Home | History | Annotate | Download | only in Parse
      1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expression parsing implementation for C++.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/AST/ASTContext.h"
     14 #include "RAIIObjectsForParser.h"
     15 #include "clang/AST/DeclTemplate.h"
     16 #include "clang/Basic/PrettyStackTrace.h"
     17 #include "clang/Lex/LiteralSupport.h"
     18 #include "clang/Parse/ParseDiagnostic.h"
     19 #include "clang/Parse/Parser.h"
     20 #include "clang/Sema/DeclSpec.h"
     21 #include "clang/Sema/ParsedTemplate.h"
     22 #include "clang/Sema/Scope.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 
     26 using namespace clang;
     27 
     28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
     29   switch (Kind) {
     30     // template name
     31     case tok::unknown:             return 0;
     32     // casts
     33     case tok::kw_const_cast:       return 1;
     34     case tok::kw_dynamic_cast:     return 2;
     35     case tok::kw_reinterpret_cast: return 3;
     36     case tok::kw_static_cast:      return 4;
     37     default:
     38       llvm_unreachable("Unknown type for digraph error message.");
     39   }
     40 }
     41 
     42 // Are the two tokens adjacent in the same source file?
     43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
     44   SourceManager &SM = PP.getSourceManager();
     45   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
     46   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
     47   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
     48 }
     49 
     50 // Suggest fixit for "<::" after a cast.
     51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
     52                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
     53   // Pull '<:' and ':' off token stream.
     54   if (!AtDigraph)
     55     PP.Lex(DigraphToken);
     56   PP.Lex(ColonToken);
     57 
     58   SourceRange Range;
     59   Range.setBegin(DigraphToken.getLocation());
     60   Range.setEnd(ColonToken.getLocation());
     61   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
     62       << SelectDigraphErrorMessage(Kind)
     63       << FixItHint::CreateReplacement(Range, "< ::");
     64 
     65   // Update token information to reflect their change in token type.
     66   ColonToken.setKind(tok::coloncolon);
     67   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
     68   ColonToken.setLength(2);
     69   DigraphToken.setKind(tok::less);
     70   DigraphToken.setLength(1);
     71 
     72   // Push new tokens back to token stream.
     73   PP.EnterToken(ColonToken);
     74   if (!AtDigraph)
     75     PP.EnterToken(DigraphToken);
     76 }
     77 
     78 // Check for '<::' which should be '< ::' instead of '[:' when following
     79 // a template name.
     80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
     81                                         bool EnteringContext,
     82                                         IdentifierInfo &II, CXXScopeSpec &SS) {
     83   if (!Next.is(tok::l_square) || Next.getLength() != 2)
     84     return;
     85 
     86   Token SecondToken = GetLookAheadToken(2);
     87   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
     88     return;
     89 
     90   TemplateTy Template;
     91   UnqualifiedId TemplateName;
     92   TemplateName.setIdentifier(&II, Tok.getLocation());
     93   bool MemberOfUnknownSpecialization;
     94   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
     95                               TemplateName, ObjectType, EnteringContext,
     96                               Template, MemberOfUnknownSpecialization))
     97     return;
     98 
     99   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
    100              /*AtDigraph*/false);
    101 }
    102 
    103 /// \brief Emits an error for a left parentheses after a double colon.
    104 ///
    105 /// When a '(' is found after a '::', emit an error.  Attempt to fix the token
    106 /// stream by removing the '(', and the matching ')' if found.
    107 void Parser::CheckForLParenAfterColonColon() {
    108   if (!Tok.is(tok::l_paren))
    109     return;
    110 
    111   Token LParen = Tok;
    112   Token NextTok = GetLookAheadToken(1);
    113   Token StarTok = NextTok;
    114   // Check for (identifier or (*identifier
    115   Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
    116   if (IdentifierTok.isNot(tok::identifier))
    117     return;
    118   // Eat the '('.
    119   ConsumeParen();
    120   Token RParen;
    121   RParen.setLocation(SourceLocation());
    122   // Do we have a ')' ?
    123   NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
    124   if (NextTok.is(tok::r_paren)) {
    125     RParen = NextTok;
    126     // Eat the '*' if it is present.
    127     if (StarTok.is(tok::star))
    128       ConsumeToken();
    129     // Eat the identifier.
    130     ConsumeToken();
    131     // Add the identifier token back.
    132     PP.EnterToken(IdentifierTok);
    133     // Add the '*' back if it was present.
    134     if (StarTok.is(tok::star))
    135       PP.EnterToken(StarTok);
    136     // Eat the ')'.
    137     ConsumeParen();
    138   }
    139 
    140   Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
    141       << FixItHint::CreateRemoval(LParen.getLocation())
    142       << FixItHint::CreateRemoval(RParen.getLocation());
    143 }
    144 
    145 /// \brief Parse global scope or nested-name-specifier if present.
    146 ///
    147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
    148 /// may be preceded by '::'). Note that this routine will not parse ::new or
    149 /// ::delete; it will just leave them in the token stream.
    150 ///
    151 ///       '::'[opt] nested-name-specifier
    152 ///       '::'
    153 ///
    154 ///       nested-name-specifier:
    155 ///         type-name '::'
    156 ///         namespace-name '::'
    157 ///         nested-name-specifier identifier '::'
    158 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
    159 ///
    160 ///
    161 /// \param SS the scope specifier that will be set to the parsed
    162 /// nested-name-specifier (or empty)
    163 ///
    164 /// \param ObjectType if this nested-name-specifier is being parsed following
    165 /// the "." or "->" of a member access expression, this parameter provides the
    166 /// type of the object whose members are being accessed.
    167 ///
    168 /// \param EnteringContext whether we will be entering into the context of
    169 /// the nested-name-specifier after parsing it.
    170 ///
    171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
    172 /// indicates whether this nested-name-specifier may be part of a
    173 /// pseudo-destructor name. In this case, the flag will be set false
    174 /// if we don't actually end up parsing a destructor name. Moreorover,
    175 /// if we do end up determining that we are parsing a destructor name,
    176 /// the last component of the nested-name-specifier is not parsed as
    177 /// part of the scope specifier.
    178 ///
    179 /// \param IsTypename If \c true, this nested-name-specifier is known to be
    180 /// part of a type name. This is used to improve error recovery.
    181 ///
    182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
    183 /// filled in with the leading identifier in the last component of the
    184 /// nested-name-specifier, if any.
    185 ///
    186 /// \returns true if there was an error parsing a scope specifier
    187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
    188                                             ParsedType ObjectType,
    189                                             bool EnteringContext,
    190                                             bool *MayBePseudoDestructor,
    191                                             bool IsTypename,
    192                                             IdentifierInfo **LastII) {
    193   assert(getLangOpts().CPlusPlus &&
    194          "Call sites of this function should be guarded by checking for C++");
    195 
    196   if (Tok.is(tok::annot_cxxscope)) {
    197     assert(!LastII && "want last identifier but have already annotated scope");
    198     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
    199     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
    200                                                  Tok.getAnnotationRange(),
    201                                                  SS);
    202     ConsumeToken();
    203     return false;
    204   }
    205 
    206   if (Tok.is(tok::annot_template_id)) {
    207     // If the current token is an annotated template id, it may already have
    208     // a scope specifier. Restore it.
    209     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    210     SS = TemplateId->SS;
    211   }
    212 
    213   // Has to happen before any "return false"s in this function.
    214   bool CheckForDestructor = false;
    215   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
    216     CheckForDestructor = true;
    217     *MayBePseudoDestructor = false;
    218   }
    219 
    220   if (LastII)
    221     *LastII = nullptr;
    222 
    223   bool HasScopeSpecifier = false;
    224 
    225   if (Tok.is(tok::coloncolon)) {
    226     // ::new and ::delete aren't nested-name-specifiers.
    227     tok::TokenKind NextKind = NextToken().getKind();
    228     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
    229       return false;
    230 
    231     if (NextKind == tok::l_brace) {
    232       // It is invalid to have :: {, consume the scope qualifier and pretend
    233       // like we never saw it.
    234       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
    235     } else {
    236       // '::' - Global scope qualifier.
    237       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
    238         return true;
    239 
    240       CheckForLParenAfterColonColon();
    241 
    242       HasScopeSpecifier = true;
    243     }
    244   }
    245 
    246   if (Tok.is(tok::kw___super)) {
    247     SourceLocation SuperLoc = ConsumeToken();
    248     if (!Tok.is(tok::coloncolon)) {
    249       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
    250       return true;
    251     }
    252 
    253     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
    254   }
    255 
    256   if (!HasScopeSpecifier &&
    257       (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))) {
    258     DeclSpec DS(AttrFactory);
    259     SourceLocation DeclLoc = Tok.getLocation();
    260     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
    261 
    262     SourceLocation CCLoc;
    263     if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
    264       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
    265       return false;
    266     }
    267 
    268     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
    269       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
    270 
    271     HasScopeSpecifier = true;
    272   }
    273 
    274   while (true) {
    275     if (HasScopeSpecifier) {
    276       // C++ [basic.lookup.classref]p5:
    277       //   If the qualified-id has the form
    278       //
    279       //       ::class-name-or-namespace-name::...
    280       //
    281       //   the class-name-or-namespace-name is looked up in global scope as a
    282       //   class-name or namespace-name.
