Home | History | Annotate | Download | only in protobuf
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // https://developers.google.com/protocol-buffers/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda)
     32 //  Based on original Protocol Buffers design by
     33 //  Sanjay Ghemawat, Jeff Dean, and others.
     34 //
     35 // Defines Message, the abstract interface implemented by non-lite
     36 // protocol message objects.  Although it's possible to implement this
     37 // interface manually, most users will use the protocol compiler to
     38 // generate implementations.
     39 //
     40 // Example usage:
     41 //
     42 // Say you have a message defined as:
     43 //
     44 //   message Foo {
     45 //     optional string text = 1;
     46 //     repeated int32 numbers = 2;
     47 //   }
     48 //
     49 // Then, if you used the protocol compiler to generate a class from the above
     50 // definition, you could use it like so:
     51 //
     52 //   string data;  // Will store a serialized version of the message.
     53 //
     54 //   {
     55 //     // Create a message and serialize it.
     56 //     Foo foo;
     57 //     foo.set_text("Hello World!");
     58 //     foo.add_numbers(1);
     59 //     foo.add_numbers(5);
     60 //     foo.add_numbers(42);
     61 //
     62 //     foo.SerializeToString(&data);
     63 //   }
     64 //
     65 //   {
     66 //     // Parse the serialized message and check that it contains the
     67 //     // correct data.
     68 //     Foo foo;
     69 //     foo.ParseFromString(data);
     70 //
     71 //     assert(foo.text() == "Hello World!");
     72 //     assert(foo.numbers_size() == 3);
     73 //     assert(foo.numbers(0) == 1);
     74 //     assert(foo.numbers(1) == 5);
     75 //     assert(foo.numbers(2) == 42);
     76 //   }
     77 //
     78 //   {
     79 //     // Same as the last block, but do it dynamically via the Message
     80 //     // reflection interface.
     81 //     Message* foo = new Foo;
     82 //     const Descriptor* descriptor = foo->GetDescriptor();
     83 //
     84 //     // Get the descriptors for the fields we're interested in and verify
     85 //     // their types.
     86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
     87 //     assert(text_field != NULL);
     88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
     89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
     90 //     const FieldDescriptor* numbers_field = descriptor->
     91 //                                            FindFieldByName("numbers");
     92 //     assert(numbers_field != NULL);
     93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
     94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
     95 //
     96 //     // Parse the message.
     97 //     foo->ParseFromString(data);
     98 //
     99 //     // Use the reflection interface to examine the contents.
    100 //     const Reflection* reflection = foo->GetReflection();
    101 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
    102 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
    103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
    104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
    105 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
    106 //
    107 //     delete foo;
    108 //   }
    109 
    110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
    111 #define GOOGLE_PROTOBUF_MESSAGE_H__
    112 
    113 #include <iosfwd>
    114 #include <string>
    115 #include <vector>
    116 
    117 #include <google/protobuf/message_lite.h>
    118 
    119 #include <google/protobuf/stubs/common.h>
    120 #include <google/protobuf/descriptor.h>
    121 
    122 
    123 #define GOOGLE_PROTOBUF_HAS_ONEOF
    124 
    125 namespace google {
    126 namespace protobuf {
    127 
    128 // Defined in this file.
    129 class Message;
    130 class Reflection;
    131 class MessageFactory;
    132 
    133 // Defined in other files.
    134 class UnknownFieldSet;         // unknown_field_set.h
    135 namespace io {
    136   class ZeroCopyInputStream;   // zero_copy_stream.h
    137   class ZeroCopyOutputStream;  // zero_copy_stream.h
    138   class CodedInputStream;      // coded_stream.h
    139   class CodedOutputStream;     // coded_stream.h
    140 }
    141 
    142 
    143 template<typename T>
    144 class RepeatedField;     // repeated_field.h
    145 
    146 template<typename T>
    147 class RepeatedPtrField;  // repeated_field.h
    148 
    149 // A container to hold message metadata.
    150 struct Metadata {
    151   const Descriptor* descriptor;
    152   const Reflection* reflection;
    153 };
    154 
    155 // Abstract interface for protocol messages.
    156 //
    157 // See also MessageLite, which contains most every-day operations.  Message
    158 // adds descriptors and reflection on top of that.
    159 //
    160 // The methods of this class that are virtual but not pure-virtual have
    161 // default implementations based on reflection.  Message classes which are
    162 // optimized for speed will want to override these with faster implementations,
    163 // but classes optimized for code size may be happy with keeping them.  See
    164 // the optimize_for option in descriptor.proto.
