1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "base/arena_containers.h" 18 #include "bounds_check_elimination.h" 19 #include "nodes.h" 20 21 namespace art { 22 23 class MonotonicValueRange; 24 25 /** 26 * A value bound is represented as a pair of value and constant, 27 * e.g. array.length - 1. 28 */ 29 class ValueBound : public ValueObject { 30 public: 31 ValueBound(HInstruction* instruction, int32_t constant) { 32 if (instruction != nullptr && instruction->IsIntConstant()) { 33 // Normalize ValueBound with constant instruction. 34 int32_t instr_const = instruction->AsIntConstant()->GetValue(); 35 if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { 36 instruction_ = nullptr; 37 constant_ = instr_const + constant; 38 return; 39 } 40 } 41 instruction_ = instruction; 42 constant_ = constant; 43 } 44 45 // Return whether (left + right) overflows or underflows. 46 static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { 47 if (right == 0) { 48 return false; 49 } 50 if ((right > 0) && (left <= INT_MAX - right)) { 51 // No overflow. 52 return false; 53 } 54 if ((right < 0) && (left >= INT_MIN - right)) { 55 // No underflow. 56 return false; 57 } 58 return true; 59 } 60 61 static bool IsAddOrSubAConstant(HInstruction* instruction, 62 HInstruction** left_instruction, 63 int* right_constant) { 64 if (instruction->IsAdd() || instruction->IsSub()) { 65 HBinaryOperation* bin_op = instruction->AsBinaryOperation(); 66 HInstruction* left = bin_op->GetLeft(); 67 HInstruction* right = bin_op->GetRight(); 68 if (right->IsIntConstant()) { 69 *left_instruction = left; 70 int32_t c = right->AsIntConstant()->GetValue(); 71 *right_constant = instruction->IsAdd() ? c : -c; 72 return true; 73 } 74 } 75 *left_instruction = nullptr; 76 *right_constant = 0; 77 return false; 78 } 79 80 // Try to detect useful value bound format from an instruction, e.g. 81 // a constant or array length related value. 82 static ValueBound DetectValueBoundFromValue(HInstruction* instruction, bool* found) { 83 DCHECK(instruction != nullptr); 84 if (instruction->IsIntConstant()) { 85 *found = true; 86 return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); 87 } 88 89 if (instruction->IsArrayLength()) { 90 *found = true; 91 return ValueBound(instruction, 0); 92 } 93 // Try to detect (array.length + c) format. 94 HInstruction *left; 95 int32_t right; 96 if (IsAddOrSubAConstant(instruction, &left, &right)) { 97 if (left->IsArrayLength()) { 98 *found = true; 99 return ValueBound(left, right); 100 } 101 } 102 103 // No useful bound detected. 104 *found = false; 105 return ValueBound::Max(); 106 } 107 108 HInstruction* GetInstruction() const { return instruction_; } 109 int32_t GetConstant() const { return constant_; } 110 111 bool IsRelatedToArrayLength() const { 112 // Some bounds are created with HNewArray* as the instruction instead 113 // of HArrayLength*. They are treated the same. 114 return (instruction_ != nullptr) && 115 (instruction_->IsArrayLength() || instruction_->IsNewArray()); 116 } 117 118 bool IsConstant() const { 119 return instruction_ == nullptr; 120 } 121 122 static ValueBound Min() { return ValueBound(nullptr, INT_MIN); } 123 static ValueBound Max() { return ValueBound(nullptr, INT_MAX); } 124 125 bool Equals(ValueBound bound) const { 126 return instruction_ == bound.instruction_ && constant_ == bound.constant_; 127 } 128 129 static HInstruction* FromArrayLengthToArray(HInstruction* instruction) { 130 DCHECK(instruction->IsArrayLength() || instruction->IsNewArray()); 131 if (instruction->IsArrayLength()) { 132 HInstruction* input = instruction->InputAt(0); 133 if (input->IsNullCheck()) { 134 input = input->AsNullCheck()->InputAt(0); 135 } 136 return input; 137 } 138 return instruction; 139 } 140 141 static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { 142 if (instruction1 == instruction2) { 143 return true; 144 } 145 146 if (instruction1 == nullptr || instruction2 == nullptr) { 147 return false; 148 } 149 150 // Some bounds are created with HNewArray* as the instruction instead 151 // of HArrayLength*. They are treated the same. 152 // HArrayLength with the same array input are considered equal also. 153 instruction1 = FromArrayLengthToArray(instruction1); 154 instruction2 = FromArrayLengthToArray(instruction2); 155 return instruction1 == instruction2; 156 } 157 158 // Returns if it's certain this->bound >= `bound`. 159 bool GreaterThanOrEqualTo(ValueBound bound) const { 160 if (Equal(instruction_, bound.instruction_)) { 161 return constant_ >= bound.constant_; 162 } 163 // Not comparable. Just return false. 164 return false; 165 } 166 167 // Returns if it's certain this->bound <= `bound`. 168 bool LessThanOrEqualTo(ValueBound bound) const { 169 if (Equal(instruction_, bound.instruction_)) { 170 return constant_ <= bound.constant_; 171 } 172 // Not comparable. Just return false. 173 return false; 174 } 175 176 // Try to narrow lower bound. Returns the greatest of the two if possible. 177 // Pick one if they are not comparable. 178 static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { 179 if (bound1.GreaterThanOrEqualTo(bound2)) { 180 return bound1; 181 } 182 if (bound2.GreaterThanOrEqualTo(bound1)) { 183 return bound2; 184 } 185 186 // Not comparable. Just pick one. We may lose some info, but that's ok. 187 // Favor constant as lower bound. 188 return bound1.IsConstant() ? bound1 : bound2; 189 } 190 191 // Try to narrow upper bound. Returns the lowest of the two if possible. 192 // Pick one if they are not comparable. 193 static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { 194 if (bound1.LessThanOrEqualTo(bound2)) { 195 return bound1; 196 } 197 if (bound2.LessThanOrEqualTo(bound1)) { 198 return bound2; 199 } 200 201 // Not comparable. Just pick one. We may lose some info, but that's ok. 202 // Favor array length as upper bound. 203 return bound1.IsRelatedToArrayLength() ? bound1 : bound2; 204 } 205 206 // Add a constant to a ValueBound. 207 // `overflow` or `underflow` will return whether the resulting bound may 208 // overflow or underflow an int. 209 ValueBound Add(int32_t c, bool* overflow, bool* underflow) const { 210 *overflow = *underflow = false; 211 if (c == 0) { 212 return *this; 213 } 214 215 int32_t new_constant; 216 if (c > 0) { 217 if (constant_ > INT_MAX - c) { 218 *overflow = true; 219 return Max(); 220 } 221 222 new_constant = constant_ + c; 223 // (array.length + non-positive-constant) won't overflow an int. 224 if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { 225 return ValueBound(instruction_, new_constant); 226 } 227 // Be conservative. 228 *overflow = true; 229 return Max(); 230 } else { 231 if (constant_ < INT_MIN - c) { 232 *underflow = true; 233 return Min(); 234 } 235 236 new_constant = constant_ + c; 237 // Regardless of the value new_constant, (array.length+new_constant) will 238 // never underflow since array.length is no less than 0. 239 if (IsConstant() || IsRelatedToArrayLength()) { 240 return ValueBound(instruction_, new_constant); 241 } 242 // Be conservative. 243 *underflow = true; 244 return Min(); 245 } 246 } 247 248 private: 249 HInstruction* instruction_; 250 int32_t constant_; 251 }; 252 253 // Collect array access data for a loop. 254 // TODO: make it work for multiple arrays inside the loop. 255 class ArrayAccessInsideLoopFinder : public ValueObject { 256 public: 257 explicit ArrayAccessInsideLoopFinder(HInstruction* induction_variable) 258 : induction_variable_(induction_variable), 259 found_array_length_(nullptr), 260 offset_low_(INT_MAX), 261 offset_high_(INT_MIN) { 262 Run(); 263 } 264 265 HArrayLength* GetFoundArrayLength() const { return found_array_length_; } 266 bool HasFoundArrayLength() const { return found_array_length_ != nullptr; } 267 int32_t GetOffsetLow() const { return offset_low_; } 268 int32_t GetOffsetHigh() const { return offset_high_; } 269 270 // Returns if `block` that is in loop_info may exit the loop, unless it's 271 // the loop header for loop_info. 272 static bool EarlyExit(HBasicBlock* block, HLoopInformation* loop_info) { 273 DCHECK(loop_info->Contains(*block)); 274 if (block == loop_info->GetHeader()) { 275 // Loop header of loop_info. Exiting loop is normal. 276 return false; 277 } 278 const GrowableArray<HBasicBlock*>& successors = block->GetSuccessors(); 279 for (size_t i = 0; i < successors.Size(); i++) { 280 if (!loop_info->Contains(*successors.Get(i))) { 281 // One of the successors exits the loop. 282 return true; 283 } 284 } 285 return false; 286 } 287 288 static bool DominatesAllBackEdges(HBasicBlock* block, HLoopInformation* loop_info) { 289 for (size_t i = 0, e = loop_info->GetBackEdges().Size(); i < e; ++i) { 290 HBasicBlock* back_edge = loop_info->GetBackEdges().Get(i); 291 if (!block->Dominates(back_edge)) { 292 return false; 293 } 294 } 295 return true; 296 } 297 298 void Run() { 299 HLoopInformation* loop_info = induction_variable_->GetBlock()->GetLoopInformation(); 300 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info); 301 HBasicBlock* block = it_loop.Current(); 302 DCHECK(block == induction_variable_->GetBlock()); 303 // Skip loop header. Since narrowed value range of a MonotonicValueRange only 304 // applies to the loop body (after the test at the end of the loop header). 