    283       //
    284       // To implement this, we clear out the object type as soon as we've
    285       // seen a leading '::' or part of a nested-name-specifier.
    286       ObjectType = ParsedType();
    287 
    288       if (Tok.is(tok::code_completion)) {
    289         // Code completion for a nested-name-specifier, where the code
    290         // code completion token follows the '::'.
    291         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
    292         // Include code completion token into the range of the scope otherwise
    293         // when we try to annotate the scope tokens the dangling code completion
    294         // token will cause assertion in
    295         // Preprocessor::AnnotatePreviousCachedTokens.
    296         SS.setEndLoc(Tok.getLocation());
    297         cutOffParsing();
    298         return true;
    299       }
    300     }
    301 
    302     // nested-name-specifier:
    303     //   nested-name-specifier 'template'[opt] simple-template-id '::'
    304 
    305     // Parse the optional 'template' keyword, then make sure we have
    306     // 'identifier <' after it.
    307     if (Tok.is(tok::kw_template)) {
    308       // If we don't have a scope specifier or an object type, this isn't a
    309       // nested-name-specifier, since they aren't allowed to start with
    310       // 'template'.
    311       if (!HasScopeSpecifier && !ObjectType)
    312         break;
    313 
    314       TentativeParsingAction TPA(*this);
    315       SourceLocation TemplateKWLoc = ConsumeToken();
    316 
    317       UnqualifiedId TemplateName;
    318       if (Tok.is(tok::identifier)) {
    319         // Consume the identifier.
    320         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
    321         ConsumeToken();
    322       } else if (Tok.is(tok::kw_operator)) {
    323         // We don't need to actually parse the unqualified-id in this case,
    324         // because a simple-template-id cannot start with 'operator', but
    325         // go ahead and parse it anyway for consistency with the case where
    326         // we already annotated the template-id.
    327         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
    328                                        TemplateName)) {
    329           TPA.Commit();
    330           break;
    331         }
    332 
    333         if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
    334             TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
    335           Diag(TemplateName.getSourceRange().getBegin(),
    336                diag::err_id_after_template_in_nested_name_spec)
    337             << TemplateName.getSourceRange();
    338           TPA.Commit();
    339           break;
    340         }
    341       } else {
    342         TPA.Revert();
    343         break;
    344       }
    345 
    346       // If the next token is not '<', we have a qualified-id that refers
    347       // to a template name, such as T::template apply, but is not a
    348       // template-id.
    349       if (Tok.isNot(tok::less)) {
    350         TPA.Revert();
    351         break;
    352       }
    353 
    354       // Commit to parsing the template-id.
    355       TPA.Commit();
    356       TemplateTy Template;
    357       if (TemplateNameKind TNK
    358           = Actions.ActOnDependentTemplateName(getCurScope(),
    359                                                SS, TemplateKWLoc, TemplateName,
    360                                                ObjectType, EnteringContext,
    361                                                Template)) {
    362         if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
    363                                     TemplateName, false))
    364           return true;
    365       } else
    366         return true;
    367 
    368       continue;
    369     }
    370 
    371     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
    372       // We have
    373       //
    374       //   template-id '::'
    375       //
    376       // So we need to check whether the template-id is a simple-template-id of
    377       // the right kind (it should name a type or be dependent), and then
    378       // convert it into a type within the nested-name-specifier.
    379       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    380       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
    381         *MayBePseudoDestructor = true;
    382         return false;
    383       }
    384 
    385       if (LastII)
    386         *LastII = TemplateId->Name;
    387 
    388       // Consume the template-id token.
    389       ConsumeToken();
    390 
    391       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
    392       SourceLocation CCLoc = ConsumeToken();
    393 
    394       HasScopeSpecifier = true;
    395 
    396       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
    397                                          TemplateId->NumArgs);
    398 
    399       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
    400                                               SS,
    401                                               TemplateId->TemplateKWLoc,
    402                                               TemplateId->Template,
    403                                               TemplateId->TemplateNameLoc,
    404                                               TemplateId->LAngleLoc,
    405                                               TemplateArgsPtr,
    406                                               TemplateId->RAngleLoc,
    407                                               CCLoc,
    408                                               EnteringContext)) {
    409         SourceLocation StartLoc
    410           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
    411                                       : TemplateId->TemplateNameLoc;
    412         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
    413       }
    414 
    415       continue;
    416     }
    417 
    418     // The rest of the nested-name-specifier possibilities start with
    419     // tok::identifier.
    420     if (Tok.isNot(tok::identifier))
    421       break;
    422 
    423     IdentifierInfo &II = *Tok.getIdentifierInfo();
    424 
    425     // nested-name-specifier:
    426     //   type-name '::'
    427     //   namespace-name '::'
    428     //   nested-name-specifier identifier '::'
    429     Token Next = NextToken();
    430 
    431     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
    432     // and emit a fixit hint for it.
    433     if (Next.is(tok::colon) && !ColonIsSacred) {
    434       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
    435                                             Tok.getLocation(),
    436                                             Next.getLocation(), ObjectType,
    437                                             EnteringContext) &&
    438           // If the token after the colon isn't an identifier, it's still an
    439           // error, but they probably meant something else strange so don't
    440           // recover like this.
    441           PP.LookAhead(1).is(tok::identifier)) {
    442         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
    443           << FixItHint::CreateReplacement(Next.getLocation(), "::");
    444         // Recover as if the user wrote '::'.
    445         Next.setKind(tok::coloncolon);
    446       }
    447     }
    448 
    449     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
    450       // It is invalid to have :: {, consume the scope qualifier and pretend
    451       // like we never saw it.
    452       Token Identifier = Tok; // Stash away the identifier.
    453       ConsumeToken();         // Eat the identifier, current token is now '::'.
    454       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
    455           << tok::identifier;
    456       UnconsumeToken(Identifier); // Stick the identifier back.
    457       Next = NextToken();         // Point Next at the '{' token.
    458     }
    459 
    460     if (Next.is(tok::coloncolon)) {
    461       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
    462           !Actions.isNonTypeNestedNameSpecifier(
    463               getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
    464         *MayBePseudoDestructor = true;
    465         return false;
    466       }
    467 
    468       if (ColonIsSacred) {
    469         const Token &Next2 = GetLookAheadToken(2);
    470         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
    471             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
    472           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
    473               << Next2.getName()
    474               << FixItHint::CreateReplacement(Next.getLocation(), ":");
    475           Token ColonColon;
    476           PP.Lex(ColonColon);
    477           ColonColon.setKind(tok::colon);
    478           PP.EnterToken(ColonColon);
    479           break;
    480         }
    481       }
    482 
    483       if (LastII)
    484         *LastII = &II;
    485 
    486       // We have an identifier followed by a '::'. Lookup this name
    487       // as the name in a nested-name-specifier.
    488       Token Identifier = Tok;
    489       SourceLocation IdLoc = ConsumeToken();
    490       assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
    491              "NextToken() not working properly!");
    492       Token ColonColon = Tok;
    493       SourceLocation CCLoc = ConsumeToken();
    494 
    495       CheckForLParenAfterColonColon();
    496 
    497       bool IsCorrectedToColon = false;
    498       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
    499       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
    500                                               ObjectType, EnteringContext, SS,
    501                                               false, CorrectionFlagPtr)) {
    502         // Identifier is not recognized as a nested name, but we can have
    503         // mistyped '::' instead of ':'.
    504         if (CorrectionFlagPtr && IsCorrectedToColon) {
    505           ColonColon.setKind(tok::colon);
    506           PP.EnterToken(Tok);
    507           PP.EnterToken(ColonColon);
    508           Tok = Identifier;
    509           break;
    510         }
    511         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
    512       }
    513       HasScopeSpecifier = true;
    514       continue;
    515     }
    516 
    517     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
    518 
    519     // nested-name-specifier:
    520     //   type-name '<'
    521     if (Next.is(tok::less)) {
    522       TemplateTy Template;
    523       UnqualifiedId TemplateName;
    524       TemplateName.setIdentifier(&II, Tok.getLocation());
    525       bool MemberOfUnknownSpecialization;
    526       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
    527                                               /*hasTemplateKeyword=*/false,
    528                                                         TemplateName,
    529                                                         ObjectType,
    530                                                         EnteringContext,
    531                                                         Template,
    532                                               MemberOfUnknownSpecialization)) {
    533         // We have found a template name, so annotate this token
    534         // with a template-id annotation. We do not permit the
    535         // template-id to be translated into a type annotation,
    536         // because some clients (e.g., the parsing of class template
    537         // specializations) still want to see the original template-id
    538         // token.
    539         ConsumeToken();
    540         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
    541                                     TemplateName, false))
    542           return true;
    543         continue;
    544       }
    545 
    546       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
    547           (IsTypename || IsTemplateArgumentList(1))) {
    548         // We have something like t::getAs<T>, where getAs is a
    549         // member of an unknown specialization. However, this will only
    550         // parse correctly as a template, so suggest the keyword 'template'
    551         // before 'getAs' and treat this as a dependent template name.