    165 class LIBPROTOBUF_EXPORT Message : public MessageLite {
    166  public:
    167   inline Message() {}
    168   virtual ~Message();
    169 
    170   // Basic Operations ------------------------------------------------
    171 
    172   // Construct a new instance of the same type.  Ownership is passed to the
    173   // caller.  (This is also defined in MessageLite, but is defined again here
    174   // for return-type covariance.)
    175   virtual Message* New() const = 0;
    176 
    177   // Make this message into a copy of the given message.  The given message
    178   // must have the same descriptor, but need not necessarily be the same class.
    179   // By default this is just implemented as "Clear(); MergeFrom(from);".
    180   virtual void CopyFrom(const Message& from);
    181 
    182   // Merge the fields from the given message into this message.  Singular
    183   // fields will be overwritten, if specified in from, except for embedded
    184   // messages which will be merged.  Repeated fields will be concatenated.
    185   // The given message must be of the same type as this message (i.e. the
    186   // exact same class).
    187   virtual void MergeFrom(const Message& from);
    188 
    189   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
    190   // a nice error message.
    191   void CheckInitialized() const;
    192 
    193   // Slowly build a list of all required fields that are not set.
    194   // This is much, much slower than IsInitialized() as it is implemented
    195   // purely via reflection.  Generally, you should not call this unless you
    196   // have already determined that an error exists by calling IsInitialized().
    197   void FindInitializationErrors(std::vector<string>* errors) const;
    198 
    199   // Like FindInitializationErrors, but joins all the strings, delimited by
    200   // commas, and returns them.
    201   string InitializationErrorString() const;
    202 
    203   // Clears all unknown fields from this message and all embedded messages.
    204   // Normally, if unknown tag numbers are encountered when parsing a message,
    205   // the tag and value are stored in the message's UnknownFieldSet and
    206   // then written back out when the message is serialized.  This allows servers
    207   // which simply route messages to other servers to pass through messages
    208   // that have new field definitions which they don't yet know about.  However,
    209   // this behavior can have security implications.  To avoid it, call this
    210   // method after parsing.
    211   //
    212   // See Reflection::GetUnknownFields() for more on unknown fields.
    213   virtual void DiscardUnknownFields();
    214 
    215   // Computes (an estimate of) the total number of bytes currently used for
    216   // storing the message in memory.  The default implementation calls the
    217   // Reflection object's SpaceUsed() method.
    218   virtual int SpaceUsed() const;
    219 
    220   // Debugging & Testing----------------------------------------------
    221 
    222   // Generates a human readable form of this message, useful for debugging
    223   // and other purposes.
    224   string DebugString() const;
    225   // Like DebugString(), but with less whitespace.
    226   string ShortDebugString() const;
    227   // Like DebugString(), but do not escape UTF-8 byte sequences.
    228   string Utf8DebugString() const;
    229   // Convenience function useful in GDB.  Prints DebugString() to stdout.
    230   void PrintDebugString() const;
    231 
    232   // Heavy I/O -------------------------------------------------------
    233   // Additional parsing and serialization methods not implemented by
    234   // MessageLite because they are not supported by the lite library.
    235 
    236   // Parse a protocol buffer from a file descriptor.  If successful, the entire
    237   // input will be consumed.
    238   bool ParseFromFileDescriptor(int file_descriptor);
    239   // Like ParseFromFileDescriptor(), but accepts messages that are missing
    240   // required fields.
    241   bool ParsePartialFromFileDescriptor(int file_descriptor);
    242   // Parse a protocol buffer from a C++ istream.  If successful, the entire
    243   // input will be consumed.
    244   bool ParseFromIstream(istream* input);
    245   // Like ParseFromIstream(), but accepts messages that are missing
    246   // required fields.
    247   bool ParsePartialFromIstream(istream* input);
    248 
    249   // Serialize the message and write it to the given file descriptor.  All
    250   // required fields must be set.
    251   bool SerializeToFileDescriptor(int file_descriptor) const;
    252   // Like SerializeToFileDescriptor(), but allows missing required fields.
    253   bool SerializePartialToFileDescriptor(int file_descriptor) const;
    254   // Serialize the message and write it to the given C++ ostream.  All
    255   // required fields must be set.
    256   bool SerializeToOstream(ostream* output) const;
    257   // Like SerializeToOstream(), but allows missing required fields.