305 it_loop.Advance(); 306 for (; !it_loop.Done(); it_loop.Advance()) { 307 block = it_loop.Current(); 308 DCHECK(block->IsInLoop()); 309 if (!DominatesAllBackEdges(block, loop_info)) { 310 // In order not to trigger deoptimization unnecessarily, make sure 311 // that all array accesses collected are really executed in the loop. 312 // For array accesses in a branch inside the loop, don't collect the 313 // access. The bounds check in that branch might not be eliminated. 314 continue; 315 } 316 if (EarlyExit(block, loop_info)) { 317 // If the loop body can exit loop (like break, return, etc.), it's not guaranteed 318 // that the loop will loop through the full monotonic value range from 319 // initial_ to end_. So adding deoptimization might be too aggressive and can 320 // trigger deoptimization unnecessarily even if the loop won't actually throw 321 // AIOOBE. 322 found_array_length_ = nullptr; 323 return; 324 } 325 for (HInstruction* instruction = block->GetFirstInstruction(); 326 instruction != nullptr; 327 instruction = instruction->GetNext()) { 328 if (!instruction->IsBoundsCheck()) { 329 continue; 330 } 331 332 HInstruction* length_value = instruction->InputAt(1); 333 if (length_value->IsIntConstant()) { 334 // TODO: may optimize for constant case. 335 continue; 336 } 337 338 if (length_value->IsPhi()) { 339 // When adding deoptimizations in outer loops, we might create 340 // a phi for the array length, and update all uses of the 341 // length in the loop to that phi. Therefore, inner loops having 342 // bounds checks on the same array will use that phi. 343 // TODO: handle these cases. 344 continue; 345 } 346 347 DCHECK(length_value->IsArrayLength()); 348 HArrayLength* array_length = length_value->AsArrayLength(); 349 350 HInstruction* array = array_length->InputAt(0); 351 if (array->IsNullCheck()) { 352 array = array->AsNullCheck()->InputAt(0); 353 } 354 if (loop_info->Contains(*array->GetBlock())) { 355 // Array is defined inside the loop. Skip. 356 continue; 357 } 358 359 if (found_array_length_ != nullptr && found_array_length_ != array_length) { 360 // There is already access for another array recorded for the loop. 361 // TODO: handle multiple arrays. 362 continue; 363 } 364 365 HInstruction* index = instruction->AsBoundsCheck()->InputAt(0); 366 HInstruction* left = index; 367 int32_t right = 0; 368 if (left == induction_variable_ || 369 (ValueBound::IsAddOrSubAConstant(index, &left, &right) && 370 left == induction_variable_)) { 371 // For patterns like array[i] or array[i + 2]. 372 if (right < offset_low_) { 373 offset_low_ = right; 374 } 375 if (right > offset_high_) { 376 offset_high_ = right; 377 } 378 } else { 379 // Access not in induction_variable/(induction_variable_ + constant) 380 // format. Skip. 381 continue; 382 } 383 // Record this array. 384 found_array_length_ = array_length; 385 } 386 } 387 } 388 389 private: 390 // The instruction that corresponds to a MonotonicValueRange. 391 HInstruction* induction_variable_; 392 393 // The array length of the array that's accessed inside the loop body. 394 HArrayLength* found_array_length_; 395 396 // The lowest and highest constant offsets relative to induction variable 397 // instruction_ in all array accesses. 398 // If array access are: array[i-1], array[i], array[i+1], 399 // offset_low_ is -1 and offset_high is 1. 400 int32_t offset_low_; 401 int32_t offset_high_; 402 403 DISALLOW_COPY_AND_ASSIGN(ArrayAccessInsideLoopFinder); 404 }; 405 406 /** 407 * Represent a range of lower bound and upper bound, both being inclusive. 408 * Currently a ValueRange may be generated as a result of the following: 409 * comparisons related to array bounds, array bounds check, add/sub on top 410 * of an existing value range, NewArray or a loop phi corresponding to an 411 * incrementing/decrementing array index (MonotonicValueRange). 412 */ 413 class ValueRange : public ArenaObject<kArenaAllocMisc> { 414 public: 415 ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper) 416 : allocator_(allocator), lower_(lower), upper_(upper) {} 417 418 virtual ~ValueRange() {} 419 420 virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } 421 bool IsMonotonicValueRange() { 422 return AsMonotonicValueRange() != nullptr; 423 } 424 425 ArenaAllocator* GetAllocator() const { return allocator_; } 426 ValueBound GetLower() const { return lower_; } 427 ValueBound GetUpper() const { return upper_; } 428 429 bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); } 430 431 // If it's certain that this value range fits in other_range. 432 virtual bool FitsIn(ValueRange* other_range) const { 433 if (other_range == nullptr) { 434 return true; 435 } 436 DCHECK(!other_range->IsMonotonicValueRange()); 437 return lower_.GreaterThanOrEqualTo(other_range->lower_) && 438 upper_.LessThanOrEqualTo(other_range->upper_); 439 } 440 441 // Returns the intersection of this and range. 442 // If it's not possible to do intersection because some 443 // bounds are not comparable, it's ok to pick either bound. 444 virtual ValueRange* Narrow(ValueRange* range) { 445 if (range == nullptr) { 446 return this; 447 } 448 449 if (range->IsMonotonicValueRange()) { 450 return this; 451 } 452 453 return new (allocator_) ValueRange( 454 allocator_, 455 ValueBound::NarrowLowerBound(lower_, range->lower_), 456 ValueBound::NarrowUpperBound(upper_, range->upper_)); 457 } 458 459 // Shift a range by a constant. 460 ValueRange* Add(int32_t constant) const { 461 bool overflow, underflow; 462 ValueBound lower = lower_.Add(constant, &overflow, &underflow); 463 if (underflow) { 464 // Lower bound underflow will wrap around to positive values 465 // and invalidate the upper bound. 466 return nullptr; 467 } 468 ValueBound upper = upper_.Add(constant, &overflow, &underflow); 469 if (overflow) { 470 // Upper bound overflow will wrap around to negative values 471 // and invalidate the lower bound. 472 return nullptr; 473 } 474 return new (allocator_) ValueRange(allocator_, lower, upper); 475 } 476 477 private: 478 ArenaAllocator* const allocator_; 479 const ValueBound lower_; // inclusive 480 const ValueBound upper_; // inclusive 481 482 DISALLOW_COPY_AND_ASSIGN(ValueRange); 483 }; 484 485 /** 486 * A monotonically incrementing/decrementing value range, e.g. 487 * the variable i in "for (int i=0; i<array.length; i++)". 488 * Special care needs to be taken to account for overflow/underflow 489 * of such value ranges. 490 */ 491 class MonotonicValueRange : public ValueRange { 492 public: 493 MonotonicValueRange(ArenaAllocator* allocator, 494 HPhi* induction_variable, 495 HInstruction* initial, 496 int32_t increment, 497 ValueBound bound) 498 // To be conservative, give it full range [INT_MIN, INT_MAX] in case it's 499 // used as a regular value range, due to possible overflow/underflow. 500 : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()), 501 induction_variable_(induction_variable), 502 initial_(initial), 503 end_(nullptr), 504 inclusive_(false), 505 increment_(increment), 506 bound_(bound) {} 507 508 virtual ~MonotonicValueRange() {} 509 510 HInstruction* GetInductionVariable() const { return induction_variable_; } 511 int32_t GetIncrement() const { return increment_; } 512 ValueBound GetBound() const { return bound_; } 513 void SetEnd(HInstruction* end) { end_ = end; } 514 void SetInclusive(bool inclusive) { inclusive_ = inclusive; } 515 HBasicBlock* GetLoopHeader() const { 516 DCHECK(induction_variable_->GetBlock()->IsLoopHeader()); 517 return induction_variable_->GetBlock(); 518 } 519 520 MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; } 521 522 HBasicBlock* GetLoopHeaderSuccesorInLoop() { 523 HBasicBlock* header = GetLoopHeader(); 524 HInstruction* instruction = header->GetLastInstruction(); 525 DCHECK(instruction->IsIf()); 526 HIf* h_if = instruction->AsIf(); 527 HLoopInformation* loop_info = header->GetLoopInformation(); 528 bool true_successor_in_loop = loop_info->Contains(*h_if->IfTrueSuccessor()); 529 bool false_successor_in_loop = loop_info->Contains(*h_if->IfFalseSuccessor()); 530 531 // Just in case it's some strange loop structure. 532 if (true_successor_in_loop && false_successor_in_loop) { 533 return nullptr; 534 } 535 DCHECK(true_successor_in_loop || false_successor_in_loop); 536 return false_successor_in_loop ? h_if->IfFalseSuccessor() : h_if->IfTrueSuccessor(); 537 } 538 539 // If it's certain that this value range fits in other_range. 