    552         unsigned DiagID = diag::err_missing_dependent_template_keyword;
    553         if (getLangOpts().MicrosoftExt)
    554           DiagID = diag::warn_missing_dependent_template_keyword;
    555 
    556         Diag(Tok.getLocation(), DiagID)
    557           << II.getName()
    558           << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
    559 
    560         if (TemplateNameKind TNK
    561               = Actions.ActOnDependentTemplateName(getCurScope(),
    562                                                    SS, SourceLocation(),
    563                                                    TemplateName, ObjectType,
    564                                                    EnteringContext, Template)) {
    565           // Consume the identifier.
    566           ConsumeToken();
    567           if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
    568                                       TemplateName, false))
    569             return true;
    570         }
    571         else
    572           return true;
    573 
    574         continue;
    575       }
    576     }
    577 
    578     // We don't have any tokens that form the beginning of a
    579     // nested-name-specifier, so we're done.
    580     break;
    581   }
    582 
    583   // Even if we didn't see any pieces of a nested-name-specifier, we
    584   // still check whether there is a tilde in this position, which
    585   // indicates a potential pseudo-destructor.
    586   if (CheckForDestructor && Tok.is(tok::tilde))
    587     *MayBePseudoDestructor = true;
    588 
    589   return false;
    590 }
    591 
    592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
    593                                            Token &Replacement) {
    594   SourceLocation TemplateKWLoc;
    595   UnqualifiedId Name;
    596   if (ParseUnqualifiedId(SS,
    597                          /*EnteringContext=*/false,
    598                          /*AllowDestructorName=*/false,
    599                          /*AllowConstructorName=*/false,
    600                          /*ObjectType=*/ParsedType(), TemplateKWLoc, Name))
    601     return ExprError();
    602 
    603   // This is only the direct operand of an & operator if it is not
    604   // followed by a postfix-expression suffix.
    605   if (isAddressOfOperand && isPostfixExpressionSuffixStart())
    606     isAddressOfOperand = false;
    607 
    608   return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
    609                                    Tok.is(tok::l_paren), isAddressOfOperand,
    610                                    nullptr, /*IsInlineAsmIdentifier=*/false,
    611                                    &Replacement);
    612 }
    613 
    614 /// ParseCXXIdExpression - Handle id-expression.
    615 ///
    616 ///       id-expression:
    617 ///         unqualified-id
    618 ///         qualified-id
    619 ///
    620 ///       qualified-id:
    621 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    622 ///         '::' identifier
    623 ///         '::' operator-function-id
    624 ///         '::' template-id
    625 ///
    626 /// NOTE: The standard specifies that, for qualified-id, the parser does not
    627 /// expect:
    628 ///
    629 ///   '::' conversion-function-id
    630 ///   '::' '~' class-name
    631 ///
    632 /// This may cause a slight inconsistency on diagnostics:
    633 ///
    634 /// class C {};
    635 /// namespace A {}
    636 /// void f() {
    637 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
    638 ///                  // namespace.
    639 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
    640 /// }
    641 ///
    642 /// We simplify the parser a bit and make it work like:
    643 ///
    644 ///       qualified-id:
    645 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    646 ///         '::' unqualified-id
    647 ///
    648 /// That way Sema can handle and report similar errors for namespaces and the
    649 /// global scope.
    650 ///
    651 /// The isAddressOfOperand parameter indicates that this id-expression is a
    652 /// direct operand of the address-of operator. This is, besides member contexts,
    653 /// the only place where a qualified-id naming a non-static class member may
    654 /// appear.
    655 ///
    656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
    657   // qualified-id:
    658   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    659   //   '::' unqualified-id
    660   //
    661   CXXScopeSpec SS;
    662   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    663 
    664   Token Replacement;
    665   ExprResult Result =
    666       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
    667   if (Result.isUnset()) {
    668     // If the ExprResult is valid but null, then typo correction suggested a
    669     // keyword replacement that needs to be reparsed.
    670     UnconsumeToken(Replacement);
    671     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
    672   }
    673   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
    674                               "for a previous keyword suggestion");
    675   return Result;
    676 }
    677 
    678 /// ParseLambdaExpression - Parse a C++11 lambda expression.
    679 ///
    680 ///       lambda-expression:
    681 ///         lambda-introducer lambda-declarator[opt] compound-statement
    682 ///
    683 ///       lambda-introducer:
    684 ///         '[' lambda-capture[opt] ']'
    685 ///
    686 ///       lambda-capture:
    687 ///         capture-default
    688 ///         capture-list
    689 ///         capture-default ',' capture-list
    690 ///
    691 ///       capture-default:
    692 ///         '&'
    693 ///         '='
    694 ///
    695 ///       capture-list:
    696 ///         capture
    697 ///         capture-list ',' capture
    698 ///
    699 ///       capture:
    700 ///         simple-capture
    701 ///         init-capture     [C++1y]
    702 ///
    703 ///       simple-capture:
    704 ///         identifier
    705 ///         '&' identifier
    706 ///         'this'
    707 ///
    708 ///       init-capture:      [C++1y]
    709 ///         identifier initializer
    710 ///         '&' identifier initializer
    711 ///
    712 ///       lambda-declarator:
    713 ///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
    714 ///           'mutable'[opt] exception-specification[opt]
    715 ///           trailing-return-type[opt]
    716 ///
    717 ExprResult Parser::ParseLambdaExpression() {
    718   // Parse lambda-introducer.
    719   LambdaIntroducer Intro;
    720   Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
    721   if (DiagID) {
    722     Diag(Tok, DiagID.getValue());
    723     SkipUntil(tok::r_square, StopAtSemi);
    724     SkipUntil(tok::l_brace, StopAtSemi);
    725     SkipUntil(tok::r_brace, StopAtSemi);
    726     return ExprError();
    727   }
    728 
    729   return ParseLambdaExpressionAfterIntroducer(Intro);
    730 }
    731 
    732 /// TryParseLambdaExpression - Use lookahead and potentially tentative
    733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
    734 /// it if we are.
    735 ///
    736 /// If we are not looking at a lambda expression, returns ExprError().
    737 ExprResult Parser::TryParseLambdaExpression() {
    738   assert(getLangOpts().CPlusPlus11
    739          && Tok.is(tok::l_square)
    740          && "Not at the start of a possible lambda expression.");
    741 
    742   const Token Next = NextToken(), After = GetLookAheadToken(2);
    743 
    744   // If lookahead indicates this is a lambda...
    745   if (Next.is(tok::r_square) ||     // []
    746       Next.is(tok::equal) ||        // [=
    747       (Next.is(tok::amp) &&         // [&] or [&,
    748        (After.is(tok::r_square) ||
    749         After.is(tok::comma))) ||
    750       (Next.is(tok::identifier) &&  // [identifier]
    751        After.is(tok::r_square))) {
    752     return ParseLambdaExpression();
    753   }
    754 
    755   // If lookahead indicates an ObjC message send...
    756   // [identifier identifier
    757   if (Next.is(tok::identifier) && After.is(tok::identifier)) {
    758     return ExprEmpty();
    759   }
    760 
    761   // Here, we're stuck: lambda introducers and Objective-C message sends are
    762   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
    763   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
    764   // writing two routines to parse a lambda introducer, just try to parse
    765   // a lambda introducer first, and fall back if that fails.
    766   // (TryParseLambdaIntroducer never produces any diagnostic output.)
    767   LambdaIntroducer Intro;
    768   if (TryParseLambdaIntroducer(Intro))
    769     return ExprEmpty();
    770 
    771   return ParseLambdaExpressionAfterIntroducer(Intro);
    772 }
    773 
    774 /// \brief Parse a lambda introducer.
    775 /// \param Intro A LambdaIntroducer filled in with information about the
    776 ///        contents of the lambda-introducer.
    777 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
    778 ///        message send and a lambda expression. In this mode, we will
    779 ///        sometimes skip the initializers for init-captures and not fully
    780 ///        populate \p Intro. This flag will be set to \c true if we do so.
    781 /// \return A DiagnosticID if it hit something unexpected. The location for
    782 ///         for the diagnostic is that of the current token.
    783 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
    784                                                  bool *SkippedInits) {
    785   typedef Optional<unsigned> DiagResult;
    786 
    787   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
    788   BalancedDelimiterTracker T(*this, tok::l_square);
    789   T.consumeOpen();
    790 
    791   Intro.Range.setBegin(T.getOpenLocation());
    792 
    793   bool first = true;
    794 
    795   // Parse capture-default.
    796   if (Tok.is(tok::amp) &&
    797       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
    798     Intro.Default = LCD_ByRef;
    799     Intro.DefaultLoc = ConsumeToken();
    800     first = false;
    801   } else if (Tok.is(tok::equal)) {
    802     Intro.Default = LCD_ByCopy;
    803     Intro.DefaultLoc = ConsumeToken();
    804     first = false;
    805   }
    806 
    807   while (Tok.isNot(tok::r_square)) {
    808     if (!first) {
    809       if (Tok.isNot(tok::comma)) {
    810         // Provide a completion for a lambda introducer here. Except
    811         // in Objective-C, where this is Almost Surely meant to be a message
    812         // send. In that case, fail here and let the ObjC message
    813         // expression parser perform the completion.
    814         if (Tok.is(tok::code_completion) &&
    815             !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
    816               !Intro.Captures.empty())) {
    817           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    818                                                /*AfterAmpersand=*/false);
    819           cutOffParsing();
    820           break;
    821         }
    822 
    823         return DiagResult(diag::err_expected_comma_or_rsquare);
    824       }
    825       ConsumeToken();
    826     }
    827 
    828     if (Tok.is(tok::code_completion)) {
    829       // If we're in Objective-C++ and we have a bare '[', then this is more
    830       // likely to be a message receiver.
