
   3255              I = MethodNamesAndDecls.begin(),
   3256              E = MethodNamesAndDecls.end();
   3257          I != E; ++I) {
   3258       const std::string &MethodName = I->first;
   3259       const CXXMethodDecl *MD = I->second;
   3260 
   3261       ThunkInfoVectorTy ThunksVector = Thunks[MD];
   3262       std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
   3263                        [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
   3264         // Keep different thunks with the same adjustments in the order they
   3265         // were put into the vector.
   3266         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
   3267       });
   3268 
   3269       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
   3270       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
   3271 
   3272       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
   3273         const ThunkInfo &Thunk = ThunksVector[I];
   3274 
   3275         Out << llvm::format("%4d | ", I);
   3276         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
   3277         Out << '\n';
   3278       }
   3279 
   3280       Out << '\n';
   3281     }
   3282   }
   3283 
   3284   Out.flush();
   3285 }
   3286 
   3287 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
   3288                           ArrayRef<const CXXRecordDecl *> B) {
   3289   for (ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(), E = B.end();
   3290        I != E; ++I) {
   3291     if (A.count(*I))
   3292       return true;
   3293   }
   3294   return false;
   3295 }
   3296 
   3297 static bool rebucketPaths(VPtrInfoVector &Paths);
   3298 
   3299 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
   3300 /// algorithm match those produced by MSVC 2012 and newer, which is different
   3301 /// from MSVC 2010.
   3302 ///
   3303 /// MSVC 2012 appears to minimize the vbtable names using the following
   3304 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
   3305 /// left to right, to find all of the subobjects which contain a vbptr field.
   3306 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
   3307 /// record with a vbptr creates an initially empty path.
   3308 ///
   3309 /// To combine paths from child nodes, the paths are compared to check for
   3310 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
   3311 /// components in the same order.  Each group of ambiguous paths is extended by
   3312 /// appending the class of the base from which it came.  If the current class
   3313 /// node produced an ambiguous path, its path is extended with the current class.
   3314 /// After extending paths, MSVC again checks for ambiguity, and extends any
   3315 /// ambiguous path which wasn't already extended.  Because each node yields an
   3316 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
   3317 /// to produce an unambiguous set of paths.
   3318 ///
   3319 /// TODO: Presumably vftables use the same algorithm.
   3320 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
   3321                                                 const CXXRecordDecl *RD,
   3322                                                 VPtrInfoVector &Paths) {
   3323   assert(Paths.empty());
   3324   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   3325 
   3326   // Base case: this subobject has its own vptr.
   3327   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
   3328     Paths.push_back(new VPtrInfo(RD));
   3329 
   3330   // Recursive case: get all the vbtables from our bases and remove anything
   3331   // that shares a virtual base.
   3332   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
   3333   for (const auto &B : RD->bases()) {
   3334     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
   3335     if (B.isVirtual() && VBasesSeen.count(Base))
   3336       continue;
   3337 
   3338     if (!Base->isDynamicClass())
   3339       continue;
   3340 
   3341     const VPtrInfoVector &BasePaths =
   3342         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
   3343 
   3344     for (VPtrInfo *BaseInfo : BasePaths) {
   3345       // Don't include the path if it goes through a virtual base that we've
   3346       // already included.
   3347       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
   3348         continue;
   3349 
   3350       // Copy the path and adjust it as necessary.
   3351       VPtrInfo *P = new VPtrInfo(*BaseInfo);
   3352 
   3353       // We mangle Base into the path if the path would've been ambiguous and it
   3354       // wasn't already extended with Base.
   3355       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
   3356         P->NextBaseToMangle = Base;
   3357 
   3358       // Keep track of which vtable the derived class is going to extend with
   3359       // new methods or bases.  We append to either the vftable of our primary
   3360       // base, or the first non-virtual base that has a vbtable.
   3361       if (P->ReusingBase == Base &&
   3362           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
   3363                                : Layout.getPrimaryBase()))
   3364         P->ReusingBase = RD;
   3365 
   3366       // Keep track of the full adjustment from the MDC to this vtable.  The
   3367       // adjustment is captured by an optional vbase and a non-virtual offset.