    258   bool SerializePartialToOstream(ostream* output) const;
    259 
    260 
    261   // Reflection-based methods ----------------------------------------
    262   // These methods are pure-virtual in MessageLite, but Message provides
    263   // reflection-based default implementations.
    264 
    265   virtual string GetTypeName() const;
    266   virtual void Clear();
    267   virtual bool IsInitialized() const;
    268   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
    269   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
    270   virtual int ByteSize() const;
    271   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
    272 
    273  private:
    274   // This is called only by the default implementation of ByteSize(), to
    275   // update the cached size.  If you override ByteSize(), you do not need
    276   // to override this.  If you do not override ByteSize(), you MUST override
    277   // this; the default implementation will crash.
    278   //
    279   // The method is private because subclasses should never call it; only
    280   // override it.  Yes, C++ lets you do that.  Crazy, huh?
    281   virtual void SetCachedSize(int size) const;
    282 
    283  public:
    284 
    285   // Introspection ---------------------------------------------------
    286 
    287   // Typedef for backwards-compatibility.
    288   typedef google::protobuf::Reflection Reflection;
    289 
    290   // Get a Descriptor for this message's type.  This describes what
    291   // fields the message contains, the types of those fields, etc.
    292   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
    293 
    294   // Get the Reflection interface for this Message, which can be used to
    295   // read and modify the fields of the Message dynamically (in other words,
    296   // without knowing the message type at compile time).  This object remains
    297   // property of the Message.
    298   //
    299   // This method remains virtual in case a subclass does not implement
    300   // reflection and wants to override the default behavior.
    301   virtual const Reflection* GetReflection() const {
    302     return GetMetadata().reflection;
    303   }
    304 
    305  protected:
    306   // Get a struct containing the metadata for the Message. Most subclasses only
    307   // need to implement this method, rather than the GetDescriptor() and
    308   // GetReflection() wrappers.
    309   virtual Metadata GetMetadata() const  = 0;
    310 
    311 
    312  private:
    313   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
    314 };
    315 
    316 // This interface contains methods that can be used to dynamically access
    317 // and modify the fields of a protocol message.  Their semantics are
    318 // similar to the accessors the protocol compiler generates.
    319 //
    320 // To get the Reflection for a given Message, call Message::GetReflection().
    321 //
    322 // This interface is separate from Message only for efficiency reasons;
    323 // the vast majority of implementations of Message will share the same
    324 // implementation of Reflection (GeneratedMessageReflection,
    325 // defined in generated_message.h), and all Messages of a particular class
    326 // should share the same Reflection object (though you should not rely on
    327 // the latter fact).
    328 //
    329 // There are several ways that these methods can be used incorrectly.  For
    330 // example, any of the following conditions will lead to undefined
    331 // results (probably assertion failures):
    332 // - The FieldDescriptor is not a field of this message type.
    333 // - The method called is not appropriate for the field's type.  For
    334 //   each field type in FieldDescriptor::TYPE_*, there is only one
    335 //   Get*() method, one Set*() method, and one Add*() method that is
    336 //   valid for that type.  It should be obvious which (except maybe
    337 //   for TYPE_BYTES, which are represented using strings in C++).
    338 // - A Get*() or Set*() method for singular fields is called on a repeated
    339 //   field.
    340 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
    341 //   field.
    342 // - The Message object passed to any method is not of the right type for
    343 //   this Reflection object (i.e. message.GetReflection() != reflection).
    344 //
    345 // You might wonder why there is not any abstract representation for a field
    346 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
    347 // returns "const Field&", where "Field" is some class with accessors like
    348 // "GetInt32Value()".  The problem is that someone would have to deal with
    349 // allocating these Field objects.  For generated message classes, having to
    350 // allocate space for an additional object to wrap every field would at least
    351 // double the message's memory footprint, probably worse.  Allocating the
    352 // objects on-demand, on the other hand, would be expensive and prone to
    353 // memory leaks.  So, instead we ended up with this flat interface.
    354 //
    355 // TODO(kenton):  Create a utility class which callers can use to read and
    356 //   write fields from a Reflection without paying attention to the type.
    357 class LIBPROTOBUF_EXPORT Reflection {
    358  public:
    359   inline Reflection() {}
    360   virtual ~Reflection();
    361 
    362   // Get the UnknownFieldSet for the message.  This contains fields which
    363   // were seen when the Message was parsed but were not recognized according
    364   // to the Message's definition.
