Home | History | Annotate | Download | only in Object
      1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_OBJECT_ELFTYPES_H
     11 #define LLVM_OBJECT_ELFTYPES_H
     12 
     13 #include "llvm/Support/AlignOf.h"
     14 #include "llvm/Support/DataTypes.h"
     15 #include "llvm/Support/ELF.h"
     16 #include "llvm/Support/Endian.h"
     17 
     18 namespace llvm {
     19 namespace object {
     20 
     21 using support::endianness;
     22 
     23 template <endianness target_endianness, std::size_t max_alignment,
     24           bool is64Bits>
     25 struct ELFType {
     26   static const endianness TargetEndianness = target_endianness;
     27   static const std::size_t MaxAlignment = max_alignment;
     28   static const bool Is64Bits = is64Bits;
     29 };
     30 
     31 template <typename T, int max_align> struct MaximumAlignment {
     32   enum { value = AlignOf<T>::Alignment > max_align ? max_align
     33                                                    : AlignOf<T>::Alignment
     34   };
     35 };
     36 
     37 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
     38 template <endianness target_endianness, std::size_t max_alignment>
     39 struct ELFDataTypeTypedefHelperCommon {
     40   typedef support::detail::packed_endian_specific_integral<
     41       uint16_t, target_endianness,
     42       MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
     43   typedef support::detail::packed_endian_specific_integral<
     44       uint32_t, target_endianness,
     45       MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
     46   typedef support::detail::packed_endian_specific_integral<
     47       int32_t, target_endianness,
     48       MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
     49   typedef support::detail::packed_endian_specific_integral<
     50       uint64_t, target_endianness,
     51       MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
     52   typedef support::detail::packed_endian_specific_integral<
     53       int64_t, target_endianness,
     54       MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
     55 };
     56 
     57 template <class ELFT> struct ELFDataTypeTypedefHelper;
     58 
     59 /// ELF 32bit types.
     60 template <endianness TargetEndianness, std::size_t MaxAlign>
     61 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, false> >
     62     : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
     63   typedef uint32_t value_type;
     64   typedef support::detail::packed_endian_specific_integral<
     65       value_type, TargetEndianness,
     66       MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
     67   typedef support::detail::packed_endian_specific_integral<
     68       value_type, TargetEndianness,
     69       MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
     70 };
     71 
     72 /// ELF 64bit types.
     73 template <endianness TargetEndianness, std::size_t MaxAlign>
     74 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, true> >
     75     : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
     76   typedef uint64_t value_type;
     77   typedef support::detail::packed_endian_specific_integral<
     78       value_type, TargetEndianness,
     79       MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
     80   typedef support::detail::packed_endian_specific_integral<
     81       value_type, TargetEndianness,
     82       MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
     83 };
     84 
     85 // I really don't like doing this, but the alternative is copypasta.
     86 #define LLVM_ELF_IMPORT_TYPES(E, M, W)                                         \
     87 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Addr         \
     88     Elf_Addr;                                                                  \
     89 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Off          \
     90     Elf_Off;                                                                   \
     91 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Half         \
     92     Elf_Half;                                                                  \
     93 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Word         \
     94     Elf_Word;                                                                  \
     95 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Sword        \
     96     Elf_Sword;                                                                 \
     97 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Xword        \
     98     Elf_Xword;                                                                 \
     99 typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Sxword       \
    100     Elf_Sxword;
    101 
    102 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
    103   LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::MaxAlignment,            \
    104                         ELFT::Is64Bits)
    105 
    106 // Section header.