    831       if (getLangOpts().ObjC1 && first)
    832         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
    833       else
    834         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    835                                              /*AfterAmpersand=*/false);
    836       cutOffParsing();
    837       break;
    838     }
    839 
    840     first = false;
    841 
    842     // Parse capture.
    843     LambdaCaptureKind Kind = LCK_ByCopy;
    844     SourceLocation Loc;
    845     IdentifierInfo *Id = nullptr;
    846     SourceLocation EllipsisLoc;
    847     ExprResult Init;
    848 
    849     if (Tok.is(tok::kw_this)) {
    850       Kind = LCK_This;
    851       Loc = ConsumeToken();
    852     } else {
    853       if (Tok.is(tok::amp)) {
    854         Kind = LCK_ByRef;
    855         ConsumeToken();
    856 
    857         if (Tok.is(tok::code_completion)) {
    858           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    859                                                /*AfterAmpersand=*/true);
    860           cutOffParsing();
    861           break;
    862         }
    863       }
    864 
    865       if (Tok.is(tok::identifier)) {
    866         Id = Tok.getIdentifierInfo();
    867         Loc = ConsumeToken();
    868       } else if (Tok.is(tok::kw_this)) {
    869         // FIXME: If we want to suggest a fixit here, will need to return more
    870         // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
    871         // Clear()ed to prevent emission in case of tentative parsing?
    872         return DiagResult(diag::err_this_captured_by_reference);
    873       } else {
    874         return DiagResult(diag::err_expected_capture);
    875       }
    876 
    877       if (Tok.is(tok::l_paren)) {
    878         BalancedDelimiterTracker Parens(*this, tok::l_paren);
    879         Parens.consumeOpen();
    880 
    881         ExprVector Exprs;
    882         CommaLocsTy Commas;
    883         if (SkippedInits) {
    884           Parens.skipToEnd();
    885           *SkippedInits = true;
    886         } else if (ParseExpressionList(Exprs, Commas)) {
    887           Parens.skipToEnd();
    888           Init = ExprError();
    889         } else {
    890           Parens.consumeClose();
    891           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
    892                                             Parens.getCloseLocation(),
    893                                             Exprs);
    894         }
    895       } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
    896         // Each lambda init-capture forms its own full expression, which clears
    897         // Actions.MaybeODRUseExprs. So create an expression evaluation context
    898         // to save the necessary state, and restore it later.
    899         EnterExpressionEvaluationContext EC(Actions,
    900                                             Sema::PotentiallyEvaluated);
    901         bool HadEquals = TryConsumeToken(tok::equal);
    902 
    903         if (!SkippedInits) {
    904           // Warn on constructs that will change meaning when we implement N3922
    905           if (!HadEquals && Tok.is(tok::l_brace)) {
    906             Diag(Tok, diag::warn_init_capture_direct_list_init)
    907               << FixItHint::CreateInsertion(Tok.getLocation(), "=");
    908           }
    909           Init = ParseInitializer();
    910         } else if (Tok.is(tok::l_brace)) {
    911           BalancedDelimiterTracker Braces(*this, tok::l_brace);
    912           Braces.consumeOpen();
    913           Braces.skipToEnd();
    914           *SkippedInits = true;
    915         } else {
    916           // We're disambiguating this:
    917           //
    918           //   [..., x = expr
    919           //
    920           // We need to find the end of the following expression in order to
    921           // determine whether this is an Obj-C message send's receiver, a
    922           // C99 designator, or a lambda init-capture.
    923           //
    924           // Parse the expression to find where it ends, and annotate it back
    925           // onto the tokens. We would have parsed this expression the same way
    926           // in either case: both the RHS of an init-capture and the RHS of an
    927           // assignment expression are parsed as an initializer-clause, and in
    928           // neither case can anything be added to the scope between the '[' and
    929           // here.
    930           //
    931           // FIXME: This is horrible. Adding a mechanism to skip an expression
    932           // would be much cleaner.
    933           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
    934           // that instead. (And if we see a ':' with no matching '?', we can
    935           // classify this as an Obj-C message send.)
    936           SourceLocation StartLoc = Tok.getLocation();
    937           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
    938           Init = ParseInitializer();
    939 
    940           if (Tok.getLocation() != StartLoc) {
    941             // Back out the lexing of the token after the initializer.
    942             PP.RevertCachedTokens(1);
    943 
    944             // Replace the consumed tokens with an appropriate annotation.
    945             Tok.setLocation(StartLoc);
    946             Tok.setKind(tok::annot_primary_expr);
    947             setExprAnnotation(Tok, Init);
    948             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
    949             PP.AnnotateCachedTokens(Tok);
    950 
    951             // Consume the annotated initializer.
    952             ConsumeToken();
    953           }
    954         }
    955       } else
    956         TryConsumeToken(tok::ellipsis, EllipsisLoc);
    957     }
    958     // If this is an init capture, process the initialization expression
    959     // right away.  For lambda init-captures such as the following:
    960     // const int x = 10;
    961     //  auto L = [i = x+1](int a) {
    962     //    return [j = x+2,
    963     //           &k = x](char b) { };
    964     //  };
    965     // keep in mind that each lambda init-capture has to have:
    966     //  - its initialization expression executed in the context
    967     //    of the enclosing/parent decl-context.
    968     //  - but the variable itself has to be 'injected' into the
    969     //    decl-context of its lambda's call-operator (which has
    970     //    not yet been created).
    971     // Each init-expression is a full-expression that has to get
    972     // Sema-analyzed (for capturing etc.) before its lambda's
    973     // call-operator's decl-context, scope & scopeinfo are pushed on their
    974     // respective stacks.  Thus if any variable is odr-used in the init-capture
    975     // it will correctly get captured in the enclosing lambda, if one exists.
    976     // The init-variables above are created later once the lambdascope and
    977     // call-operators decl-context is pushed onto its respective stack.
    978 
    979     // Since the lambda init-capture's initializer expression occurs in the
    980     // context of the enclosing function or lambda, therefore we can not wait
    981     // till a lambda scope has been pushed on before deciding whether the
    982     // variable needs to be captured.  We also need to process all
    983     // lvalue-to-rvalue conversions and discarded-value conversions,
    984     // so that we can avoid capturing certain constant variables.
    985     // For e.g.,
    986     //  void test() {
    987     //   const int x = 10;
    988     //   auto L = [&z = x](char a) { <-- don't capture by the current lambda
    989     //     return [y = x](int i) { <-- don't capture by enclosing lambda
    990     //          return y;
    991     //     }
    992     //   };
    993     // If x was not const, the second use would require 'L' to capture, and
    994     // that would be an error.
    995 
    996     ParsedType InitCaptureParsedType;
    997     if (Init.isUsable()) {
    998       // Get the pointer and store it in an lvalue, so we can use it as an
    999       // out argument.
   1000       Expr *InitExpr = Init.get();
   1001       // This performs any lvalue-to-rvalue conversions if necessary, which
   1002       // can affect what gets captured in the containing decl-context.
   1003       QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization(
   1004         Loc, Kind == LCK_ByRef, Id, InitExpr);
   1005       Init = InitExpr;
   1006       InitCaptureParsedType.set(InitCaptureType);
   1007     }
   1008     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType);
   1009   }
   1010 
   1011   T.consumeClose();
   1012   Intro.Range.setEnd(T.getCloseLocation());
   1013   return DiagResult();
   1014 }
   1015 
   1016 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
   1017 ///
   1018 /// Returns true if it hit something unexpected.
   1019 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
   1020   TentativeParsingAction PA(*this);
   1021 
   1022   bool SkippedInits = false;
   1023   Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
   1024 
   1025   if (DiagID) {
   1026     PA.Revert();
   1027     return true;
   1028   }
   1029 
   1030   if (SkippedInits) {
   1031     // Parse it again, but this time parse the init-captures too.
   1032     PA.Revert();
   1033     Intro = LambdaIntroducer();
   1034     DiagID = ParseLambdaIntroducer(Intro);
   1035     assert(!DiagID && "parsing lambda-introducer failed on reparse");
   1036     return false;
   1037   }
   1038 
   1039   PA.Commit();
   1040   return false;
   1041 }
   1042 
   1043 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
   1044 /// expression.
   1045 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
   1046                      LambdaIntroducer &Intro) {
   1047   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
   1048   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
   1049 
   1050   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
   1051                                 "lambda expression parsing");
   1052 
   1053 
   1054 
   1055   // FIXME: Call into Actions to add any init-capture declarations to the
   1056   // scope while parsing the lambda-declarator and compound-statement.
   1057 
   1058   // Parse lambda-declarator[opt].
   1059   DeclSpec DS(AttrFactory);
   1060   Declarator D(DS, Declarator::LambdaExprContext);
   1061   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
   1062   Actions.PushLambdaScope();
   1063 
   1064   TypeResult TrailingReturnType;
   1065   if (Tok.is(tok::l_paren)) {
   1066     ParseScope PrototypeScope(this,
   1067                               Scope::FunctionPrototypeScope |
   1068                               Scope::FunctionDeclarationScope |
   1069                               Scope::DeclScope);
   1070 
   1071     SourceLocation DeclEndLoc;
   1072     BalancedDelimiterTracker T(*this, tok::l_paren);
   1073     T.consumeOpen();
   1074     SourceLocation LParenLoc = T.getOpenLocation();
   1075 
   1076     // Parse parameter-declaration-clause.