    365   virtual const UnknownFieldSet& GetUnknownFields(
    366       const Message& message) const = 0;
    367   // Get a mutable pointer to the UnknownFieldSet for the message.  This
    368   // contains fields which were seen when the Message was parsed but were not
    369   // recognized according to the Message's definition.
    370   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
    371 
    372   // Estimate the amount of memory used by the message object.
    373   virtual int SpaceUsed(const Message& message) const = 0;
    374 
    375   // Check if the given non-repeated field is set.
    376   virtual bool HasField(const Message& message,
    377                         const FieldDescriptor* field) const = 0;
    378 
    379   // Get the number of elements of a repeated field.
    380   virtual int FieldSize(const Message& message,
    381                         const FieldDescriptor* field) const = 0;
    382 
    383   // Clear the value of a field, so that HasField() returns false or
    384   // FieldSize() returns zero.
    385   virtual void ClearField(Message* message,
    386                           const FieldDescriptor* field) const = 0;
    387 
    388   // Check if the oneof is set. Returns ture if any field in oneof
    389   // is set, false otherwise.
    390   // TODO(jieluo) - make it pure virtual after updating all
    391   // the subclasses.
    392   virtual bool HasOneof(const Message& /*message*/,
    393                         const OneofDescriptor* /*oneof_descriptor*/) const {
    394     return false;
    395   }
    396 
    397   virtual void ClearOneof(Message* /*message*/,
    398                           const OneofDescriptor* /*oneof_descriptor*/) const {}
    399 
    400   // Returns the field descriptor if the oneof is set. NULL otherwise.
    401   // TODO(jieluo) - make it pure virtual.
    402   virtual const FieldDescriptor* GetOneofFieldDescriptor(
    403       const Message& /*message*/,
    404       const OneofDescriptor* /*oneof_descriptor*/) const {
    405     return NULL;
    406   }
    407 
    408   // Removes the last element of a repeated field.
    409   // We don't provide a way to remove any element other than the last
    410   // because it invites inefficient use, such as O(n^2) filtering loops
    411   // that should have been O(n).  If you want to remove an element other
    412   // than the last, the best way to do it is to re-arrange the elements
    413   // (using Swap()) so that the one you want removed is at the end, then
    414   // call RemoveLast().
    415   virtual void RemoveLast(Message* message,
    416                           const FieldDescriptor* field) const = 0;
    417   // Removes the last element of a repeated message field, and returns the
    418   // pointer to the caller.  Caller takes ownership of the returned pointer.
    419   virtual Message* ReleaseLast(Message* message,
    420                                const FieldDescriptor* field) const = 0;
    421 
    422   // Swap the complete contents of two messages.
    423   virtual void Swap(Message* message1, Message* message2) const = 0;
    424 
    425   // Swap fields listed in fields vector of two messages.
    426   virtual void SwapFields(Message* message1,
    427                           Message* message2,
    428                           const std::vector<const FieldDescriptor*>& fields)
    429       const = 0;
    430 
    431   // Swap two elements of a repeated field.
    432   virtual void SwapElements(Message* message,
    433                             const FieldDescriptor* field,
    434                             int index1,
    435                             int index2) const = 0;
    436 
    437   // List all fields of the message which are currently set.  This includes
    438   // extensions.  Singular fields will only be listed if HasField(field) would
    439   // return true and repeated fields will only be listed if FieldSize(field)
    440   // would return non-zero.  Fields (both normal fields and extension fields)
    441   // will be listed ordered by field number.
    442   virtual void ListFields(const Message& message,
    443                           std::vector<const FieldDescriptor*>* output) const = 0;
    444 
    445   // Singular field getters ------------------------------------------
    446   // These get the value of a non-repeated field.  They return the default
    447   // value for fields that aren't set.
    448 
    449   virtual int32  GetInt32 (const Message& message,
    450                            const FieldDescriptor* field) const = 0;
    451   virtual int64  GetInt64 (const Message& message,
    452                            const FieldDescriptor* field) const = 0;
    453   virtual uint32 GetUInt32(const Message& message,
    454                            const FieldDescriptor* field) const = 0;
    455   virtual uint64 GetUInt64(const Message& message,
    456                            const FieldDescriptor* field) const = 0;
    457   virtual float  GetFloat (const Message& message,
    458                            const FieldDescriptor* field) const = 0;
    459   virtual double GetDouble(const Message& message,
    460                            const FieldDescriptor* field) const = 0;
    461   virtual bool   GetBool  (const Message& message,
    462                            const FieldDescriptor* field) const = 0;
    463   virtual string GetString(const Message& message,
    464                            const FieldDescriptor* field) const = 0;
    465   virtual const EnumValueDescriptor* GetEnum(
    466       const Message& message, const FieldDescriptor* field) const = 0;
    467   // See MutableMessage() for the meaning of the "factory" parameter.