    107 template <class ELFT> struct Elf_Shdr_Base;
    108 
    109 template <endianness TargetEndianness, std::size_t MaxAlign>
    110 struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, false> > {
    111   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    112   Elf_Word sh_name;      // Section name (index into string table)
    113   Elf_Word sh_type;      // Section type (SHT_*)
    114   Elf_Word sh_flags;     // Section flags (SHF_*)
    115   Elf_Addr sh_addr;      // Address where section is to be loaded
    116   Elf_Off sh_offset;     // File offset of section data, in bytes
    117   Elf_Word sh_size;      // Size of section, in bytes
    118   Elf_Word sh_link;      // Section type-specific header table index link
    119   Elf_Word sh_info;      // Section type-specific extra information
    120   Elf_Word sh_addralign; // Section address alignment
    121   Elf_Word sh_entsize;   // Size of records contained within the section
    122 };
    123 
    124 template <endianness TargetEndianness, std::size_t MaxAlign>
    125 struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, true> > {
    126   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    127   Elf_Word sh_name;       // Section name (index into string table)
    128   Elf_Word sh_type;       // Section type (SHT_*)
    129   Elf_Xword sh_flags;     // Section flags (SHF_*)
    130   Elf_Addr sh_addr;       // Address where section is to be loaded
    131   Elf_Off sh_offset;      // File offset of section data, in bytes
    132   Elf_Xword sh_size;      // Size of section, in bytes
    133   Elf_Word sh_link;       // Section type-specific header table index link
    134   Elf_Word sh_info;       // Section type-specific extra information
    135   Elf_Xword sh_addralign; // Section address alignment
    136   Elf_Xword sh_entsize;   // Size of records contained within the section
    137 };
    138 
    139 template <class ELFT>
    140 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
    141   using Elf_Shdr_Base<ELFT>::sh_entsize;
    142   using Elf_Shdr_Base<ELFT>::sh_size;
    143 
    144   /// @brief Get the number of entities this section contains if it has any.
    145   unsigned getEntityCount() const {
    146     if (sh_entsize == 0)
    147       return 0;
    148     return sh_size / sh_entsize;
    149   }
    150 };
    151 
    152 template <class ELFT> struct Elf_Sym_Base;
    153 
    154 template <endianness TargetEndianness, std::size_t MaxAlign>
    155 struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, false> > {
    156   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    157   Elf_Word st_name;       // Symbol name (index into string table)
    158   Elf_Addr st_value;      // Value or address associated with the symbol
    159   Elf_Word st_size;       // Size of the symbol
    160   unsigned char st_info;  // Symbol's type and binding attributes
    161   unsigned char st_other; // Must be zero; reserved
    162   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    163 };
    164 
    165 template <endianness TargetEndianness, std::size_t MaxAlign>
    166 struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, true> > {
    167   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    168   Elf_Word st_name;       // Symbol name (index into string table)
    169   unsigned char st_info;  // Symbol's type and binding attributes
    170   unsigned char st_other; // Must be zero; reserved
    171   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    172   Elf_Addr st_value;      // Value or address associated with the symbol
    173   Elf_Xword st_size;      // Size of the symbol
    174 };
    175 
    176 template <class ELFT>
    177 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
    178   using Elf_Sym_Base<ELFT>::st_info;
    179   using Elf_Sym_Base<ELFT>::st_other;
    180 
    181   // These accessors and mutators correspond to the ELF32_ST_BIND,
    182   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    183   unsigned char getBinding() const { return st_info >> 4; }
    184   unsigned char getType() const { return st_info & 0x0f; }
    185   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    186   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    187   void setBindingAndType(unsigned char b, unsigned char t) {
    188     st_info = (b << 4) + (t & 0x0f);
    189   }
    190 
    191   /// Access to the STV_xxx flag stored in the first two bits of st_other.
    192   /// STV_DEFAULT: 0
    193   /// STV_INTERNAL: 1
    194   /// STV_HIDDEN: 2
    195   /// STV_PROTECTED: 3
    196   unsigned char getVisibility() const { return st_other & 0x3; }
    197   void setVisibility(unsigned char v) {
    198     assert(v < 4 && "Invalid value for visibility");
    199     st_other = (st_other & ~0x3) | v;
    200   }
    201 };
    202 
    203 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
    204 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
    205 template <class ELFT>
    206 struct Elf_Versym_Impl {
    207   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    208   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
    209 };
    210 
    211 template <class ELFT> struct Elf_Verdaux_Impl;
    212 
    213 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
    214 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    215 template <class ELFT>
    216 struct Elf_Verdef_Impl {
    217   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    218   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
    219   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
    220   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
    221   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
    222   Elf_Half vd_cnt;     // Number of Verdaux entries
    223   Elf_Word vd_hash;    // Hash of name
    224   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
    225   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
    226 
    227   /// Get the first Verdaux entry for this Verdef.