540 bool FitsIn(ValueRange* other_range) const OVERRIDE { 541 if (other_range == nullptr) { 542 return true; 543 } 544 DCHECK(!other_range->IsMonotonicValueRange()); 545 return false; 546 } 547 548 // Try to narrow this MonotonicValueRange given another range. 549 // Ideally it will return a normal ValueRange. But due to 550 // possible overflow/underflow, that may not be possible. 551 ValueRange* Narrow(ValueRange* range) OVERRIDE { 552 if (range == nullptr) { 553 return this; 554 } 555 DCHECK(!range->IsMonotonicValueRange()); 556 557 if (increment_ > 0) { 558 // Monotonically increasing. 559 ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); 560 if (!lower.IsConstant() || lower.GetConstant() == INT_MIN) { 561 // Lower bound isn't useful. Leave it to deoptimization. 562 return this; 563 } 564 565 // We currently conservatively assume max array length is INT_MAX. If we can 566 // make assumptions about the max array length, e.g. due to the max heap size, 567 // divided by the element size (such as 4 bytes for each integer array), we can 568 // lower this number and rule out some possible overflows. 569 int32_t max_array_len = INT_MAX; 570 571 // max possible integer value of range's upper value. 572 int32_t upper = INT_MAX; 573 // Try to lower upper. 574 ValueBound upper_bound = range->GetUpper(); 575 if (upper_bound.IsConstant()) { 576 upper = upper_bound.GetConstant(); 577 } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { 578 // Normal case. e.g. <= array.length - 1. 579 upper = max_array_len + upper_bound.GetConstant(); 580 } 581 582 // If we can prove for the last number in sequence of initial_, 583 // initial_ + increment_, initial_ + 2 x increment_, ... 584 // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, 585 // then this MonoticValueRange is narrowed to a normal value range. 586 587 // Be conservative first, assume last number in the sequence hits upper. 588 int32_t last_num_in_sequence = upper; 589 if (initial_->IsIntConstant()) { 590 int32_t initial_constant = initial_->AsIntConstant()->GetValue(); 591 if (upper <= initial_constant) { 592 last_num_in_sequence = upper; 593 } else { 594 // Cast to int64_t for the substraction part to avoid int32_t overflow. 595 last_num_in_sequence = initial_constant + 596 ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; 597 } 598 } 599 if (last_num_in_sequence <= INT_MAX - increment_) { 600 // No overflow. The sequence will be stopped by the upper bound test as expected. 601 return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); 602 } 603 604 // There might be overflow. Give up narrowing. 605 return this; 606 } else { 607 DCHECK_NE(increment_, 0); 608 // Monotonically decreasing. 609 ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); 610 if ((!upper.IsConstant() || upper.GetConstant() == INT_MAX) && 611 !upper.IsRelatedToArrayLength()) { 612 // Upper bound isn't useful. Leave it to deoptimization. 613 return this; 614 } 615 616 // Need to take care of underflow. Try to prove underflow won't happen 617 // for common cases. 618 if (range->GetLower().IsConstant()) { 619 int32_t constant = range->GetLower().GetConstant(); 620 if (constant >= INT_MIN - increment_) { 621 return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); 622 } 623 } 624 625 // For non-constant lower bound, just assume might be underflow. Give up narrowing. 626 return this; 627 } 628 } 629 630 // Try to add HDeoptimize's in the loop pre-header first to narrow this range. 631 // For example, this loop: 632 // 633 // for (int i = start; i < end; i++) { 634 // array[i - 1] = array[i] + array[i + 1]; 635 // } 636 // 637 // will be transformed to: 638 // 639 // int array_length_in_loop_body_if_needed; 640 // if (start >= end) { 641 // array_length_in_loop_body_if_needed = 0; 642 // } else { 643 // if (start < 1) deoptimize(); 644 // if (array == null) deoptimize(); 645 // array_length = array.length; 646 // if (end > array_length - 1) deoptimize; 647 // array_length_in_loop_body_if_needed = array_length; 648 // } 649 // for (int i = start; i < end; i++) { 650 // // No more null check and bounds check. 651 // // array.length value is replaced with array_length_in_loop_body_if_needed 652 // // in the loop body. 653 // array[i - 1] = array[i] + array[i + 1]; 654 // } 655 // 656 // We basically first go through the loop body and find those array accesses whose 657 // index is at a constant offset from the induction variable ('i' in the above example), 658 // and update offset_low and offset_high along the way. We then add the following 659 // deoptimizations in the loop pre-header (suppose end is not inclusive). 660 // if (start < -offset_low) deoptimize(); 661 // if (end >= array.length - offset_high) deoptimize(); 662 // It might be necessary to first hoist array.length (and the null check on it) out of 663 // the loop with another deoptimization. 664 // 665 // In order not to trigger deoptimization unnecessarily, we want to make a strong 666 // guarantee that no deoptimization is triggered if the loop body itself doesn't 667 // throw AIOOBE. (It's the same as saying if deoptimization is triggered, the loop 668 // body must throw AIOOBE). 669 // This is achieved by the following: 670 // 1) We only process loops that iterate through the full monotonic range from 671 // initial_ to end_. We do the following checks to make sure that's the case: 672 // a) The loop doesn't have early exit (via break, return, etc.) 673 // b) The increment_ is 1/-1. An increment of 2, for example, may skip end_. 674 // 2) We only collect array accesses of blocks in the loop body that dominate 675 // all loop back edges, these array accesses are guaranteed to happen 676 // at each loop iteration. 677 // With 1) and 2), if the loop body doesn't throw AIOOBE, collected array accesses 678 // when the induction variable is at initial_ and end_ must be in a legal range. 679 // Since the added deoptimizations are basically checking the induction variable 680 // at initial_ and end_ values, no deoptimization will be triggered either. 681 // 682 // A special case is the loop body isn't entered at all. In that case, we may still 683 // add deoptimization due to the analysis described above. In order not to trigger 684 // deoptimization, we do a test between initial_ and end_ first and skip over 685 // the added deoptimization. 686 ValueRange* NarrowWithDeoptimization() { 687 if (increment_ != 1 && increment_ != -1) { 688 // In order not to trigger deoptimization unnecessarily, we want to 689 // make sure the loop iterates through the full range from initial_ to 690 // end_ so that boundaries are covered by the loop. An increment of 2, 691 // for example, may skip end_. 692 return this; 693 } 694 695 if (end_ == nullptr) { 696 // No full info to add deoptimization. 697 return this; 698 } 699 700 HBasicBlock* header = induction_variable_->GetBlock(); 701 DCHECK(header->IsLoopHeader()); 702 HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); 703 if (!initial_->GetBlock()->Dominates(pre_header) || 704 !end_->GetBlock()->Dominates(pre_header)) { 705 // Can't add a check in loop pre-header if the value isn't available there. 706 return this; 707 } 708 709 ArrayAccessInsideLoopFinder finder(induction_variable_); 710 711 if (!finder.HasFoundArrayLength()) { 712 // No array access was found inside the loop that can benefit 713 // from deoptimization. 714 return this; 715 } 716 717 if (!AddDeoptimization(finder)) { 718 return this; 719 } 720 721 // After added deoptimizations, induction variable fits in 722 // [-offset_low, array.length-1-offset_high], adjusted with collected offsets. 723 ValueBound lower = ValueBound(0, -finder.GetOffsetLow()); 724 ValueBound upper = ValueBound(finder.GetFoundArrayLength(), -1 - finder.GetOffsetHigh()); 725 // We've narrowed the range after added deoptimizations. 726 return new (GetAllocator()) ValueRange(GetAllocator(), lower, upper); 727 } 728 729 // Returns true if adding a (constant >= value) check for deoptimization 730 // is allowed and will benefit compiled code. 731 bool CanAddDeoptimizationConstant(HInstruction* value, int32_t constant, bool* is_proven) { 732 *is_proven = false; 733 HBasicBlock* header = induction_variable_->GetBlock(); 734 DCHECK(header->IsLoopHeader()); 735 HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); 736 DCHECK(value->GetBlock()->Dominates(pre_header)); 737 738 // See if we can prove the relationship first. 739 if (value->IsIntConstant()) { 740 if (value->AsIntConstant()->GetValue() >= constant) { 741 // Already true. 742 *is_proven = true; 743 return true; 744 } else { 745 // May throw exception. Don't add deoptimization. 746 // Keep bounds checks in the loops. 747 return false; 748 } 749 } 750 // Can benefit from deoptimization. 