    468   virtual const Message& GetMessage(const Message& message,
    469                                     const FieldDescriptor* field,
    470                                     MessageFactory* factory = NULL) const = 0;
    471 
    472   // Get a string value without copying, if possible.
    473   //
    474   // GetString() necessarily returns a copy of the string.  This can be
    475   // inefficient when the string is already stored in a string object in the
    476   // underlying message.  GetStringReference() will return a reference to the
    477   // underlying string in this case.  Otherwise, it will copy the string into
    478   // *scratch and return that.
    479   //
    480   // Note:  It is perfectly reasonable and useful to write code like:
    481   //     str = reflection->GetStringReference(field, &str);
    482   //   This line would ensure that only one copy of the string is made
    483   //   regardless of the field's underlying representation.  When initializing
    484   //   a newly-constructed string, though, it's just as fast and more readable
    485   //   to use code like:
    486   //     string str = reflection->GetString(field);
    487   virtual const string& GetStringReference(const Message& message,
    488                                            const FieldDescriptor* field,
    489                                            string* scratch) const = 0;
    490 
    491 
    492   // Singular field mutators -----------------------------------------
    493   // These mutate the value of a non-repeated field.
    494 
    495   virtual void SetInt32 (Message* message,
    496                          const FieldDescriptor* field, int32  value) const = 0;
    497   virtual void SetInt64 (Message* message,
    498                          const FieldDescriptor* field, int64  value) const = 0;
    499   virtual void SetUInt32(Message* message,
    500                          const FieldDescriptor* field, uint32 value) const = 0;
    501   virtual void SetUInt64(Message* message,
    502                          const FieldDescriptor* field, uint64 value) const = 0;
    503   virtual void SetFloat (Message* message,
    504                          const FieldDescriptor* field, float  value) const = 0;
    505   virtual void SetDouble(Message* message,
    506                          const FieldDescriptor* field, double value) const = 0;
    507   virtual void SetBool  (Message* message,
    508                          const FieldDescriptor* field, bool   value) const = 0;
    509   virtual void SetString(Message* message,
    510                          const FieldDescriptor* field,
    511                          const string& value) const = 0;
    512   virtual void SetEnum  (Message* message,
    513                          const FieldDescriptor* field,
    514                          const EnumValueDescriptor* value) const = 0;
    515   // Get a mutable pointer to a field with a message type.  If a MessageFactory
    516   // is provided, it will be used to construct instances of the sub-message;
    517   // otherwise, the default factory is used.  If the field is an extension that
    518   // does not live in the same pool as the containing message's descriptor (e.g.
    519   // it lives in an overlay pool), then a MessageFactory must be provided.
    520   // If you have no idea what that meant, then you probably don't need to worry
    521   // about it (don't provide a MessageFactory).  WARNING:  If the
    522   // FieldDescriptor is for a compiled-in extension, then
    523   // factory->GetPrototype(field->message_type() MUST return an instance of the
    524   // compiled-in class for this type, NOT DynamicMessage.
    525   virtual Message* MutableMessage(Message* message,
    526                                   const FieldDescriptor* field,
    527                                   MessageFactory* factory = NULL) const = 0;
    528   // Replaces the message specified by 'field' with the already-allocated object
    529   // sub_message, passing ownership to the message.  If the field contained a
    530   // message, that message is deleted.  If sub_message is NULL, the field is
    531   // cleared.
    532   virtual void SetAllocatedMessage(Message* message,
    533                                    Message* sub_message,
    534                                    const FieldDescriptor* field) const = 0;
    535   // Releases the message specified by 'field' and returns the pointer,
    536   // ReleaseMessage() will return the message the message object if it exists.
    537   // Otherwise, it may or may not return NULL.  In any case, if the return value
    538   // is non-NULL, the caller takes ownership of the pointer.
    539   // If the field existed (HasField() is true), then the returned pointer will
    540   // be the same as the pointer returned by MutableMessage().
    541   // This function has the same effect as ClearField().
    542   virtual Message* ReleaseMessage(Message* message,
    543                                   const FieldDescriptor* field,
    544                                   MessageFactory* factory = NULL) const = 0;
    545 
    546 
    547   // Repeated field getters ------------------------------------------
    548   // These get the value of one element of a repeated field.