    228   const Elf_Verdaux *getAux() const {
    229     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
    230   }
    231 };
    232 
    233 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
    234 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    235 template <class ELFT>
    236 struct Elf_Verdaux_Impl {
    237   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    238   Elf_Word vda_name; // Version name (offset in string table)
    239   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
    240 };
    241 
    242 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
    243 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    244 template <class ELFT>
    245 struct Elf_Verneed_Impl {
    246   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    247   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
    248   Elf_Half vn_cnt;     // Number of associated Vernaux entries
    249   Elf_Word vn_file;    // Library name (string table offset)
    250   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
    251   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
    252 };
    253 
    254 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
    255 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    256 template <class ELFT>
    257 struct Elf_Vernaux_Impl {
    258   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    259   Elf_Word vna_hash;  // Hash of dependency name
    260   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
    261   Elf_Half vna_other; // Version index, used in .gnu.version entries
    262   Elf_Word vna_name;  // Dependency name
    263   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
    264 };
    265 
    266 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
    267 ///               table section (.dynamic) look like.
    268 template <class ELFT> struct Elf_Dyn_Base;
    269 
    270 template <endianness TargetEndianness, std::size_t MaxAlign>
    271 struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, false> > {
    272   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    273   Elf_Sword d_tag;
    274   union {
    275     Elf_Word d_val;
    276     Elf_Addr d_ptr;
    277   } d_un;
    278 };
    279 
    280 template <endianness TargetEndianness, std::size_t MaxAlign>
    281 struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, true> > {
    282   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    283   Elf_Sxword d_tag;
    284   union {
    285     Elf_Xword d_val;
    286     Elf_Addr d_ptr;
    287   } d_un;
    288 };
    289 
    290 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
    291 template <class ELFT>
    292 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
    293   using Elf_Dyn_Base<ELFT>::d_tag;
    294   using Elf_Dyn_Base<ELFT>::d_un;
    295   int64_t getTag() const { return d_tag; }
    296   uint64_t getVal() const { return d_un.d_val; }
    297   uint64_t getPtr() const { return d_un.ptr; }
    298 };
    299 
    300 // Elf_Rel: Elf Relocation
    301 template <class ELFT, bool isRela> struct Elf_Rel_Base;
    302 
    303 template <endianness TargetEndianness, std::size_t MaxAlign>
    304 struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, false> {
    305   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    306   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    307   Elf_Word r_info;   // Symbol table index and type of relocation to apply
    308 
    309   uint32_t getRInfo(bool isMips64EL) const {
    310     assert(!isMips64EL);
    311     return r_info;
    312   }
    313   void setRInfo(uint32_t R, bool IsMips64EL) {
    314     assert(!IsMips64EL);
    315     r_info = R;
    316   }
    317 };
    318 
    319 template <endianness TargetEndianness, std::size_t MaxAlign>
    320 struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, false> {
    321   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    322   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    323   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
    324 
    325   uint64_t getRInfo(bool isMips64EL) const {
    326     uint64_t t = r_info;
    327     if (!isMips64EL)
    328       return t;
    329     // Mips64 little endian has a "special" encoding of r_info. Instead of one
    330     // 64 bit little endian number, it is a little endian 32 bit number followed
    331     // by a 32 bit big endian number.
    332     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
    333            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
    334   }
    335   void setRInfo(uint64_t R, bool IsMips64EL) {
    336     if (IsMips64EL)
    337       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
    338                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    339     else
    340       r_info = R;
    341   }
    342 };
    343 
    344 template <endianness TargetEndianness, std::size_t MaxAlign>
    345 struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, true> {
    346   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    347   Elf_Addr r_offset;  // Location (file byte offset, or program virtual addr)
    348   Elf_Word r_info;    // Symbol table index and type of relocation to apply
    349   Elf_Sword r_addend; // Compute value for relocatable field by adding this
    350 
    351   uint32_t getRInfo(bool isMips64EL) const {
    352     assert(!isMips64EL);
    353     return r_info;
    354   }
    355   void setRInfo(uint32_t R, bool IsMips64EL) {
    356     assert(!IsMips64EL);
    357     r_info = R;
    358   }
    359 };
    360 
    361 template <endianness TargetEndianness, std::size_t MaxAlign>
    362 struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, true> {
    363   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    364   Elf_Addr r_offset;   // Location (file byte offset, or program virtual addr)
    365   Elf_Xword r_info;    // Symbol table index and type of relocation to apply
    366   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
    367 
    368   uint64_t getRInfo(bool isMips64EL) const {
    369     // Mips64 little endian has a "special" encoding of r_info. Instead of one
    370     // 64 bit little endian number, it is a little endian 32 bit number followed
    371     // by a 32 bit big endian number.