751 return true; 752 } 753 754 // Try to filter out cases that the loop entry test will never be true. 755 bool LoopEntryTestUseful() { 756 if (initial_->IsIntConstant() && end_->IsIntConstant()) { 757 int32_t initial_val = initial_->AsIntConstant()->GetValue(); 758 int32_t end_val = end_->AsIntConstant()->GetValue(); 759 if (increment_ == 1) { 760 if (inclusive_) { 761 return initial_val > end_val; 762 } else { 763 return initial_val >= end_val; 764 } 765 } else { 766 DCHECK_EQ(increment_, -1); 767 if (inclusive_) { 768 return initial_val < end_val; 769 } else { 770 return initial_val <= end_val; 771 } 772 } 773 } 774 return true; 775 } 776 777 // Returns the block for adding deoptimization. 778 HBasicBlock* TransformLoopForDeoptimizationIfNeeded() { 779 HBasicBlock* header = induction_variable_->GetBlock(); 780 DCHECK(header->IsLoopHeader()); 781 HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); 782 // Deoptimization is only added when both initial_ and end_ are defined 783 // before the loop. 784 DCHECK(initial_->GetBlock()->Dominates(pre_header)); 785 DCHECK(end_->GetBlock()->Dominates(pre_header)); 786 787 // If it can be proven the loop body is definitely entered (unless exception 788 // is thrown in the loop header for which triggering deoptimization is fine), 789 // there is no need for tranforming the loop. In that case, deoptimization 790 // will just be added in the loop pre-header. 791 if (!LoopEntryTestUseful()) { 792 return pre_header; 793 } 794 795 HGraph* graph = header->GetGraph(); 796 graph->TransformLoopHeaderForBCE(header); 797 HBasicBlock* new_pre_header = header->GetDominator(); 798 DCHECK(new_pre_header == header->GetLoopInformation()->GetPreHeader()); 799 HBasicBlock* if_block = new_pre_header->GetDominator(); 800 HBasicBlock* dummy_block = if_block->GetSuccessors().Get(0); // True successor. 801 HBasicBlock* deopt_block = if_block->GetSuccessors().Get(1); // False successor. 802 803 dummy_block->AddInstruction(new (graph->GetArena()) HGoto()); 804 deopt_block->AddInstruction(new (graph->GetArena()) HGoto()); 805 new_pre_header->AddInstruction(new (graph->GetArena()) HGoto()); 806 return deopt_block; 807 } 808 809 // Adds a test between initial_ and end_ to see if the loop body is entered. 810 // If the loop body isn't entered at all, it jumps to the loop pre-header (after 811 // transformation) to avoid any deoptimization. 812 void AddLoopBodyEntryTest() { 813 HBasicBlock* header = induction_variable_->GetBlock(); 814 DCHECK(header->IsLoopHeader()); 815 HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); 816 HBasicBlock* if_block = pre_header->GetDominator(); 817 HGraph* graph = header->GetGraph(); 818 819 HCondition* cond; 820 if (increment_ == 1) { 821 if (inclusive_) { 822 cond = new (graph->GetArena()) HGreaterThan(initial_, end_); 823 } else { 824 cond = new (graph->GetArena()) HGreaterThanOrEqual(initial_, end_); 825 } 826 } else { 827 DCHECK_EQ(increment_, -1); 828 if (inclusive_) { 829 cond = new (graph->GetArena()) HLessThan(initial_, end_); 830 } else { 831 cond = new (graph->GetArena()) HLessThanOrEqual(initial_, end_); 832 } 833 } 834 HIf* h_if = new (graph->GetArena()) HIf(cond); 835 if_block->AddInstruction(cond); 836 if_block->AddInstruction(h_if); 837 } 838 839 // Adds a check that (value >= constant), and HDeoptimize otherwise. 840 void AddDeoptimizationConstant(HInstruction* value, 841 int32_t constant, 842 HBasicBlock* deopt_block, 843 bool loop_entry_test_block_added) { 844 HBasicBlock* header = induction_variable_->GetBlock(); 845 DCHECK(header->IsLoopHeader()); 846 HBasicBlock* pre_header = header->GetDominator(); 847 if (loop_entry_test_block_added) { 848 DCHECK(deopt_block->GetSuccessors().Get(0) == pre_header); 849 } else { 850 DCHECK(deopt_block == pre_header); 851 } 852 HGraph* graph = header->GetGraph(); 853 HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck(); 854 if (loop_entry_test_block_added) { 855 DCHECK_EQ(deopt_block, header->GetDominator()->GetDominator()->GetSuccessors().Get(1)); 856 } 857 858 HIntConstant* const_instr = graph->GetIntConstant(constant); 859 HCondition* cond = new (graph->GetArena()) HLessThan(value, const_instr); 860 HDeoptimize* deoptimize = new (graph->GetArena()) 861 HDeoptimize(cond, suspend_check->GetDexPc()); 862 deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction()); 863 deopt_block->InsertInstructionBefore(deoptimize, deopt_block->GetLastInstruction()); 864 deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( 865 suspend_check->GetEnvironment(), header); 866 } 867 868 // Returns true if adding a (value <= array_length + offset) check for deoptimization 869 // is allowed and will benefit compiled code. 870 bool CanAddDeoptimizationArrayLength(HInstruction* value, 871 HArrayLength* array_length, 872 int32_t offset, 873 bool* is_proven) { 874 *is_proven = false; 875 HBasicBlock* header = induction_variable_->GetBlock(); 876 DCHECK(header->IsLoopHeader()); 877 HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); 878 DCHECK(value->GetBlock()->Dominates(pre_header)); 879 880 if (array_length->GetBlock() == header) { 881 // array_length_in_loop_body_if_needed only has correct value when the loop 882 // body is entered. We bail out in this case. Usually array_length defined 883 // in the loop header is already hoisted by licm. 884 return false; 885 } else { 886 // array_length is defined either before the loop header already, or in 887 // the loop body since it's used in the loop body. If it's defined in the loop body, 888 // a phi array_length_in_loop_body_if_needed is used to replace it. In that case, 889 // all the uses of array_length must be dominated by its definition in the loop 890 // body. array_length_in_loop_body_if_needed is guaranteed to be the same as 891 // array_length once the loop body is entered so all the uses of the phi will 892 // use the correct value. 893 } 894 895 if (offset > 0) { 896 // There might be overflow issue. 897 // TODO: handle this, possibly with some distance relationship between 898 // offset_low and offset_high, or using another deoptimization to make 899 // sure (array_length + offset) doesn't overflow. 900 return false; 901 } 902 903 // See if we can prove the relationship first. 904 if (value == array_length) { 905 if (offset >= 0) { 906 // Already true. 907 *is_proven = true; 908 return true; 909 } else { 910 // May throw exception. Don't add deoptimization. 911 // Keep bounds checks in the loops. 912 return false; 913 } 914 } 915 // Can benefit from deoptimization. 916 return true; 917 } 918 919 // Adds a check that (value <= array_length + offset), and HDeoptimize otherwise. 920 void AddDeoptimizationArrayLength(HInstruction* value, 921 HArrayLength* array_length, 922 int32_t offset, 923 HBasicBlock* deopt_block, 924 bool loop_entry_test_block_added) { 925 HBasicBlock* header = induction_variable_->GetBlock(); 926 DCHECK(header->IsLoopHeader()); 927 HBasicBlock* pre_header = header->GetDominator(); 928 if (loop_entry_test_block_added) { 929 DCHECK(deopt_block->GetSuccessors().Get(0) == pre_header); 930 } else { 931 DCHECK(deopt_block == pre_header); 932 } 933 HGraph* graph = header->GetGraph(); 934 HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck(); 935 936 // We may need to hoist null-check and array_length out of loop first. 937 if (!array_length->GetBlock()->Dominates(deopt_block)) { 938 // array_length must be defined in the loop body. 939 DCHECK(header->GetLoopInformation()->Contains(*array_length->GetBlock())); 940 DCHECK(array_length->GetBlock() != header); 941 942 HInstruction* array = array_length->InputAt(0); 943 HNullCheck* null_check = array->AsNullCheck(); 944 if (null_check != nullptr) { 945 array = null_check->InputAt(0); 946 } 947 // We've already made sure the array is defined before the loop when collecting 948 // array accesses for the loop. 949 DCHECK(array->GetBlock()->Dominates(deopt_block)); 950 if (null_check != nullptr && !null_check->GetBlock()->Dominates(deopt_block)) { 951 // Hoist null check out of loop with a deoptimization. 952 HNullConstant* null_constant = graph->GetNullConstant(); 953 HCondition* null_check_cond = new (graph->GetArena()) HEqual(array, null_constant); 954 // TODO: for one dex_pc, share the same deoptimization slow path. 955 HDeoptimize* null_check_deoptimize = new (graph->GetArena()) 956 HDeoptimize(null_check_cond, suspend_check->GetDexPc()); 957 deopt_block->InsertInstructionBefore( 958 null_check_cond, deopt_block->GetLastInstruction()); 959 deopt_block->InsertInstructionBefore( 960 null_check_deoptimize, deopt_block->GetLastInstruction()); 961 // Eliminate null check in the loop. 962 null_check->ReplaceWith(array); 963 null_check->GetBlock()->RemoveInstruction(null_check); 964 null_check_deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( 965 suspend_check->GetEnvironment(), header); 966 } 967 968 HArrayLength* new_array_length = new (graph->GetArena()) HArrayLength(array); 969 deopt_block->InsertInstructionBefore(new_array_length, deopt_block->GetLastInstruction()); 970 971 if (loop_entry_test_block_added) { 972 // Replace array_length defined inside the loop body with a phi 973 // array_length_in_loop_body_if_needed. This is a synthetic phi so there is 974 // no vreg number for it. 975 HPhi* phi = new (graph->GetArena()) HPhi( 976 graph->GetArena(), kNoRegNumber, 2, Primitive::kPrimInt); 977 // Set to 0 if the loop body isn't entered. 