    549 
    550   virtual int32  GetRepeatedInt32 (const Message& message,
    551                                    const FieldDescriptor* field,
    552                                    int index) const = 0;
    553   virtual int64  GetRepeatedInt64 (const Message& message,
    554                                    const FieldDescriptor* field,
    555                                    int index) const = 0;
    556   virtual uint32 GetRepeatedUInt32(const Message& message,
    557                                    const FieldDescriptor* field,
    558                                    int index) const = 0;
    559   virtual uint64 GetRepeatedUInt64(const Message& message,
    560                                    const FieldDescriptor* field,
    561                                    int index) const = 0;
    562   virtual float  GetRepeatedFloat (const Message& message,
    563                                    const FieldDescriptor* field,
    564                                    int index) const = 0;
    565   virtual double GetRepeatedDouble(const Message& message,
    566                                    const FieldDescriptor* field,
    567                                    int index) const = 0;
    568   virtual bool   GetRepeatedBool  (const Message& message,
    569                                    const FieldDescriptor* field,
    570                                    int index) const = 0;
    571   virtual string GetRepeatedString(const Message& message,
    572                                    const FieldDescriptor* field,
    573                                    int index) const = 0;
    574   virtual const EnumValueDescriptor* GetRepeatedEnum(
    575       const Message& message,
    576       const FieldDescriptor* field, int index) const = 0;
    577   virtual const Message& GetRepeatedMessage(
    578       const Message& message,
    579       const FieldDescriptor* field, int index) const = 0;
    580 
    581   // See GetStringReference(), above.
    582   virtual const string& GetRepeatedStringReference(
    583       const Message& message, const FieldDescriptor* field,
    584       int index, string* scratch) const = 0;
    585 
    586 
    587   // Repeated field mutators -----------------------------------------
    588   // These mutate the value of one element of a repeated field.
    589 
    590   virtual void SetRepeatedInt32 (Message* message,
    591                                  const FieldDescriptor* field,
    592                                  int index, int32  value) const = 0;
    593   virtual void SetRepeatedInt64 (Message* message,
    594                                  const FieldDescriptor* field,
    595                                  int index, int64  value) const = 0;
    596   virtual void SetRepeatedUInt32(Message* message,
    597                                  const FieldDescriptor* field,
    598                                  int index, uint32 value) const = 0;
    599   virtual void SetRepeatedUInt64(Message* message,
    600                                  const FieldDescriptor* field,
    601                                  int index, uint64 value) const = 0;
    602   virtual void SetRepeatedFloat (Message* message,
    603                                  const FieldDescriptor* field,
    604                                  int index, float  value) const = 0;
    605   virtual void SetRepeatedDouble(Message* message,
    606                                  const FieldDescriptor* field,
    607                                  int index, double value) const = 0;
    608   virtual void SetRepeatedBool  (Message* message,
    609                                  const FieldDescriptor* field,
    610                                  int index, bool   value) const = 0;
    611   virtual void SetRepeatedString(Message* message,
    612                                  const FieldDescriptor* field,
    613                                  int index, const string& value) const = 0;
    614   virtual void SetRepeatedEnum(Message* message,
    615                                const FieldDescriptor* field, int index,
    616                                const EnumValueDescriptor* value) const = 0;
    617   // Get a mutable pointer to an element of a repeated field with a message
    618   // type.
    619   virtual Message* MutableRepeatedMessage(
    620       Message* message, const FieldDescriptor* field, int index) const = 0;
    621 
    622 
    623   // Repeated field adders -------------------------------------------
    624   // These add an element to a repeated field.
    625 
    626   virtual void AddInt32 (Message* message,
    627                          const FieldDescriptor* field, int32  value) const = 0;
    628   virtual void AddInt64 (Message* message,
    629                          const FieldDescriptor* field, int64  value) const = 0;
    630   virtual void AddUInt32(Message* message,
    631                          const FieldDescriptor* field, uint32 value) const = 0;
    632   virtual void AddUInt64(Message* message,
    633                          const FieldDescriptor* field, uint64 value) const = 0;
    634   virtual void AddFloat (Message* message,
    635                          const FieldDescriptor* field, float  value) const = 0;
    636   virtual void AddDouble(Message* message,
    637                          const FieldDescriptor* field, double value) const = 0;
    638   virtual void AddBool  (Message* message,
    639                          const FieldDescriptor* field, bool   value) const = 0;
    640   virtual void AddString(Message* message,
    641                          const FieldDescriptor* field,
    642                          const string& value) const = 0;
    643   virtual void AddEnum  (Message* message,
    644                          const FieldDescriptor* field,
    645                          const EnumValueDescriptor* value) const = 0;
    646   // See MutableMessage() for comments on the "factory" parameter.