   3368       if (B.isVirtual())
   3369         P->ContainingVBases.push_back(Base);
   3370       else if (P->ContainingVBases.empty())
   3371         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
   3372 
   3373       // Update the full offset in the MDC.
   3374       P->FullOffsetInMDC = P->NonVirtualOffset;
   3375       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
   3376         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
   3377 
   3378       Paths.push_back(P);
   3379     }
   3380 
   3381     if (B.isVirtual())
   3382       VBasesSeen.insert(Base);
   3383 
   3384     // After visiting any direct base, we've transitively visited all of its
   3385     // morally virtual bases.
   3386     for (const auto &VB : Base->vbases())
   3387       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
   3388   }
   3389 
   3390   // Sort the paths into buckets, and if any of them are ambiguous, extend all
   3391   // paths in ambiguous buckets.
   3392   bool Changed = true;
   3393   while (Changed)
   3394     Changed = rebucketPaths(Paths);
   3395 }
   3396 
   3397 static bool extendPath(VPtrInfo *P) {
   3398   if (P->NextBaseToMangle) {
   3399     P->MangledPath.push_back(P->NextBaseToMangle);
   3400     P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
   3401     return true;
   3402   }
   3403   return false;
   3404 }
   3405 
   3406 static bool rebucketPaths(VPtrInfoVector &Paths) {
   3407   // What we're essentially doing here is bucketing together ambiguous paths.
   3408   // Any bucket with more than one path in it gets extended by NextBase, which
   3409   // is usually the direct base of the inherited the vbptr.  This code uses a
   3410   // sorted vector to implement a multiset to form the buckets.  Note that the
   3411   // ordering is based on pointers, but it doesn't change our output order.  The
   3412   // current algorithm is designed to match MSVC 2012's names.
   3413   VPtrInfoVector PathsSorted(Paths);
   3414   std::sort(PathsSorted.begin(), PathsSorted.end(),
   3415             [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
   3416     return LHS->MangledPath < RHS->MangledPath;
   3417   });
   3418   bool Changed = false;
   3419   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
   3420     // Scan forward to find the end of the bucket.
   3421     size_t BucketStart = I;
   3422     do {
   3423       ++I;
   3424     } while (I != E && PathsSorted[BucketStart]->MangledPath ==
   3425                            PathsSorted[I]->MangledPath);
   3426 
   3427     // If this bucket has multiple paths, extend them all.
   3428     if (I - BucketStart > 1) {
   3429       for (size_t II = BucketStart; II != I; ++II)
   3430         Changed |= extendPath(PathsSorted[II]);
   3431       assert(Changed && "no paths were extended to fix ambiguity");
   3432     }
   3433   }
   3434   return Changed;
   3435 }
   3436 
   3437 MicrosoftVTableContext::~MicrosoftVTableContext() {
   3438   for (auto &P : VFPtrLocations)
   3439     llvm::DeleteContainerPointers(*P.second);
   3440   llvm::DeleteContainerSeconds(VFPtrLocations);
   3441   llvm::DeleteContainerSeconds(VFTableLayouts);
   3442   llvm::DeleteContainerSeconds(VBaseInfo);
   3443 }
   3444 
   3445 static bool
   3446 findPathForVPtr(ASTContext &Context, const ASTRecordLayout &MostDerivedLayout,
   3447                 const CXXRecordDecl *RD, CharUnits Offset,
   3448                 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &VBasesSeen,
   3449                 VPtrInfo::BasePath &FullPath, VPtrInfo *Info) {
   3450   if (RD == Info->BaseWithVPtr && Offset == Info->FullOffsetInMDC) {
   3451     Info->PathToBaseWithVPtr = FullPath;
   3452     return true;
   3453   }
   3454 
   3455   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   3456 
   3457   // Recurse with non-virtual bases first.
   3458   // FIXME: Does this need to be in layout order? Virtual bases will be in base
   3459   // specifier order, which isn't necessarily layout order.