978 phi->SetRawInputAt(0, graph->GetIntConstant(0)); 979 // Set to array.length if the loop body is entered. 980 phi->SetRawInputAt(1, new_array_length); 981 pre_header->AddPhi(phi); 982 array_length->ReplaceWith(phi); 983 // Make sure phi is only used after the loop body is entered. 984 if (kIsDebugBuild) { 985 for (HUseIterator<HInstruction*> it(phi->GetUses()); 986 !it.Done(); 987 it.Advance()) { 988 HInstruction* user = it.Current()->GetUser(); 989 DCHECK(GetLoopHeaderSuccesorInLoop()->Dominates(user->GetBlock())); 990 } 991 } 992 } else { 993 array_length->ReplaceWith(new_array_length); 994 } 995 996 array_length->GetBlock()->RemoveInstruction(array_length); 997 // Use new_array_length for deopt. 998 array_length = new_array_length; 999 } 1000 1001 HInstruction* added = array_length; 1002 if (offset != 0) { 1003 HIntConstant* offset_instr = graph->GetIntConstant(offset); 1004 added = new (graph->GetArena()) HAdd(Primitive::kPrimInt, array_length, offset_instr); 1005 deopt_block->InsertInstructionBefore(added, deopt_block->GetLastInstruction()); 1006 } 1007 HCondition* cond = new (graph->GetArena()) HGreaterThan(value, added); 1008 HDeoptimize* deopt = new (graph->GetArena()) HDeoptimize(cond, suspend_check->GetDexPc()); 1009 deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction()); 1010 deopt_block->InsertInstructionBefore(deopt, deopt_block->GetLastInstruction()); 1011 deopt->CopyEnvironmentFromWithLoopPhiAdjustment(suspend_check->GetEnvironment(), header); 1012 } 1013 1014 // Adds deoptimizations in loop pre-header with the collected array access 1015 // data so that value ranges can be established in loop body. 1016 // Returns true if deoptimizations are successfully added, or if it's proven 1017 // it's not necessary. 1018 bool AddDeoptimization(const ArrayAccessInsideLoopFinder& finder) { 1019 int32_t offset_low = finder.GetOffsetLow(); 1020 int32_t offset_high = finder.GetOffsetHigh(); 1021 HArrayLength* array_length = finder.GetFoundArrayLength(); 1022 1023 HBasicBlock* pre_header = 1024 induction_variable_->GetBlock()->GetLoopInformation()->GetPreHeader(); 1025 if (!initial_->GetBlock()->Dominates(pre_header) || 1026 !end_->GetBlock()->Dominates(pre_header)) { 1027 // Can't move initial_ or end_ into pre_header for comparisons. 1028 return false; 1029 } 1030 1031 HBasicBlock* deopt_block; 1032 bool loop_entry_test_block_added = false; 1033 bool is_constant_proven, is_length_proven; 1034 1035 HInstruction* const_comparing_instruction; 1036 int32_t const_compared_to; 1037 HInstruction* array_length_comparing_instruction; 1038 int32_t array_length_offset; 1039 if (increment_ == 1) { 1040 // Increasing from initial_ to end_. 1041 const_comparing_instruction = initial_; 1042 const_compared_to = -offset_low; 1043 array_length_comparing_instruction = end_; 1044 array_length_offset = inclusive_ ? -offset_high - 1 : -offset_high; 1045 } else { 1046 const_comparing_instruction = end_; 1047 const_compared_to = inclusive_ ? -offset_low : -offset_low - 1; 1048 array_length_comparing_instruction = initial_; 1049 array_length_offset = -offset_high - 1; 1050 } 1051 1052 if (CanAddDeoptimizationConstant(const_comparing_instruction, 1053 const_compared_to, 1054 &is_constant_proven) && 1055 CanAddDeoptimizationArrayLength(array_length_comparing_instruction, 1056 array_length, 1057 array_length_offset, 1058 &is_length_proven)) { 1059 if (!is_constant_proven || !is_length_proven) { 1060 deopt_block = TransformLoopForDeoptimizationIfNeeded(); 1061 loop_entry_test_block_added = (deopt_block != pre_header); 1062 if (loop_entry_test_block_added) { 1063 // Loop body may be entered. 1064 AddLoopBodyEntryTest(); 1065 } 1066 } 1067 if (!is_constant_proven) { 1068 AddDeoptimizationConstant(const_comparing_instruction, 1069 const_compared_to, 1070 deopt_block, 1071 loop_entry_test_block_added); 1072 } 1073 if (!is_length_proven) { 1074 AddDeoptimizationArrayLength(array_length_comparing_instruction, 1075 array_length, 1076 array_length_offset, 1077 deopt_block, 1078 loop_entry_test_block_added); 1079 } 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 private: 1086 HPhi* const induction_variable_; // Induction variable for this monotonic value range. 1087 HInstruction* const initial_; // Initial value. 1088 HInstruction* end_; // End value. 1089 bool inclusive_; // Whether end value is inclusive. 1090 const int32_t increment_; // Increment for each loop iteration. 1091 const ValueBound bound_; // Additional value bound info for initial_. 1092 1093 DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); 1094 }; 1095 1096 class BCEVisitor : public HGraphVisitor { 1097 public: 1098 // The least number of bounds checks that should be eliminated by triggering 1099 // the deoptimization technique. 1100 static constexpr size_t kThresholdForAddingDeoptimize = 2; 1101 1102 // Very large constant index is considered as an anomaly. This is a threshold 1103 // beyond which we don't bother to apply the deoptimization technique since 1104 // it's likely some AIOOBE will be thrown. 1105 static constexpr int32_t kMaxConstantForAddingDeoptimize = INT_MAX - 1024 * 1024; 1106 1107 // Added blocks for loop body entry test. 1108 bool IsAddedBlock(HBasicBlock* block) const { 1109 return block->GetBlockId() >= initial_block_size_; 1110 } 1111 1112 explicit BCEVisitor(HGraph* graph) 1113 : HGraphVisitor(graph), maps_(graph->GetBlocks().Size()), 1114 need_to_revisit_block_(false), initial_block_size_(graph->GetBlocks().Size()) {} 1115 1116 void VisitBasicBlock(HBasicBlock* block) OVERRIDE { 1117 DCHECK(!IsAddedBlock(block)); 1118 first_constant_index_bounds_check_map_.clear(); 1119 HGraphVisitor::VisitBasicBlock(block); 1120 if (need_to_revisit_block_) { 1121 AddComparesWithDeoptimization(block); 1122 need_to_revisit_block_ = false; 1123 first_constant_index_bounds_check_map_.clear(); 1124 GetValueRangeMap(block)->clear(); 1125 HGraphVisitor::VisitBasicBlock(block); 1126 } 1127 } 1128 1129 private: 1130 // Return the map of proven value ranges at the beginning of a basic block. 1131 ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) { 1132 if (IsAddedBlock(basic_block)) { 1133 // Added blocks don't keep value ranges. 1134 return nullptr; 1135 } 1136 int block_id = basic_block->GetBlockId(); 1137 if (maps_.at(block_id) == nullptr) { 1138 std::unique_ptr<ArenaSafeMap<int, ValueRange*>> map( 1139 new ArenaSafeMap<int, ValueRange*>( 1140 std::less<int>(), GetGraph()->GetArena()->Adapter())); 1141 maps_.at(block_id) = std::move(map); 1142 } 1143 return maps_.at(block_id).get(); 1144 } 1145 1146 // Traverse up the dominator tree to look for value range info. 1147 ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { 1148 while (basic_block != nullptr) { 1149 ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block); 1150 if (map != nullptr) { 1151 if (map->find(instruction->GetId()) != map->end()) { 1152 return map->Get(instruction->GetId()); 1153 } 1154 } else { 1155 DCHECK(IsAddedBlock(basic_block)); 1156 } 1157 basic_block = basic_block->GetDominator(); 1158 } 1159 // Didn't find any. 1160 return nullptr; 1161 } 1162 1163 // Narrow the value range of `instruction` at the end of `basic_block` with `range`, 1164 // and push the narrowed value range to `successor`. 1165 void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, 1166 HBasicBlock* successor, ValueRange* range) { 1167 ValueRange* existing_range = LookupValueRange(instruction, basic_block); 1168 if (existing_range == nullptr) { 1169 if (range != nullptr) { 1170 GetValueRangeMap(successor)->Overwrite(instruction->GetId(), range); 1171 } 1172 return; 1173 } 1174 if (existing_range->IsMonotonicValueRange()) { 1175 DCHECK(instruction->IsLoopHeaderPhi()); 1176 // Make sure the comparison is in the loop header so each increment is 1177 // checked with a comparison. 1178 if (instruction->GetBlock() != basic_block) { 1179 return; 1180 } 1181 } 1182 ValueRange* narrowed_range = existing_range->Narrow(range); 1183 GetValueRangeMap(successor)->Overwrite(instruction->GetId(), narrowed_range); 1184 } 1185 1186 // Special case that we may simultaneously narrow two MonotonicValueRange's to 1187 // regular value ranges. 