    647   virtual Message* AddMessage(Message* message,
    648                               const FieldDescriptor* field,
    649                               MessageFactory* factory = NULL) const = 0;
    650 
    651 
    652   // Repeated field accessors  -------------------------------------------------
    653   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
    654   // access to the data in a RepeatedField.  The methods below provide aggregate
    655   // access by exposing the RepeatedField object itself with the Message.
    656   // Applying these templates to inappropriate types will lead to an undefined
    657   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
    658   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
    659   //
    660   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
    661 
    662   // for T = Cord and all protobuf scalar types except enums.
    663   template<typename T>
    664   const RepeatedField<T>& GetRepeatedField(
    665       const Message&, const FieldDescriptor*) const;
    666 
    667   // for T = Cord and all protobuf scalar types except enums.
    668   template<typename T>
    669   RepeatedField<T>* MutableRepeatedField(
    670       Message*, const FieldDescriptor*) const;
    671 
    672   // for T = string, google::protobuf::internal::StringPieceField
    673   //         google::protobuf::Message & descendants.
    674   template<typename T>
    675   const RepeatedPtrField<T>& GetRepeatedPtrField(
    676       const Message&, const FieldDescriptor*) const;
    677 
    678   // for T = string, google::protobuf::internal::StringPieceField
    679   //         google::protobuf::Message & descendants.
    680   template<typename T>
    681   RepeatedPtrField<T>* MutableRepeatedPtrField(
    682       Message*, const FieldDescriptor*) const;
    683 
    684   // Extensions ----------------------------------------------------------------
    685 
    686   // Try to find an extension of this message type by fully-qualified field
    687   // name.  Returns NULL if no extension is known for this name or number.
    688   virtual const FieldDescriptor* FindKnownExtensionByName(
    689       const string& name) const = 0;
    690 
    691   // Try to find an extension of this message type by field number.
    692   // Returns NULL if no extension is known for this name or number.
    693   virtual const FieldDescriptor* FindKnownExtensionByNumber(
    694       int number) const = 0;
    695 
    696   // ---------------------------------------------------------------------------
    697 
    698  protected:
    699   // Obtain a pointer to a Repeated Field Structure and do some type checking:
    700   //   on field->cpp_type(),
    701   //   on field->field_option().ctype() (if ctype >= 0)
    702   //   of field->message_type() (if message_type != NULL).
    703   // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
    704   virtual void* MutableRawRepeatedField(
    705       Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
    706       int ctype, const Descriptor* message_type) const = 0;
    707 
    708  private:
    709   // Special version for specialized implementations of string.  We can't call
    710   // MutableRawRepeatedField directly here because we don't have access to
    711   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
    712   // file here is not possible because it would cause a circular include cycle.
    713   void* MutableRawRepeatedString(
    714       Message* message, const FieldDescriptor* field, bool is_string) const;
    715 
    716   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
    717 };
    718 
    719 // Abstract interface for a factory for message objects.
    720 class LIBPROTOBUF_EXPORT MessageFactory {
    721  public:
    722   inline MessageFactory() {}
    723   virtual ~MessageFactory();
    724 
    725   // Given a Descriptor, gets or constructs the default (prototype) Message
    726   // of that type.  You can then call that message's New() method to construct
    727   // a mutable message of that type.
    728   //
    729   // Calling this method twice with the same Descriptor returns the same
    730   // object.  The returned object remains property of the factory.  Also, any
    731   // objects created by calling the prototype's New() method share some data
    732   // with the prototype, so these must be destroyed before the MessageFactory
    733   // is destroyed.
    734   //
    735   // The given descriptor must outlive the returned message, and hence must
    736   // outlive the MessageFactory.
    737   //
    738   // Some implementations do not support all types.  GetPrototype() will
    739   // return NULL if the descriptor passed in is not supported.
    740   //
    741   // This method may or may not be thread-safe depending on the implementation.
    742   // Each implementation should document its own degree thread-safety.
    743   virtual const Message* GetPrototype(const Descriptor* type) = 0;
    744 
    745   // Gets a MessageFactory which supports all generated, compiled-in messages.