   3460   SmallVector<CXXBaseSpecifier, 4> Bases(RD->bases_begin(), RD->bases_end());
   3461   std::stable_partition(Bases.begin(), Bases.end(),
   3462                         [](CXXBaseSpecifier bs) { return !bs.isVirtual(); });
   3463 
   3464   for (const auto &B : Bases) {
   3465     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
   3466     CharUnits NewOffset;
   3467     if (!B.isVirtual())
   3468       NewOffset = Offset + Layout.getBaseClassOffset(Base);
   3469     else {
   3470       if (!VBasesSeen.insert(Base).second)
   3471         return false;
   3472       NewOffset = MostDerivedLayout.getVBaseClassOffset(Base);
   3473     }
   3474     FullPath.push_back(Base);
   3475     if (findPathForVPtr(Context, MostDerivedLayout, Base, NewOffset, VBasesSeen,
   3476                         FullPath, Info))
   3477       return true;
   3478     FullPath.pop_back();
   3479   }
   3480   return false;
   3481 }
   3482 
   3483 static void computeFullPathsForVFTables(ASTContext &Context,
   3484                                         const CXXRecordDecl *RD,
   3485                                         VPtrInfoVector &Paths) {
   3486   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
   3487   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
   3488   VPtrInfo::BasePath FullPath;
   3489   for (VPtrInfo *Info : Paths) {
   3490     findPathForVPtr(Context, MostDerivedLayout, RD, CharUnits::Zero(),
   3491                     VBasesSeen, FullPath, Info);
   3492     VBasesSeen.clear();
   3493     FullPath.clear();
   3494   }
   3495 }
   3496 
   3497 void MicrosoftVTableContext::computeVTableRelatedInformation(
   3498     const CXXRecordDecl *RD) {
   3499   assert(RD->isDynamicClass());
   3500 
   3501   // Check if we've computed this information before.
   3502   if (VFPtrLocations.count(RD))
   3503     return;
   3504 
   3505   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
   3506 
   3507   VPtrInfoVector *VFPtrs = new VPtrInfoVector();
   3508   computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
   3509   computeFullPathsForVFTables(Context, RD, *VFPtrs);
   3510   VFPtrLocations[RD] = VFPtrs;
   3511 
   3512   MethodVFTableLocationsTy NewMethodLocations;
   3513   for (VPtrInfoVector::iterator I = VFPtrs->begin(), E = VFPtrs->end();
   3514        I != E; ++I) {
   3515     VFTableBuilder Builder(*this, RD, *I);
   3516 
   3517     VFTableIdTy id(RD, (*I)->FullOffsetInMDC);
   3518     assert(VFTableLayouts.count(id) == 0);
   3519     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
   3520         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
   3521     VFTableLayouts[id] = new VTableLayout(
   3522         Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
   3523         VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
   3524     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
   3525 
   3526     for (const auto &Loc : Builder.vtable_locations()) {
   3527       GlobalDecl GD = Loc.first;
   3528       MethodVFTableLocation NewLoc = Loc.second;
   3529       auto M = NewMethodLocations.find(GD);
   3530       if (M == NewMethodLocations.end() || NewLoc < M->second)
   3531         NewMethodLocations[GD] = NewLoc;
   3532     }
   3533   }
   3534 
   3535   MethodVFTableLocations.insert(NewMethodLocations.begin(),
   3536                                 NewMethodLocations.end());
   3537   if (Context.getLangOpts().DumpVTableLayouts)
   3538     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
   3539 }
   3540 
   3541 void MicrosoftVTableContext::dumpMethodLocations(
   3542     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
   3543     raw_ostream &Out) {
   3544   // Compute the vtable indices for all the member functions.
   3545   // Store them in a map keyed by the location so we'll get a sorted table.
   3546   std::map<MethodVFTableLocation, std::string> IndicesMap;
   3547   bool HasNonzeroOffset = false;
   3548 
   3549   for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
   3550        E = NewMethods.end(); I != E; ++I) {
   3551     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
   3552     assert(MD->isVirtual());
   3553 
   3554     std::string MethodName = PredefinedExpr::ComputeName(
   3555         PredefinedExpr::PrettyFunctionNoVirtual, MD);
   3556 
   3557     if (isa<CXXDestructorDecl>(MD)) {
   3558       IndicesMap[I->second] = MethodName + " [scalar deleting]";
   3559     } else {
   3560       IndicesMap[I->second] = MethodName;
   3561     }
   3562 
   3563     if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
   3564       HasNonzeroOffset = true;
   3565   }
   3566 
   3567   // Print the vtable indices for all the member functions.