    372     uint64_t t = r_info;
    373     if (!isMips64EL)
    374       return t;
    375     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
    376            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
    377   }
    378   void setRInfo(uint64_t R, bool IsMips64EL) {
    379     if (IsMips64EL)
    380       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
    381                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    382     else
    383       r_info = R;
    384   }
    385 };
    386 
    387 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
    388 
    389 template <endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
    390 struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, true>,
    391                     isRela> : Elf_Rel_Base<
    392     ELFType<TargetEndianness, MaxAlign, true>, isRela> {
    393   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    394 
    395   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    396   // and ELF64_R_INFO macros defined in the ELF specification:
    397   uint32_t getSymbol(bool isMips64EL) const {
    398     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
    399   }
    400   uint32_t getType(bool isMips64EL) const {
    401     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
    402   }
    403   void setSymbol(uint32_t s, bool IsMips64EL) {
    404     setSymbolAndType(s, getType(), IsMips64EL);
    405   }
    406   void setType(uint32_t t, bool IsMips64EL) {
    407     setSymbolAndType(getSymbol(), t, IsMips64EL);
    408   }
    409   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
    410     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
    411   }
    412 };
    413 
    414 template <endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
    415 struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, false>,
    416                     isRela> : Elf_Rel_Base<
    417     ELFType<TargetEndianness, MaxAlign, false>, isRela> {
    418   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    419 
    420   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    421   // and ELF32_R_INFO macros defined in the ELF specification:
    422   uint32_t getSymbol(bool isMips64EL) const {
    423     return this->getRInfo(isMips64EL) >> 8;
    424   }
    425   unsigned char getType(bool isMips64EL) const {
    426     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
    427   }
    428   void setSymbol(uint32_t s, bool IsMips64EL) {
    429     setSymbolAndType(s, getType(), IsMips64EL);
    430   }
    431   void setType(unsigned char t, bool IsMips64EL) {
    432     setSymbolAndType(getSymbol(), t, IsMips64EL);
    433   }
    434   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
    435     this->setRInfo((s << 8) + t, IsMips64EL);
    436   }
    437 };
    438 
    439 template <class ELFT>
    440 struct Elf_Ehdr_Impl {
    441   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    442   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
    443   Elf_Half e_type;                       // Type of file (see ET_*)
    444   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
    445   Elf_Word e_version;   // Must be equal to 1
    446   Elf_Addr e_entry;     // Address to jump to in order to start program
    447   Elf_Off e_phoff;      // Program header table's file offset, in bytes
    448   Elf_Off e_shoff;      // Section header table's file offset, in bytes
    449   Elf_Word e_flags;     // Processor-specific flags
    450   Elf_Half e_ehsize;    // Size of ELF header, in bytes
    451   Elf_Half e_phentsize; // Size of an entry in the program header table
    452   Elf_Half e_phnum;     // Number of entries in the program header table
    453   Elf_Half e_shentsize; // Size of an entry in the section header table
    454   Elf_Half e_shnum;     // Number of entries in the section header table
    455   Elf_Half e_shstrndx;  // Section header table index of section name
    456                         // string table
    457   bool checkMagic() const {
    458     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
    459   }
    460   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
    461   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
    462 };
    463 
    464 template <class ELFT> struct Elf_Phdr_Impl;
    465 
    466 template <endianness TargetEndianness, std::size_t MaxAlign>
    467 struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, false> > {
    468   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
    469   Elf_Word p_type;   // Type of segment
    470   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
    471   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    472   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    473   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    474   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    475   Elf_Word p_flags;  // Segment flags
    476   Elf_Word p_align;  // Segment alignment constraint
    477 };
    478 
    479 template <endianness TargetEndianness, std::size_t MaxAlign>
    480 struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, true> > {
    481   LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
    482   Elf_Word p_type;    // Type of segment
    483   Elf_Word p_flags;   // Segment flags
    484   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
    485   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
    486   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
    487   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
    488   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    489   Elf_Xword p_align;  // Segment alignment constraint
    490 };
    491 
    492 } // end namespace object.
    493 } // end namespace llvm.
    494 
    495 #endif
    496