1188 void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, 1189 HInstruction* left, 1190 HInstruction* right, 1191 IfCondition cond, 1192 MonotonicValueRange* left_range, 1193 MonotonicValueRange* right_range) { 1194 DCHECK(left->IsLoopHeaderPhi()); 1195 DCHECK(right->IsLoopHeaderPhi()); 1196 if (instruction->GetBlock() != left->GetBlock()) { 1197 // Comparison needs to be in loop header to make sure it's done after each 1198 // increment/decrement. 1199 return; 1200 } 1201 1202 // Handle common cases which also don't have overflow/underflow concerns. 1203 if (left_range->GetIncrement() == 1 && 1204 left_range->GetBound().IsConstant() && 1205 right_range->GetIncrement() == -1 && 1206 right_range->GetBound().IsRelatedToArrayLength() && 1207 right_range->GetBound().GetConstant() < 0) { 1208 HBasicBlock* successor = nullptr; 1209 int32_t left_compensation = 0; 1210 int32_t right_compensation = 0; 1211 if (cond == kCondLT) { 1212 left_compensation = -1; 1213 right_compensation = 1; 1214 successor = instruction->IfTrueSuccessor(); 1215 } else if (cond == kCondLE) { 1216 successor = instruction->IfTrueSuccessor(); 1217 } else if (cond == kCondGT) { 1218 successor = instruction->IfFalseSuccessor(); 1219 } else if (cond == kCondGE) { 1220 left_compensation = -1; 1221 right_compensation = 1; 1222 successor = instruction->IfFalseSuccessor(); 1223 } else { 1224 // We don't handle '=='/'!=' test in case left and right can cross and 1225 // miss each other. 1226 return; 1227 } 1228 1229 if (successor != nullptr) { 1230 bool overflow; 1231 bool underflow; 1232 ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange( 1233 GetGraph()->GetArena(), 1234 left_range->GetBound(), 1235 right_range->GetBound().Add(left_compensation, &overflow, &underflow)); 1236 if (!overflow && !underflow) { 1237 ApplyRangeFromComparison(left, instruction->GetBlock(), successor, 1238 new_left_range); 1239 } 1240 1241 ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange( 1242 GetGraph()->GetArena(), 1243 left_range->GetBound().Add(right_compensation, &overflow, &underflow), 1244 right_range->GetBound()); 1245 if (!overflow && !underflow) { 1246 ApplyRangeFromComparison(right, instruction->GetBlock(), successor, 1247 new_right_range); 1248 } 1249 } 1250 } 1251 } 1252 1253 // Handle "if (left cmp_cond right)". 1254 void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { 1255 HBasicBlock* block = instruction->GetBlock(); 1256 1257 HBasicBlock* true_successor = instruction->IfTrueSuccessor(); 1258 // There should be no critical edge at this point. 1259 DCHECK_EQ(true_successor->GetPredecessors().Size(), 1u); 1260 1261 HBasicBlock* false_successor = instruction->IfFalseSuccessor(); 1262 // There should be no critical edge at this point. 1263 DCHECK_EQ(false_successor->GetPredecessors().Size(), 1u); 1264 1265 ValueRange* left_range = LookupValueRange(left, block); 1266 MonotonicValueRange* left_monotonic_range = nullptr; 1267 if (left_range != nullptr) { 1268 left_monotonic_range = left_range->AsMonotonicValueRange(); 1269 if (left_monotonic_range != nullptr) { 1270 HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); 1271 if (instruction->GetBlock() != loop_head) { 1272 // For monotonic value range, don't handle `instruction` 1273 // if it's not defined in the loop header. 1274 return; 1275 } 1276 } 1277 } 1278 1279 bool found; 1280 ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); 1281 // Each comparison can establish a lower bound and an upper bound 1282 // for the left hand side. 1283 ValueBound lower = bound; 1284 ValueBound upper = bound; 1285 if (!found) { 1286 // No constant or array.length+c format bound found. 1287 // For i<j, we can still use j's upper bound as i's upper bound. Same for lower. 1288 ValueRange* right_range = LookupValueRange(right, block); 1289 if (right_range != nullptr) { 1290 if (right_range->IsMonotonicValueRange()) { 1291 if (left_range != nullptr && left_range->IsMonotonicValueRange()) { 1292 HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, 1293 left_range->AsMonotonicValueRange(), 1294 right_range->AsMonotonicValueRange()); 1295 return; 1296 } 1297 } 1298 lower = right_range->GetLower(); 1299 upper = right_range->GetUpper(); 1300 } else { 1301 lower = ValueBound::Min(); 1302 upper = ValueBound::Max(); 1303 } 1304 } 1305 1306 bool overflow, underflow; 1307 if (cond == kCondLT || cond == kCondLE) { 1308 if (left_monotonic_range != nullptr) { 1309 // Update the info for monotonic value range. 1310 if (left_monotonic_range->GetInductionVariable() == left && 1311 left_monotonic_range->GetIncrement() < 0 && 1312 block == left_monotonic_range->GetLoopHeader() && 1313 instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) { 1314 left_monotonic_range->SetEnd(right); 1315 left_monotonic_range->SetInclusive(cond == kCondLT); 1316 } 1317 } 1318 1319 if (!upper.Equals(ValueBound::Max())) { 1320 int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive 1321 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); 1322 if (overflow || underflow) { 1323 return; 1324 } 1325 ValueRange* new_range = new (GetGraph()->GetArena()) 1326 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); 1327 ApplyRangeFromComparison(left, block, true_successor, new_range); 1328 } 1329 1330 // array.length as a lower bound isn't considered useful. 1331 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { 1332 int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive 1333 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); 1334 if (overflow || underflow) { 1335 return; 1336 } 1337 ValueRange* new_range = new (GetGraph()->GetArena()) 1338 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); 1339 ApplyRangeFromComparison(left, block, false_successor, new_range); 1340 } 1341 } else if (cond == kCondGT || cond == kCondGE) { 1342 if (left_monotonic_range != nullptr) { 1343 // Update the info for monotonic value range. 1344 if (left_monotonic_range->GetInductionVariable() == left && 1345 left_monotonic_range->GetIncrement() > 0 && 1346 block == left_monotonic_range->GetLoopHeader() && 1347 instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) { 1348 left_monotonic_range->SetEnd(right); 1349 left_monotonic_range->SetInclusive(cond == kCondGT); 1350 } 1351 } 1352 1353 // array.length as a lower bound isn't considered useful. 1354 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { 1355 int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive 1356 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); 1357 if (overflow || underflow) { 1358 return; 1359 } 1360 ValueRange* new_range = new (GetGraph()->GetArena()) 1361 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); 1362 ApplyRangeFromComparison(left, block, true_successor, new_range); 1363 } 1364 1365 if (!upper.Equals(ValueBound::Max())) { 1366 int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive 1367 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); 1368 if (overflow || underflow) { 1369 return; 1370 } 1371 ValueRange* new_range = new (GetGraph()->GetArena()) 1372 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); 1373 ApplyRangeFromComparison(left, block, false_successor, new_range); 1374 } 1375 } 1376 } 1377 1378 void VisitBoundsCheck(HBoundsCheck* bounds_check) { 1379 HBasicBlock* block = bounds_check->GetBlock(); 1380 HInstruction* index = bounds_check->InputAt(0); 1381 HInstruction* array_length = bounds_check->InputAt(1); 1382 DCHECK(array_length->IsIntConstant() || 1383 array_length->IsArrayLength() || 1384 array_length->IsPhi()); 1385 1386 if (array_length->IsPhi()) { 1387 // Input 1 of the phi contains the real array.length once the loop body is 1388 // entered. That value will be used for bound analysis. The graph is still 1389 // strictly in SSA form. 1390 array_length = array_length->AsPhi()->InputAt(1)->AsArrayLength(); 1391 } 1392 1393 if (!index->IsIntConstant()) { 1394 ValueRange* index_range = LookupValueRange(index, block); 1395 if (index_range != nullptr) { 1396 ValueBound lower = ValueBound(nullptr, 0); // constant 0 1397 ValueBound upper = ValueBound(array_length, -1); // array_length - 1 1398 ValueRange* array_range = new (GetGraph()->GetArena()) 1399 ValueRange(GetGraph()->GetArena(), lower, upper); 1400 if (index_range->FitsIn(array_range)) { 1401 ReplaceBoundsCheck(bounds_check, index); 1402 return; 1403 } 1404 } 1405 } else { 1406 int32_t constant = index->AsIntConstant()->GetValue(); 1407 if (constant < 0) { 1408 // Will always throw exception. 1409 return; 1410 } 1411 if (array_length->IsIntConstant()) { 1412 if (constant < array_length->AsIntConstant()->GetValue()) { 1413 ReplaceBoundsCheck(bounds_check, index); 1414 } 1415 return; 1416 } 1417 1418 DCHECK(array_length->IsArrayLength()); 1419 ValueRange* existing_range = LookupValueRange(array_length, block); 1420 if (existing_range != nullptr) { 1421 ValueBound lower = existing_range->GetLower(); 1422 DCHECK(lower.IsConstant()); 1423 if (constant < lower.GetConstant()) { 1424 ReplaceBoundsCheck(bounds_check, index); 1425 return; 1426 } else { 1427 // Existing range isn't strong enough to eliminate the bounds check. 