   1077     ParsedAttributes Attr(AttrFactory);
   1078     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
   1079     SourceLocation EllipsisLoc;
   1080 
   1081     if (Tok.isNot(tok::r_paren)) {
   1082       Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
   1083       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
   1084       // For a generic lambda, each 'auto' within the parameter declaration
   1085       // clause creates a template type parameter, so increment the depth.
   1086       if (Actions.getCurGenericLambda())
   1087         ++CurTemplateDepthTracker;
   1088     }
   1089     T.consumeClose();
   1090     SourceLocation RParenLoc = T.getCloseLocation();
   1091     DeclEndLoc = RParenLoc;
   1092 
   1093     // GNU-style attributes must be parsed before the mutable specifier to be
   1094     // compatible with GCC.
   1095     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
   1096 
   1097     // MSVC-style attributes must be parsed before the mutable specifier to be
   1098     // compatible with MSVC.
   1099     while (Tok.is(tok::kw___declspec))
   1100       ParseMicrosoftDeclSpec(Attr);
   1101 
   1102     // Parse 'mutable'[opt].
   1103     SourceLocation MutableLoc;
   1104     if (TryConsumeToken(tok::kw_mutable, MutableLoc))
   1105       DeclEndLoc = MutableLoc;
   1106 
   1107     // Parse exception-specification[opt].
   1108     ExceptionSpecificationType ESpecType = EST_None;
   1109     SourceRange ESpecRange;
   1110     SmallVector<ParsedType, 2> DynamicExceptions;
   1111     SmallVector<SourceRange, 2> DynamicExceptionRanges;
   1112     ExprResult NoexceptExpr;
   1113     CachedTokens *ExceptionSpecTokens;
   1114     ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
   1115                                                ESpecRange,
   1116                                                DynamicExceptions,
   1117                                                DynamicExceptionRanges,
   1118                                                NoexceptExpr,
   1119                                                ExceptionSpecTokens);
   1120 
   1121     if (ESpecType != EST_None)
   1122       DeclEndLoc = ESpecRange.getEnd();
   1123 
   1124     // Parse attribute-specifier[opt].
   1125     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
   1126 
   1127     SourceLocation FunLocalRangeEnd = DeclEndLoc;
   1128 
   1129     // Parse trailing-return-type[opt].
   1130     if (Tok.is(tok::arrow)) {
   1131       FunLocalRangeEnd = Tok.getLocation();
   1132       SourceRange Range;
   1133       TrailingReturnType = ParseTrailingReturnType(Range);
   1134       if (Range.getEnd().isValid())
   1135         DeclEndLoc = Range.getEnd();
   1136     }
   1137 
   1138     PrototypeScope.Exit();
   1139 
   1140     SourceLocation NoLoc;
   1141     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
   1142                                            /*isAmbiguous=*/false,
   1143                                            LParenLoc,
   1144                                            ParamInfo.data(), ParamInfo.size(),
   1145                                            EllipsisLoc, RParenLoc,
   1146                                            DS.getTypeQualifiers(),
   1147                                            /*RefQualifierIsLValueRef=*/true,
   1148                                            /*RefQualifierLoc=*/NoLoc,
   1149                                            /*ConstQualifierLoc=*/NoLoc,
   1150                                            /*VolatileQualifierLoc=*/NoLoc,
   1151                                            /*RestrictQualifierLoc=*/NoLoc,
   1152                                            MutableLoc,
   1153                                            ESpecType, ESpecRange.getBegin(),
   1154                                            DynamicExceptions.data(),
   1155                                            DynamicExceptionRanges.data(),
   1156                                            DynamicExceptions.size(),
   1157                                            NoexceptExpr.isUsable() ?
   1158                                              NoexceptExpr.get() : nullptr,
   1159                                            /*ExceptionSpecTokens*/nullptr,
   1160                                            LParenLoc, FunLocalRangeEnd, D,
   1161                                            TrailingReturnType),
   1162                   Attr, DeclEndLoc);
   1163   } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) ||
   1164              Tok.is(tok::kw___attribute) ||
   1165              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
   1166     // It's common to forget that one needs '()' before 'mutable', an attribute
   1167     // specifier, or the result type. Deal with this.
   1168     unsigned TokKind = 0;
   1169     switch (Tok.getKind()) {
   1170     case tok::kw_mutable: TokKind = 0; break;
   1171     case tok::arrow: TokKind = 1; break;
   1172     case tok::kw___attribute:
   1173     case tok::l_square: TokKind = 2; break;
   1174     default: llvm_unreachable("Unknown token kind");
   1175     }
   1176 
   1177     Diag(Tok, diag::err_lambda_missing_parens)
   1178       << TokKind
   1179       << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
   1180     SourceLocation DeclLoc = Tok.getLocation();
   1181     SourceLocation DeclEndLoc = DeclLoc;
   1182 
   1183     // GNU-style attributes must be parsed before the mutable specifier to be
   1184     // compatible with GCC.
   1185     ParsedAttributes Attr(AttrFactory);
   1186     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
   1187 
   1188     // Parse 'mutable', if it's there.
   1189     SourceLocation MutableLoc;
   1190     if (Tok.is(tok::kw_mutable)) {
   1191       MutableLoc = ConsumeToken();
   1192       DeclEndLoc = MutableLoc;
   1193     }
   1194 
   1195     // Parse attribute-specifier[opt].
   1196     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
   1197 
   1198     // Parse the return type, if there is one.
   1199     if (Tok.is(tok::arrow)) {
   1200       SourceRange Range;
   1201       TrailingReturnType = ParseTrailingReturnType(Range);
   1202       if (Range.getEnd().isValid())
   1203         DeclEndLoc = Range.getEnd();
   1204     }
   1205 
   1206     SourceLocation NoLoc;
   1207     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
   1208                                                /*isAmbiguous=*/false,
   1209                                                /*LParenLoc=*/NoLoc,
   1210                                                /*Params=*/nullptr,
   1211                                                /*NumParams=*/0,
   1212                                                /*EllipsisLoc=*/NoLoc,
   1213                                                /*RParenLoc=*/NoLoc,
   1214                                                /*TypeQuals=*/0,
   1215                                                /*RefQualifierIsLValueRef=*/true,
   1216                                                /*RefQualifierLoc=*/NoLoc,
   1217                                                /*ConstQualifierLoc=*/NoLoc,
   1218                                                /*VolatileQualifierLoc=*/NoLoc,
   1219                                                /*RestrictQualifierLoc=*/NoLoc,
   1220                                                MutableLoc,
   1221                                                EST_None,
   1222                                                /*ESpecLoc=*/NoLoc,
   1223                                                /*Exceptions=*/nullptr,
   1224                                                /*ExceptionRanges=*/nullptr,
   1225                                                /*NumExceptions=*/0,
   1226                                                /*NoexceptExpr=*/nullptr,
   1227                                                /*ExceptionSpecTokens=*/nullptr,
   1228                                                DeclLoc, DeclEndLoc, D,
   1229                                                TrailingReturnType),
   1230                   Attr, DeclEndLoc);
   1231   }
   1232 
   1233 
   1234   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
   1235   // it.
   1236   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
   1237   ParseScope BodyScope(this, ScopeFlags);
   1238 
   1239   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
   1240 
   1241   // Parse compound-statement.
   1242   if (!Tok.is(tok::l_brace)) {
   1243     Diag(Tok, diag::err_expected_lambda_body);
   1244     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
   1245     return ExprError();
   1246   }
   1247 
   1248   StmtResult Stmt(ParseCompoundStatementBody());
   1249   BodyScope.Exit();
   1250 
   1251   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
   1252     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
   1253 
   1254   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
   1255   return ExprError();
   1256 }
   1257 
   1258 /// ParseCXXCasts - This handles the various ways to cast expressions to another
   1259 /// type.
   1260 ///
   1261 ///       postfix-expression: [C++ 5.2p1]
   1262 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
   1263 ///         'static_cast' '<' type-name '>' '(' expression ')'
   1264 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
   1265 ///         'const_cast' '<' type-name '>' '(' expression ')'
   1266 ///
   1267 ExprResult Parser::ParseCXXCasts() {
   1268   tok::TokenKind Kind = Tok.getKind();
   1269   const char *CastName = nullptr; // For error messages
   1270 
   1271   switch (Kind) {
   1272   default: llvm_unreachable("Unknown C++ cast!");
   1273   case tok::kw_const_cast:       CastName = "const_cast";       break;
   1274   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
   1275   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
   1276   case tok::kw_static_cast:      CastName = "static_cast";      break;
   1277   }
   1278 
   1279   SourceLocation OpLoc = ConsumeToken();
   1280   SourceLocation LAngleBracketLoc = Tok.getLocation();
   1281 
   1282   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
   1283   // diagnose error, suggest fix, and recover parsing.
   1284   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
   1285     Token Next = NextToken();
   1286     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
   1287       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
   1288   }
   1289 
   1290   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
   1291     return ExprError();
   1292 
   1293   // Parse the common declaration-specifiers piece.