   3568   if (!IndicesMap.empty()) {
   3569     Out << "VFTable indices for ";
   3570     Out << "'";
   3571     RD->printQualifiedName(Out);
   3572     Out << "' (" << IndicesMap.size()
   3573         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
   3574 
   3575     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
   3576     uint64_t LastVBIndex = 0;
   3577     for (std::map<MethodVFTableLocation, std::string>::const_iterator
   3578              I = IndicesMap.begin(),
   3579              E = IndicesMap.end();
   3580          I != E; ++I) {
   3581       CharUnits VFPtrOffset = I->first.VFPtrOffset;
   3582       uint64_t VBIndex = I->first.VBTableIndex;
   3583       if (HasNonzeroOffset &&
   3584           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
   3585         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
   3586         Out << " -- accessible via ";
   3587         if (VBIndex)
   3588           Out << "vbtable index " << VBIndex << ", ";
   3589         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
   3590         LastVFPtrOffset = VFPtrOffset;
   3591         LastVBIndex = VBIndex;
   3592       }
   3593 
   3594       uint64_t VTableIndex = I->first.Index;
   3595       const std::string &MethodName = I->second;
   3596       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
   3597     }
   3598     Out << '\n';
   3599   }
   3600 
   3601   Out.flush();
   3602 }
   3603 
   3604 const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
   3605     const CXXRecordDecl *RD) {
   3606   VirtualBaseInfo *VBI;
   3607 
   3608   {
   3609     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
   3610     // as it may be modified and rehashed under us.
   3611     VirtualBaseInfo *&Entry = VBaseInfo[RD];
   3612     if (Entry)
   3613       return Entry;
   3614     Entry = VBI = new VirtualBaseInfo();
   3615   }
   3616 
   3617   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
   3618 
   3619   // First, see if the Derived class shared the vbptr with a non-virtual base.
   3620   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   3621   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
   3622     // If the Derived class shares the vbptr with a non-virtual base, the shared
   3623     // virtual bases come first so that the layout is the same.
   3624     const VirtualBaseInfo *BaseInfo =
   3625         computeVBTableRelatedInformation(VBPtrBase);
   3626     VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
   3627                                BaseInfo->VBTableIndices.end());
   3628   }
   3629 
   3630   // New vbases are added to the end of the vbtable.
   3631   // Skip the self entry and vbases visited in the non-virtual base, if any.
   3632   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
   3633   for (const auto &VB : RD->vbases()) {
   3634     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
   3635     if (!VBI->VBTableIndices.count(CurVBase))
   3636       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
   3637   }
   3638 
   3639   return VBI;
   3640 }
   3641 
   3642 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
   3643                                                  const CXXRecordDecl *VBase) {
   3644   const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
   3645   assert(VBInfo->VBTableIndices.count(VBase));
   3646   return VBInfo->VBTableIndices.find(VBase)->second;
   3647 }
   3648 
   3649 const VPtrInfoVector &
   3650 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
   3651   return computeVBTableRelatedInformation(RD)->VBPtrPaths;
   3652 }
   3653 
   3654 const VPtrInfoVector &
   3655 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
   3656   computeVTableRelatedInformation(RD);
   3657 
   3658   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
   3659   return *VFPtrLocations[RD];
   3660 }
   3661 
   3662 const VTableLayout &
   3663 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
   3664                                          CharUnits VFPtrOffset) {
   3665   computeVTableRelatedInformation(RD);
   3666 
   3667   VFTableIdTy id(RD, VFPtrOffset);
   3668   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
   3669   return *VFTableLayouts[id];
   3670 }
   3671 
   3672 const MicrosoftVTableContext::MethodVFTableLocation &
   3673 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
   3674   assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
   3675          "Only use this method for virtual methods or dtors");
   3676   if (isa<CXXDestructorDecl>(GD.getDecl()))
   3677     assert(GD.getDtorType() == Dtor_Deleting);
   3678 
   3679   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
   3680   if (I != MethodVFTableLocations.end())
   3681     return I->second;
   3682 
   3683   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
   3684 
   3685   computeVTableRelatedInformation(RD);
   3686 
   3687   I = MethodVFTableLocations.find(GD);
   3688   assert(I != MethodVFTableLocations.end() && "Did not find index!");
   3689   return I->second;
   3690 }
   3691