1428 // Fall through to update the array_length range with info from this 1429 // bounds check. 1430 } 1431 } 1432 1433 if (first_constant_index_bounds_check_map_.find(array_length->GetId()) == 1434 first_constant_index_bounds_check_map_.end()) { 1435 // Remember the first bounds check against array_length of a constant index. 1436 // That bounds check instruction has an associated HEnvironment where we 1437 // may add an HDeoptimize to eliminate bounds checks of constant indices 1438 // against array_length. 1439 first_constant_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); 1440 } else { 1441 // We've seen it at least twice. It's beneficial to introduce a compare with 1442 // deoptimization fallback to eliminate the bounds checks. 1443 need_to_revisit_block_ = true; 1444 } 1445 1446 // Once we have an array access like 'array[5] = 1', we record array.length >= 6. 1447 // We currently don't do it for non-constant index since a valid array[i] can't prove 1448 // a valid array[i-1] yet due to the lower bound side. 1449 if (constant == INT_MAX) { 1450 // INT_MAX as an index will definitely throw AIOOBE. 1451 return; 1452 } 1453 ValueBound lower = ValueBound(nullptr, constant + 1); 1454 ValueBound upper = ValueBound::Max(); 1455 ValueRange* range = new (GetGraph()->GetArena()) 1456 ValueRange(GetGraph()->GetArena(), lower, upper); 1457 GetValueRangeMap(block)->Overwrite(array_length->GetId(), range); 1458 } 1459 } 1460 1461 void ReplaceBoundsCheck(HInstruction* bounds_check, HInstruction* index) { 1462 bounds_check->ReplaceWith(index); 1463 bounds_check->GetBlock()->RemoveInstruction(bounds_check); 1464 } 1465 1466 static bool HasSameInputAtBackEdges(HPhi* phi) { 1467 DCHECK(phi->IsLoopHeaderPhi()); 1468 // Start with input 1. Input 0 is from the incoming block. 1469 HInstruction* input1 = phi->InputAt(1); 1470 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( 1471 *phi->GetBlock()->GetPredecessors().Get(1))); 1472 for (size_t i = 2, e = phi->InputCount(); i < e; ++i) { 1473 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( 1474 *phi->GetBlock()->GetPredecessors().Get(i))); 1475 if (input1 != phi->InputAt(i)) { 1476 return false; 1477 } 1478 } 1479 return true; 1480 } 1481 1482 void VisitPhi(HPhi* phi) { 1483 if (phi->IsLoopHeaderPhi() 1484 && (phi->GetType() == Primitive::kPrimInt) 1485 && HasSameInputAtBackEdges(phi)) { 1486 HInstruction* instruction = phi->InputAt(1); 1487 HInstruction *left; 1488 int32_t increment; 1489 if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { 1490 if (left == phi) { 1491 HInstruction* initial_value = phi->InputAt(0); 1492 ValueRange* range = nullptr; 1493 if (increment == 0) { 1494 // Add constant 0. It's really a fixed value. 1495 range = new (GetGraph()->GetArena()) ValueRange( 1496 GetGraph()->GetArena(), 1497 ValueBound(initial_value, 0), 1498 ValueBound(initial_value, 0)); 1499 } else { 1500 // Monotonically increasing/decreasing. 1501 bool found; 1502 ValueBound bound = ValueBound::DetectValueBoundFromValue( 1503 initial_value, &found); 1504 if (!found) { 1505 // No constant or array.length+c bound found. 1506 // For i=j, we can still use j's upper bound as i's upper bound. 1507 // Same for lower. 1508 ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); 1509 if (initial_range != nullptr) { 1510 bound = increment > 0 ? initial_range->GetLower() : 1511 initial_range->GetUpper(); 1512 } else { 1513 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); 1514 } 1515 } 1516 range = new (GetGraph()->GetArena()) MonotonicValueRange( 1517 GetGraph()->GetArena(), 1518 phi, 1519 initial_value, 1520 increment, 1521 bound); 1522 } 1523 GetValueRangeMap(phi->GetBlock())->Overwrite(phi->GetId(), range); 1524 } 1525 } 1526 } 1527 } 1528 1529 void VisitIf(HIf* instruction) { 1530 if (instruction->InputAt(0)->IsCondition()) { 1531 HCondition* cond = instruction->InputAt(0)->AsCondition(); 1532 IfCondition cmp = cond->GetCondition(); 1533 if (cmp == kCondGT || cmp == kCondGE || 1534 cmp == kCondLT || cmp == kCondLE) { 1535 HInstruction* left = cond->GetLeft(); 1536 HInstruction* right = cond->GetRight(); 1537 HandleIf(instruction, left, right, cmp); 1538 1539 HBasicBlock* block = instruction->GetBlock(); 1540 ValueRange* left_range = LookupValueRange(left, block); 1541 if (left_range == nullptr) { 1542 return; 1543 } 1544 1545 if (left_range->IsMonotonicValueRange() && 1546 block == left_range->AsMonotonicValueRange()->GetLoopHeader()) { 1547 // The comparison is for an induction variable in the loop header. 1548 DCHECK(left == left_range->AsMonotonicValueRange()->GetInductionVariable()); 1549 HBasicBlock* loop_body_successor = 1550 left_range->AsMonotonicValueRange()->GetLoopHeaderSuccesorInLoop(); 1551 if (loop_body_successor == nullptr) { 1552 // In case it's some strange loop structure. 1553 return; 1554 } 1555 ValueRange* new_left_range = LookupValueRange(left, loop_body_successor); 1556 if ((new_left_range == left_range) || 1557 // Range narrowed with deoptimization is usually more useful than 1558 // a constant range. 1559 new_left_range->IsConstantValueRange()) { 1560 // We are not successful in narrowing the monotonic value range to 1561 // a regular value range. Try using deoptimization. 1562 new_left_range = left_range->AsMonotonicValueRange()-> 1563 NarrowWithDeoptimization(); 1564 if (new_left_range != left_range) { 1565 GetValueRangeMap(loop_body_successor)->Overwrite(left->GetId(), new_left_range); 1566 } 1567 } 1568 } 1569 } 1570 } 1571 } 1572 1573 void VisitAdd(HAdd* add) { 1574 HInstruction* right = add->GetRight(); 1575 if (right->IsIntConstant()) { 1576 ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); 1577 if (left_range == nullptr) { 1578 return; 1579 } 1580 ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); 1581 if (range != nullptr) { 1582 GetValueRangeMap(add->GetBlock())->Overwrite(add->GetId(), range); 1583 } 1584 } 1585 } 1586 1587 void VisitSub(HSub* sub) { 1588 HInstruction* left = sub->GetLeft(); 1589 HInstruction* right = sub->GetRight(); 1590 if (right->IsIntConstant()) { 1591 ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); 1592 if (left_range == nullptr) { 1593 return; 1594 } 1595 ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); 1596 if (range != nullptr) { 1597 GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); 1598 return; 1599 } 1600 } 1601 1602 // Here we are interested in the typical triangular case of nested loops, 1603 // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i 1604 // is the index for outer loop. In this case, we know j is bounded by array.length-1. 1605 1606 // Try to handle (array.length - i) or (array.length + c - i) format. 1607 HInstruction* left_of_left; // left input of left. 1608 int32_t right_const = 0; 1609 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) { 1610 left = left_of_left; 1611 } 1612 // The value of left input of the sub equals (left + right_const). 1613 1614 if (left->IsArrayLength()) { 1615 HInstruction* array_length = left->AsArrayLength(); 1616 ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); 1617 if (right_range != nullptr) { 1618 ValueBound lower = right_range->GetLower(); 1619 ValueBound upper = right_range->GetUpper(); 1620 if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { 1621 HInstruction* upper_inst = upper.GetInstruction(); 1622 // Make sure it's the same array. 1623 if (ValueBound::Equal(array_length, upper_inst)) { 1624 int32_t c0 = right_const; 1625 int32_t c1 = lower.GetConstant(); 1626 int32_t c2 = upper.GetConstant(); 1627 // (array.length + c0 - v) where v is in [c1, array.length + c2] 1628 // gets [c0 - c2, array.length + c0 - c1] as its value range. 1629 if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && 1630 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { 1631 if ((c0 - c1) <= 0) { 1632 // array.length + (c0 - c1) won't overflow/underflow. 1633 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1634 GetGraph()->GetArena(), 1635 ValueBound(nullptr, right_const - upper.GetConstant()), 1636 ValueBound(array_length, right_const - lower.GetConstant())); 1637 GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); 1638 } 1639 } 1640 } 1641 } 1642 } 1643 } 1644 } 1645 1646 void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { 1647 DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); 1648 HInstruction* right = instruction->GetRight(); 1649 int32_t right_const; 1650 if (right->IsIntConstant()) { 1651 right_const = right->AsIntConstant()->GetValue(); 1652 // Detect division by two or more. 1653 if ((instruction->IsDiv() && right_const <= 1) || 1654 (instruction->IsShr() && right_const < 1) || 1655 (instruction->IsUShr() && right_const < 1)) { 1656 return; 1657 } 1658 } else { 1659 return; 1660 } 1661 1662 // Try to handle array.length/2 or (array.length-1)/2 format. 