   1294   DeclSpec DS(AttrFactory);
   1295   ParseSpecifierQualifierList(DS);
   1296 
   1297   // Parse the abstract-declarator, if present.
   1298   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1299   ParseDeclarator(DeclaratorInfo);
   1300 
   1301   SourceLocation RAngleBracketLoc = Tok.getLocation();
   1302 
   1303   if (ExpectAndConsume(tok::greater))
   1304     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
   1305 
   1306   SourceLocation LParenLoc, RParenLoc;
   1307   BalancedDelimiterTracker T(*this, tok::l_paren);
   1308 
   1309   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
   1310     return ExprError();
   1311 
   1312   ExprResult Result = ParseExpression();
   1313 
   1314   // Match the ')'.
   1315   T.consumeClose();
   1316 
   1317   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
   1318     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
   1319                                        LAngleBracketLoc, DeclaratorInfo,
   1320                                        RAngleBracketLoc,
   1321                                        T.getOpenLocation(), Result.get(),
   1322                                        T.getCloseLocation());
   1323 
   1324   return Result;
   1325 }
   1326 
   1327 /// ParseCXXTypeid - This handles the C++ typeid expression.
   1328 ///
   1329 ///       postfix-expression: [C++ 5.2p1]
   1330 ///         'typeid' '(' expression ')'
   1331 ///         'typeid' '(' type-id ')'
   1332 ///
   1333 ExprResult Parser::ParseCXXTypeid() {
   1334   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
   1335 
   1336   SourceLocation OpLoc = ConsumeToken();
   1337   SourceLocation LParenLoc, RParenLoc;
   1338   BalancedDelimiterTracker T(*this, tok::l_paren);
   1339 
   1340   // typeid expressions are always parenthesized.
   1341   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
   1342     return ExprError();
   1343   LParenLoc = T.getOpenLocation();
   1344 
   1345   ExprResult Result;
   1346 
   1347   // C++0x [expr.typeid]p3:
   1348   //   When typeid is applied to an expression other than an lvalue of a
   1349   //   polymorphic class type [...] The expression is an unevaluated
   1350   //   operand (Clause 5).
   1351   //
   1352   // Note that we can't tell whether the expression is an lvalue of a
   1353   // polymorphic class type until after we've parsed the expression; we
   1354   // speculatively assume the subexpression is unevaluated, and fix it up
   1355   // later.
   1356   //
   1357   // We enter the unevaluated context before trying to determine whether we
   1358   // have a type-id, because the tentative parse logic will try to resolve
   1359   // names, and must treat them as unevaluated.
   1360   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1361                                                Sema::ReuseLambdaContextDecl);
   1362 
   1363   if (isTypeIdInParens()) {
   1364     TypeResult Ty = ParseTypeName();
   1365 
   1366     // Match the ')'.
   1367     T.consumeClose();
   1368     RParenLoc = T.getCloseLocation();
   1369     if (Ty.isInvalid() || RParenLoc.isInvalid())
   1370       return ExprError();
   1371 
   1372     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
   1373                                     Ty.get().getAsOpaquePtr(), RParenLoc);
   1374   } else {
   1375     Result = ParseExpression();
   1376 
   1377     // Match the ')'.
   1378     if (Result.isInvalid())
   1379       SkipUntil(tok::r_paren, StopAtSemi);
   1380     else {
   1381       T.consumeClose();
   1382       RParenLoc = T.getCloseLocation();
   1383       if (RParenLoc.isInvalid())
   1384         return ExprError();
   1385 
   1386       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
   1387                                       Result.get(), RParenLoc);
   1388     }
   1389   }
   1390 
   1391   return Result;
   1392 }
   1393 
   1394 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
   1395 ///
   1396 ///         '__uuidof' '(' expression ')'
   1397 ///         '__uuidof' '(' type-id ')'
   1398 ///
   1399 ExprResult Parser::ParseCXXUuidof() {
   1400   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
   1401 
   1402   SourceLocation OpLoc = ConsumeToken();
   1403   BalancedDelimiterTracker T(*this, tok::l_paren);
   1404 
   1405   // __uuidof expressions are always parenthesized.
   1406   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
   1407     return ExprError();
   1408 
   1409   ExprResult Result;
   1410 
   1411   if (isTypeIdInParens()) {
   1412     TypeResult Ty = ParseTypeName();
   1413 
   1414     // Match the ')'.
   1415     T.consumeClose();
   1416 
   1417     if (Ty.isInvalid())
   1418       return ExprError();
   1419 
   1420     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
   1421                                     Ty.get().getAsOpaquePtr(),
   1422                                     T.getCloseLocation());
   1423   } else {
   1424     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   1425     Result = ParseExpression();
   1426 
   1427     // Match the ')'.
   1428     if (Result.isInvalid())
   1429       SkipUntil(tok::r_paren, StopAtSemi);
   1430     else {
   1431       T.consumeClose();
   1432 
   1433       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
   1434                                       /*isType=*/false,
   1435                                       Result.get(), T.getCloseLocation());
   1436     }
   1437   }
   1438 
   1439   return Result;
   1440 }
   1441 
   1442 /// \brief Parse a C++ pseudo-destructor expression after the base,
   1443 /// . or -> operator, and nested-name-specifier have already been
   1444 /// parsed.
   1445 ///
   1446 ///       postfix-expression: [C++ 5.2]
   1447 ///         postfix-expression . pseudo-destructor-name
   1448 ///         postfix-expression -> pseudo-destructor-name
   1449 ///
   1450 ///       pseudo-destructor-name:
   1451 ///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
   1452 ///         ::[opt] nested-name-specifier template simple-template-id ::
   1453 ///                 ~type-name
   1454 ///         ::[opt] nested-name-specifier[opt] ~type-name
   1455 ///
   1456 ExprResult
   1457 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
   1458                                  tok::TokenKind OpKind,
   1459                                  CXXScopeSpec &SS,
   1460                                  ParsedType ObjectType) {
   1461   // We're parsing either a pseudo-destructor-name or a dependent
   1462   // member access that has the same form as a
   1463   // pseudo-destructor-name. We parse both in the same way and let
   1464   // the action model sort them out.
   1465   //
   1466   // Note that the ::[opt] nested-name-specifier[opt] has already
   1467   // been parsed, and if there was a simple-template-id, it has
   1468   // been coalesced into a template-id annotation token.
   1469   UnqualifiedId FirstTypeName;
   1470   SourceLocation CCLoc;
   1471   if (Tok.is(tok::identifier)) {
   1472     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
   1473     ConsumeToken();
   1474     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
   1475     CCLoc = ConsumeToken();
   1476   } else if (Tok.is(tok::annot_template_id)) {
   1477     // FIXME: retrieve TemplateKWLoc from template-id annotation and
   1478     // store it in the pseudo-dtor node (to be used when instantiating it).
   1479     FirstTypeName.setTemplateId(
   1480                               (TemplateIdAnnotation *)Tok.getAnnotationValue());
   1481     ConsumeToken();
   1482     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
   1483     CCLoc = ConsumeToken();
   1484   } else {
   1485     FirstTypeName.setIdentifier(nullptr, SourceLocation());
   1486   }
   1487 
   1488   // Parse the tilde.
   1489   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
   1490   SourceLocation TildeLoc = ConsumeToken();
   1491 
   1492   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
   1493     DeclSpec DS(AttrFactory);
   1494     ParseDecltypeSpecifier(DS);
   1495     if (DS.getTypeSpecType() == TST_error)
   1496       return ExprError();
   1497     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
   1498                                              TildeLoc, DS);
   1499   }
   1500 
   1501   if (!Tok.is(tok::identifier)) {
   1502     Diag(Tok, diag::err_destructor_tilde_identifier);
   1503     return ExprError();
   1504   }
   1505 
   1506   // Parse the second type.
   1507   UnqualifiedId SecondTypeName;
   1508   IdentifierInfo *Name = Tok.getIdentifierInfo();
   1509   SourceLocation NameLoc = ConsumeToken();
   1510   SecondTypeName.setIdentifier(Name, NameLoc);
   1511 
   1512   // If there is a '<', the second type name is a template-id. Parse
   1513   // it as such.
   1514   if (Tok.is(tok::less) &&
   1515       ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
   1516                                    Name, NameLoc,
   1517                                    false, ObjectType, SecondTypeName,
   1518                                    /*AssumeTemplateName=*/true))
   1519     return ExprError();
   1520 
   1521   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
   1522                                            SS, FirstTypeName, CCLoc, TildeLoc,
   1523                                            SecondTypeName);
   1524 }
   1525 
   1526 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
   1527 ///
   1528 ///       boolean-literal: [C++ 2.13.5]
   1529 ///         'true'
   1530 ///         'false'
   1531 ExprResult Parser::ParseCXXBoolLiteral() {
   1532   tok::TokenKind Kind = Tok.getKind();
   1533   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
   1534 }
   1535 
   1536 /// ParseThrowExpression - This handles the C++ throw expression.