    746   // In other words, for any compiled-in type FooMessage, the following is true:
    747   //   MessageFactory::generated_factory()->GetPrototype(
    748   //     FooMessage::descriptor()) == FooMessage::default_instance()
    749   // This factory supports all types which are found in
    750   // DescriptorPool::generated_pool().  If given a descriptor from any other
    751   // pool, GetPrototype() will return NULL.  (You can also check if a
    752   // descriptor is for a generated message by checking if
    753   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
    754   //
    755   // This factory is 100% thread-safe; calling GetPrototype() does not modify
    756   // any shared data.
    757   //
    758   // This factory is a singleton.  The caller must not delete the object.
    759   static MessageFactory* generated_factory();
    760 
    761   // For internal use only:  Registers a .proto file at static initialization
    762   // time, to be placed in generated_factory.  The first time GetPrototype()
    763   // is called with a descriptor from this file, |register_messages| will be
    764   // called, with the file name as the parameter.  It must call
    765   // InternalRegisterGeneratedMessage() (below) to register each message type
    766   // in the file.  This strange mechanism is necessary because descriptors are
    767   // built lazily, so we can't register types by their descriptor until we
    768   // know that the descriptor exists.  |filename| must be a permanent string.
    769   static void InternalRegisterGeneratedFile(
    770       const char* filename, void (*register_messages)(const string&));
    771 
    772   // For internal use only:  Registers a message type.  Called only by the
    773   // functions which are registered with InternalRegisterGeneratedFile(),
    774   // above.
    775   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
    776                                                const Message* prototype);
    777 
    778 
    779  private:
    780   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
    781 };
    782 
    783 #define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
    784 template<>                                                       \
    785 LIBPROTOBUF_EXPORT                                               \
    786 const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
    787     const Message& message, const FieldDescriptor* field) const; \
    788                                                                  \
    789 template<>                                                       \
    790 RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
    791     Message* message, const FieldDescriptor* field) const;
    792 
    793 DECLARE_GET_REPEATED_FIELD(int32)
    794 DECLARE_GET_REPEATED_FIELD(int64)
    795 DECLARE_GET_REPEATED_FIELD(uint32)
    796 DECLARE_GET_REPEATED_FIELD(uint64)
    797 DECLARE_GET_REPEATED_FIELD(float)
    798 DECLARE_GET_REPEATED_FIELD(double)
    799 DECLARE_GET_REPEATED_FIELD(bool)
    800 
    801 #undef DECLARE_GET_REPEATED_FIELD
    802 
    803 // =============================================================================
    804 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
    805 // specializations for <string>, <StringPieceField> and <Message> and handle
    806 // everything else with the default template which will match any type having
    807 // a method with signature "static const google::protobuf::Descriptor* descriptor()".
    808 // Such a type presumably is a descendant of google::protobuf::Message.
    809 
    810 template<>
    811 inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
    812     const Message& message, const FieldDescriptor* field) const {
    813   return *static_cast<RepeatedPtrField<string>* >(
    814       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
    815 }
    816 
    817 template<>
    818 inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
    819     Message* message, const FieldDescriptor* field) const {
    820   return static_cast<RepeatedPtrField<string>* >(
    821       MutableRawRepeatedString(message, field, true));
    822 }
    823 
    824 
    825 // -----
    826 
    827 template<>
    828 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
    829     const Message& message, const FieldDescriptor* field) const {
    830   return *static_cast<RepeatedPtrField<Message>* >(
    831       MutableRawRepeatedField(const_cast<Message*>(&message), field,
    832           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    833           NULL));
    834 }
    835 
    836 template<>
    837 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
    838     Message* message, const FieldDescriptor* field) const {
    839   return static_cast<RepeatedPtrField<Message>* >(
    840       MutableRawRepeatedField(message, field,
    841           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    842           NULL));
    843 }
    844 
    845 template<typename PB>
    846 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
    847     const Message& message, const FieldDescriptor* field) const {
    848   return *static_cast<RepeatedPtrField<PB>* >(
    849       MutableRawRepeatedField(const_cast<Message*>(&message), field,
    850           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    851           PB::default_instance().GetDescriptor()));
    852 }
    853 
    854 template<typename PB>
    855 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
    856     Message* message, const FieldDescriptor* field) const {
    857   return static_cast<RepeatedPtrField<PB>* >(
    858       MutableRawRepeatedField(message, field,
    859           FieldDescriptor::CPPTYPE_MESSAGE, -1,
    860           PB::default_instance().GetDescriptor()));
    861 }
    862 
    863 }  // namespace protobuf
    864 
    865 }  // namespace google
    866 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
    867