1663 HInstruction* left = instruction->GetLeft(); 1664 HInstruction* left_of_left; // left input of left. 1665 int32_t c = 0; 1666 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { 1667 left = left_of_left; 1668 } 1669 // The value of left input of instruction equals (left + c). 1670 1671 // (array_length + 1) or smaller divided by two or more 1672 // always generate a value in [INT_MIN, array_length]. 1673 // This is true even if array_length is INT_MAX. 1674 if (left->IsArrayLength() && c <= 1) { 1675 if (instruction->IsUShr() && c < 0) { 1676 // Make sure for unsigned shift, left side is not negative. 1677 // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger 1678 // than array_length. 1679 return; 1680 } 1681 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1682 GetGraph()->GetArena(), 1683 ValueBound(nullptr, INT_MIN), 1684 ValueBound(left, 0)); 1685 GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range); 1686 } 1687 } 1688 1689 void VisitDiv(HDiv* div) { 1690 FindAndHandlePartialArrayLength(div); 1691 } 1692 1693 void VisitShr(HShr* shr) { 1694 FindAndHandlePartialArrayLength(shr); 1695 } 1696 1697 void VisitUShr(HUShr* ushr) { 1698 FindAndHandlePartialArrayLength(ushr); 1699 } 1700 1701 void VisitAnd(HAnd* instruction) { 1702 if (instruction->GetRight()->IsIntConstant()) { 1703 int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); 1704 if (constant > 0) { 1705 // constant serves as a mask so any number masked with it 1706 // gets a [0, constant] value range. 1707 ValueRange* range = new (GetGraph()->GetArena()) ValueRange( 1708 GetGraph()->GetArena(), 1709 ValueBound(nullptr, 0), 1710 ValueBound(nullptr, constant)); 1711 GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range); 1712 } 1713 } 1714 } 1715 1716 void VisitNewArray(HNewArray* new_array) { 1717 HInstruction* len = new_array->InputAt(0); 1718 if (!len->IsIntConstant()) { 1719 HInstruction *left; 1720 int32_t right_const; 1721 if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { 1722 // (left + right_const) is used as size to new the array. 1723 // We record "-right_const <= left <= new_array - right_const"; 1724 ValueBound lower = ValueBound(nullptr, -right_const); 1725 // We use new_array for the bound instead of new_array.length, 1726 // which isn't available as an instruction yet. new_array will 1727 // be treated the same as new_array.length when it's used in a ValueBound. 1728 ValueBound upper = ValueBound(new_array, -right_const); 1729 ValueRange* range = new (GetGraph()->GetArena()) 1730 ValueRange(GetGraph()->GetArena(), lower, upper); 1731 ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); 1732 if (existing_range != nullptr) { 1733 range = existing_range->Narrow(range); 1734 } 1735 GetValueRangeMap(new_array->GetBlock())->Overwrite(left->GetId(), range); 1736 } 1737 } 1738 } 1739 1740 void VisitDeoptimize(HDeoptimize* deoptimize) { 1741 // Right now it's only HLessThanOrEqual. 1742 DCHECK(deoptimize->InputAt(0)->IsLessThanOrEqual()); 1743 HLessThanOrEqual* less_than_or_equal = deoptimize->InputAt(0)->AsLessThanOrEqual(); 1744 HInstruction* instruction = less_than_or_equal->InputAt(0); 1745 if (instruction->IsArrayLength()) { 1746 HInstruction* constant = less_than_or_equal->InputAt(1); 1747 DCHECK(constant->IsIntConstant()); 1748 DCHECK(constant->AsIntConstant()->GetValue() <= kMaxConstantForAddingDeoptimize); 1749 ValueBound lower = ValueBound(nullptr, constant->AsIntConstant()->GetValue() + 1); 1750 ValueRange* range = new (GetGraph()->GetArena()) 1751 ValueRange(GetGraph()->GetArena(), lower, ValueBound::Max()); 1752 GetValueRangeMap(deoptimize->GetBlock())->Overwrite(instruction->GetId(), range); 1753 } 1754 } 1755 1756 void AddCompareWithDeoptimization(HInstruction* array_length, 1757 HIntConstant* const_instr, 1758 HBasicBlock* block) { 1759 DCHECK(array_length->IsArrayLength()); 1760 ValueRange* range = LookupValueRange(array_length, block); 1761 ValueBound lower_bound = range->GetLower(); 1762 DCHECK(lower_bound.IsConstant()); 1763 DCHECK(const_instr->GetValue() <= kMaxConstantForAddingDeoptimize); 1764 // Note that the lower bound of the array length may have been refined 1765 // through other instructions (such as `HNewArray(length - 4)`). 1766 DCHECK_LE(const_instr->GetValue() + 1, lower_bound.GetConstant()); 1767 1768 // If array_length is less than lower_const, deoptimize. 1769 HBoundsCheck* bounds_check = first_constant_index_bounds_check_map_.Get( 1770 array_length->GetId())->AsBoundsCheck(); 1771 HCondition* cond = new (GetGraph()->GetArena()) HLessThanOrEqual(array_length, const_instr); 1772 HDeoptimize* deoptimize = new (GetGraph()->GetArena()) 1773 HDeoptimize(cond, bounds_check->GetDexPc()); 1774 block->InsertInstructionBefore(cond, bounds_check); 1775 block->InsertInstructionBefore(deoptimize, bounds_check); 1776 deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); 1777 } 1778 1779 void AddComparesWithDeoptimization(HBasicBlock* block) { 1780 for (ArenaSafeMap<int, HBoundsCheck*>::iterator it = 1781 first_constant_index_bounds_check_map_.begin(); 1782 it != first_constant_index_bounds_check_map_.end(); 1783 ++it) { 1784 HBoundsCheck* bounds_check = it->second; 1785 HInstruction* array_length = bounds_check->InputAt(1); 1786 if (!array_length->IsArrayLength()) { 1787 // Prior deoptimizations may have changed the array length to a phi. 1788 // TODO(mingyao): propagate the range to the phi? 1789 DCHECK(array_length->IsPhi()) << array_length->DebugName(); 1790 continue; 1791 } 1792 HIntConstant* lower_bound_const_instr = nullptr; 1793 int32_t lower_bound_const = INT_MIN; 1794 size_t counter = 0; 1795 // Count the constant indexing for which bounds checks haven't 1796 // been removed yet. 1797 for (HUseIterator<HInstruction*> it2(array_length->GetUses()); 1798 !it2.Done(); 1799 it2.Advance()) { 1800 HInstruction* user = it2.Current()->GetUser(); 1801 if (user->GetBlock() == block && 1802 user->IsBoundsCheck() && 1803 user->AsBoundsCheck()->InputAt(0)->IsIntConstant()) { 1804 DCHECK_EQ(array_length, user->AsBoundsCheck()->InputAt(1)); 1805 HIntConstant* const_instr = user->AsBoundsCheck()->InputAt(0)->AsIntConstant(); 1806 if (const_instr->GetValue() > lower_bound_const) { 1807 lower_bound_const = const_instr->GetValue(); 1808 lower_bound_const_instr = const_instr; 1809 } 1810 counter++; 1811 } 1812 } 1813 if (counter >= kThresholdForAddingDeoptimize && 1814 lower_bound_const_instr->GetValue() <= kMaxConstantForAddingDeoptimize) { 1815 AddCompareWithDeoptimization(array_length, lower_bound_const_instr, block); 1816 } 1817 } 1818 } 1819 1820 std::vector<std::unique_ptr<ArenaSafeMap<int, ValueRange*>>> maps_; 1821 1822 // Map an HArrayLength instruction's id to the first HBoundsCheck instruction in 1823 // a block that checks a constant index against that HArrayLength. 1824 SafeMap<int, HBoundsCheck*> first_constant_index_bounds_check_map_; 1825 1826 // For the block, there is at least one HArrayLength instruction for which there 1827 // is more than one bounds check instruction with constant indexing. And it's 1828 // beneficial to add a compare instruction that has deoptimization fallback and 1829 // eliminate those bounds checks. 1830 bool need_to_revisit_block_; 1831 1832 // Initial number of blocks. 1833 int32_t initial_block_size_; 1834 1835 DISALLOW_COPY_AND_ASSIGN(BCEVisitor); 1836 }; 1837 1838 void BoundsCheckElimination::Run() { 1839 if (!graph_->HasBoundsChecks()) { 1840 return; 1841 } 1842 1843 BCEVisitor visitor(graph_); 1844 // Reverse post order guarantees a node's dominators are visited first. 1845 // We want to visit in the dominator-based order since if a value is known to 1846 // be bounded by a range at one instruction, it must be true that all uses of 1847 // that value dominated by that instruction fits in that range. Range of that 1848 // value can be narrowed further down in the dominator tree. 1849 // 1850 // TODO: only visit blocks that dominate some array accesses. 1851 HBasicBlock* last_visited_block = nullptr; 1852 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { 1853 HBasicBlock* current = it.Current(); 1854 if (current == last_visited_block) { 1855 // We may insert blocks into the reverse post order list when processing 1856 // a loop header. Don't process it again. 1857 DCHECK(current->IsLoopHeader()); 1858 continue; 1859 } 1860 if (visitor.IsAddedBlock(current)) { 1861 // Skip added blocks. Their effects are already taken care of. 1862 continue; 1863 } 1864 visitor.VisitBasicBlock(current); 1865 last_visited_block = current; 1866 } 1867 } 1868 1869 } // namespace art 1870