   1537 ///
   1538 ///       throw-expression: [C++ 15]
   1539 ///         'throw' assignment-expression[opt]
   1540 ExprResult Parser::ParseThrowExpression() {
   1541   assert(Tok.is(tok::kw_throw) && "Not throw!");
   1542   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
   1543 
   1544   // If the current token isn't the start of an assignment-expression,
   1545   // then the expression is not present.  This handles things like:
   1546   //   "C ? throw : (void)42", which is crazy but legal.
   1547   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
   1548   case tok::semi:
   1549   case tok::r_paren:
   1550   case tok::r_square:
   1551   case tok::r_brace:
   1552   case tok::colon:
   1553   case tok::comma:
   1554     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
   1555 
   1556   default:
   1557     ExprResult Expr(ParseAssignmentExpression());
   1558     if (Expr.isInvalid()) return Expr;
   1559     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
   1560   }
   1561 }
   1562 
   1563 /// ParseCXXThis - This handles the C++ 'this' pointer.
   1564 ///
   1565 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
   1566 /// a non-lvalue expression whose value is the address of the object for which
   1567 /// the function is called.
   1568 ExprResult Parser::ParseCXXThis() {
   1569   assert(Tok.is(tok::kw_this) && "Not 'this'!");
   1570   SourceLocation ThisLoc = ConsumeToken();
   1571   return Actions.ActOnCXXThis(ThisLoc);
   1572 }
   1573 
   1574 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
   1575 /// Can be interpreted either as function-style casting ("int(x)")
   1576 /// or class type construction ("ClassType(x,y,z)")
   1577 /// or creation of a value-initialized type ("int()").
   1578 /// See [C++ 5.2.3].
   1579 ///
   1580 ///       postfix-expression: [C++ 5.2p1]
   1581 ///         simple-type-specifier '(' expression-list[opt] ')'
   1582 /// [C++0x] simple-type-specifier braced-init-list
   1583 ///         typename-specifier '(' expression-list[opt] ')'
   1584 /// [C++0x] typename-specifier braced-init-list
   1585 ///
   1586 ExprResult
   1587 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
   1588   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1589   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
   1590 
   1591   assert((Tok.is(tok::l_paren) ||
   1592           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
   1593          && "Expected '(' or '{'!");
   1594 
   1595   if (Tok.is(tok::l_brace)) {
   1596     ExprResult Init = ParseBraceInitializer();
   1597     if (Init.isInvalid())
   1598       return Init;
   1599     Expr *InitList = Init.get();
   1600     return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
   1601                                              MultiExprArg(&InitList, 1),
   1602                                              SourceLocation());
   1603   } else {
   1604     BalancedDelimiterTracker T(*this, tok::l_paren);
   1605     T.consumeOpen();
   1606 
   1607     ExprVector Exprs;
   1608     CommaLocsTy CommaLocs;
   1609 
   1610     if (Tok.isNot(tok::r_paren)) {
   1611       if (ParseExpressionList(Exprs, CommaLocs, [&] {
   1612             Actions.CodeCompleteConstructor(getCurScope(),
   1613                                       TypeRep.get()->getCanonicalTypeInternal(),
   1614                                             DS.getLocEnd(), Exprs);
   1615          })) {
   1616         SkipUntil(tok::r_paren, StopAtSemi);
   1617         return ExprError();
   1618       }
   1619     }
   1620 
   1621     // Match the ')'.
   1622     T.consumeClose();
   1623 
   1624     // TypeRep could be null, if it references an invalid typedef.
   1625     if (!TypeRep)
   1626       return ExprError();
   1627 
   1628     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
   1629            "Unexpected number of commas!");
   1630     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
   1631                                              Exprs,
   1632                                              T.getCloseLocation());
   1633   }
   1634 }
   1635 
   1636 /// ParseCXXCondition - if/switch/while condition expression.
   1637 ///
   1638 ///       condition:
   1639 ///         expression
   1640 ///         type-specifier-seq declarator '=' assignment-expression
   1641 /// [C++11] type-specifier-seq declarator '=' initializer-clause
   1642 /// [C++11] type-specifier-seq declarator braced-init-list
   1643 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
   1644 ///             '=' assignment-expression
   1645 ///
   1646 /// \param ExprOut if the condition was parsed as an expression, the parsed
   1647 /// expression.
   1648 ///
   1649 /// \param DeclOut if the condition was parsed as a declaration, the parsed
   1650 /// declaration.
   1651 ///
   1652 /// \param Loc The location of the start of the statement that requires this
   1653 /// condition, e.g., the "for" in a for loop.
   1654 ///
   1655 /// \param ConvertToBoolean Whether the condition expression should be
   1656 /// converted to a boolean value.
   1657 ///
   1658 /// \returns true if there was a parsing, false otherwise.
   1659 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
   1660                                Decl *&DeclOut,
   1661                                SourceLocation Loc,
   1662                                bool ConvertToBoolean) {
   1663   if (Tok.is(tok::code_completion)) {
   1664     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
   1665     cutOffParsing();
   1666     return true;
   1667   }
   1668 
   1669   ParsedAttributesWithRange attrs(AttrFactory);
   1670   MaybeParseCXX11Attributes(attrs);
   1671 
   1672   if (!isCXXConditionDeclaration()) {
   1673     ProhibitAttributes(attrs);
   1674 
   1675     // Parse the expression.
   1676     ExprOut = ParseExpression(); // expression
   1677     DeclOut = nullptr;
   1678     if (ExprOut.isInvalid())
   1679       return true;
   1680 
   1681     // If required, convert to a boolean value.
   1682     if (ConvertToBoolean)
   1683       ExprOut
   1684         = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
   1685     return ExprOut.isInvalid();
   1686   }
   1687 
   1688   // type-specifier-seq
   1689   DeclSpec DS(AttrFactory);
   1690   DS.takeAttributesFrom(attrs);
   1691   ParseSpecifierQualifierList(DS);
   1692 
   1693   // declarator
   1694   Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
   1695   ParseDeclarator(DeclaratorInfo);
   1696 
   1697   // simple-asm-expr[opt]
   1698   if (Tok.is(tok::kw_asm)) {
   1699     SourceLocation Loc;
   1700     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   1701     if (AsmLabel.isInvalid()) {
   1702       SkipUntil(tok::semi, StopAtSemi);
   1703       return true;
   1704     }
   1705     DeclaratorInfo.setAsmLabel(AsmLabel.get());
   1706     DeclaratorInfo.SetRangeEnd(Loc);
   1707   }
   1708 
   1709   // If attributes are present, parse them.
   1710   MaybeParseGNUAttributes(DeclaratorInfo);
   1711 
   1712   // Type-check the declaration itself.
   1713   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
   1714                                                         DeclaratorInfo);
   1715   DeclOut = Dcl.get();
   1716   ExprOut = ExprError();
   1717 
   1718   // '=' assignment-expression
   1719   // If a '==' or '+=' is found, suggest a fixit to '='.
   1720   bool CopyInitialization = isTokenEqualOrEqualTypo();
   1721   if (CopyInitialization)
   1722     ConsumeToken();
   1723 
   1724   ExprResult InitExpr = ExprError();
   1725   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   1726     Diag(Tok.getLocation(),
   1727          diag::warn_cxx98_compat_generalized_initializer_lists);
   1728     InitExpr = ParseBraceInitializer();
   1729   } else if (CopyInitialization) {
   1730     InitExpr = ParseAssignmentExpression();
   1731   } else if (Tok.is(tok::l_paren)) {
   1732     // This was probably an attempt to initialize the variable.
   1733     SourceLocation LParen = ConsumeParen(), RParen = LParen;
   1734     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
   1735       RParen = ConsumeParen();
   1736     Diag(DeclOut ? DeclOut->getLocation() : LParen,
   1737          diag::err_expected_init_in_condition_lparen)
   1738       << SourceRange(LParen, RParen);
   1739   } else {
   1740     Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
   1741          diag::err_expected_init_in_condition);
   1742   }
   1743 
   1744   if (!InitExpr.isInvalid())
   1745     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
   1746                                  DS.containsPlaceholderType());
   1747   else
   1748     Actions.ActOnInitializerError(DeclOut);
   1749 
   1750   // FIXME: Build a reference to this declaration? Convert it to bool?
   1751   // (This is currently handled by Sema).
   1752 
   1753   Actions.FinalizeDeclaration(DeclOut);
   1754 
   1755   return false;
   1756 }
   1757 
   1758 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
   1759 /// This should only be called when the current token is known to be part of
   1760 /// simple-type-specifier.
   1761 ///
   1762 ///       simple-type-specifier:
   1763 ///         '::'[opt] nested-name-specifier[opt] type-name
   1764 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
   1765 ///         char
   1766 ///         wchar_t
   1767 ///         bool
   1768 ///         short
   1769 ///         int
   1770 ///         long
   1771 ///         signed
   1772 ///         unsigned
   1773 ///         float
   1774 ///         double
   1775 ///         void
   1776 /// [GNU]   typeof-specifier
   1777 /// [C++0x] auto               [TODO]
   1778 ///
   1779 ///       type-name:
   1780 ///         class-name
   1781 ///         enum-name
   1782 ///         typedef-name
   1783 ///
   1784 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
   1785   DS.SetRangeStart(Tok.getLocation());
   1786   const char *PrevSpec;
   1787   unsigned DiagID;
   1788   SourceLocation Loc = Tok.getLocation();
   1789   const clang::PrintingPolicy &Policy =
   1790       Actions.getASTContext().getPrintingPolicy();
   1791 
   1792   switch (Tok.getKind()) {
   1793   case tok::identifier:   // foo::bar
   1794   case tok::coloncolon:   // ::foo::bar
   1795     llvm_unreachable("Annotation token should already be formed!");
   1796   default:
   1797     llvm_unreachable("Not a simple-type-specifier token!");
   1798 
   1799   // type-name
   1800   case tok::annot_typename: {
   1801     if (getTypeAnnotation(Tok))
   1802       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
   1803                          getTypeAnnotation(Tok), Policy);
   1804     else
   1805       DS.SetTypeSpecError();
   1806 
   1807     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   1808     ConsumeToken();
   1809 
   1810     // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
   1811     // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
   1812     // Objective-C interface.  If we don't have Objective-C or a '<', this is
   1813     // just a normal reference to a typedef name.
   1814     if (Tok.is(tok::less) && getLangOpts().ObjC1)
   1815       ParseObjCProtocolQualifiers(DS);
   1816 
   1817     DS.Finish(Diags, PP, Policy);
   1818     return;
   1819   }
   1820 
   1821   // builtin types
   1822   case tok::kw_short:
   1823     DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
   1824     break;
   1825   case tok::kw_long:
   1826     DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
   1827     break;
   1828   case tok::kw___int64:
   1829     DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
   1830     break;
   1831   case tok::kw_signed:
   1832     DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
   1833     break;
   1834   case tok::kw_unsigned:
   1835     DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
   1836     break;
   1837   case tok::kw_void:
   1838     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
   1839     break;
   1840   case tok::kw_char:
   1841     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
   1842     break;
   1843   case tok::kw_int:
   1844     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
   1845     break;
   1846   case tok::kw___int128:
   1847     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
   1848     break;
   1849   case tok::kw_half:
   1850     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
   1851     break;
   1852   case tok::kw_float:
   1853     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
   1854     break;
   1855   case tok::kw_double:
   1856     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
   1857     break;
   1858   case tok::kw_wchar_t:
   1859     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
   1860     break;
   1861   case tok::kw_char16_t:
   1862     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
   1863     break;
   1864   case tok::kw_char32_t:
   1865     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
   1866     break;
   1867   case tok::kw_bool:
   1868     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
   1869     break;
   1870   case tok::annot_decltype:
   1871   case tok::kw_decltype:
   1872     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
   1873     return DS.Finish(Diags, PP, Policy);
   1874 
   1875   // GNU typeof support.
   1876   case tok::kw_typeof:
   1877     ParseTypeofSpecifier(DS);
   1878     DS.Finish(Diags, PP, Policy);
   1879     return;
   1880   }
   1881   if (Tok.is(tok::annot_typename))
   1882     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   1883   else
   1884     DS.SetRangeEnd(Tok.getLocation());
   1885   ConsumeToken();
   1886   DS.Finish(Diags, PP, Policy);
   1887 }
   1888 
   1889 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
   1890 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
   1891 /// e.g., "const short int". Note that the DeclSpec is *not* finished
   1892 /// by parsing the type-specifier-seq, because these sequences are
   1893 /// typically followed by some form of declarator. Returns true and
   1894 /// emits diagnostics if this is not a type-specifier-seq, false
   1895 /// otherwise.
   1896 ///
   1897 ///   type-specifier-seq: [C++ 8.1]
   1898 ///     type-specifier type-specifier-seq[opt]
   1899 ///
   1900 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
   1901   ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
   1902   DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
   1903   return false;
   1904 }
   1905 
   1906 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
   1907 /// some form.
   1908 ///
   1909 /// This routine is invoked when a '<' is encountered after an identifier or
   1910 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
   1911 /// whether the unqualified-id is actually a template-id. This routine will
   1912 /// then parse the template arguments and form the appropriate template-id to
   1913 /// return to the caller.
   1914 ///
   1915 /// \param SS the nested-name-specifier that precedes this template-id, if
   1916 /// we're actually parsing a qualified-id.
   1917 ///
   1918 /// \param Name for constructor and destructor names, this is the actual
   1919 /// identifier that may be a template-name.
   1920 ///
   1921 /// \param NameLoc the location of the class-name in a constructor or
   1922 /// destructor.
   1923 ///
   1924 /// \param EnteringContext whether we're entering the scope of the
   1925 /// nested-name-specifier.
   1926 ///
   1927 /// \param ObjectType if this unqualified-id occurs within a member access
   1928 /// expression, the type of the base object whose member is being accessed.
   1929 ///
   1930 /// \param Id as input, describes the template-name or operator-function-id
   1931 /// that precedes the '<'. If template arguments were parsed successfully,
   1932 /// will be updated with the template-id.
   1933 ///
   1934 /// \param AssumeTemplateId When true, this routine will assume that the name
   1935 /// refers to a template without performing name lookup to verify.
   1936 ///
   1937 /// \returns true if a parse error occurred, false otherwise.
   1938 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
   1939                                           SourceLocation TemplateKWLoc,
   1940                                           IdentifierInfo *Name,
   1941                                           SourceLocation NameLoc,
   1942                                           bool EnteringContext,
   1943                                           ParsedType ObjectType,
   1944                                           UnqualifiedId &Id,
   1945                                           bool AssumeTemplateId) {
   1946   assert((AssumeTemplateId || Tok.is(tok::less)) &&
   1947          "Expected '<' to finish parsing a template-id");
   1948 
   1949   TemplateTy Template;
   1950   TemplateNameKind TNK = TNK_Non_template;
   1951   switch (Id.getKind()) {
   1952   case UnqualifiedId::IK_Identifier:
   1953   case UnqualifiedId::IK_OperatorFunctionId:
   1954   case UnqualifiedId::IK_LiteralOperatorId:
   1955     if (AssumeTemplateId) {
   1956       TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
   1957                                                Id, ObjectType, EnteringContext,
   1958                                                Template);
   1959       if (TNK == TNK_Non_template)
   1960         return true;
   1961     } else {
   1962       bool MemberOfUnknownSpecialization;
   1963       TNK = Actions.isTemplateName(getCurScope(), SS,
   1964                                    TemplateKWLoc.isValid(), Id,
   1965                                    ObjectType, EnteringContext, Template,
   1966                                    MemberOfUnknownSpecialization);
   1967 
   1968       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
   1969           ObjectType && IsTemplateArgumentList()) {
   1970         // We have something like t->getAs<T>(), where getAs is a
   1971         // member of an unknown specialization. However, this will only
   1972         // parse correctly as a template, so suggest the keyword 'template'
   1973         // before 'getAs' and treat this as a dependent template name.
   1974         std::string Name;
   1975         if (Id.getKind() == UnqualifiedId::IK_Identifier)
   1976           Name = Id.Identifier->getName();
   1977         else {
   1978           Name = "operator ";
   1979           if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
   1980             Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
   1981           else
   1982             Name += Id.Identifier->getName();
   1983         }
   1984         Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
   1985           << Name
   1986           << FixItHint::CreateInsertion(Id.StartLocation, "template ");
   1987         TNK = Actions.ActOnDependentTemplateName(getCurScope(),
   1988                                                  SS, TemplateKWLoc, Id,
   1989                                                  ObjectType, EnteringContext,
   1990                                                  Template);
   1991         if (TNK == TNK_Non_template)
   1992           return true;
   1993       }
   1994     }
   1995     break;
   1996 
   1997   case UnqualifiedId::IK_ConstructorName: {
   1998     UnqualifiedId TemplateName;
   1999     bool MemberOfUnknownSpecialization;
   2000     TemplateName.setIdentifier(Name, NameLoc);
   2001     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
   2002                                  TemplateName, ObjectType,
   2003                                  EnteringContext, Template,
   2004                                  MemberOfUnknownSpecialization);
   2005     break;
   2006   }
   2007 
   2008   case UnqualifiedId::IK_DestructorName: {
   2009     UnqualifiedId TemplateName;
   2010     bool MemberOfUnknownSpecialization;
   2011     TemplateName.setIdentifier(Name, NameLoc);
   2012     if (ObjectType) {
   2013       TNK = Actions.ActOnDependentTemplateName(getCurScope(),
   2014                                                SS, TemplateKWLoc, TemplateName,
   2015                                                ObjectType, EnteringContext,
   2016                                                Template);
   2017       if (TNK == TNK_Non_template)
   2018         return true;
   2019     } else {
   2020       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
   2021                                    TemplateName, ObjectType,
   2022                                    EnteringContext, Template,
   2023                                    MemberOfUnknownSpecialization);
   2024 
   2025       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
   2026         Diag(NameLoc, diag::err_destructor_template_id)
   2027           << Name << SS.getRange();
   2028         return true;
   2029       }
   2030     }
   2031     break;
   2032   }
   2033 
   2034   default:
   2035     return false;
   2036   }
   2037 
   2038   if (TNK == TNK_Non_template)
   2039     return false;
   2040 
   2041   // Parse the enclosed template argument list.
   2042   SourceLocation LAngleLoc, RAngleLoc;
   2043   TemplateArgList TemplateArgs;
   2044   if (Tok.is(tok::less) &&
   2045       ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
   2046                                        SS, true, LAngleLoc,
   2047                                        TemplateArgs,
   2048                                        RAngleLoc))
   2049     return true;
   2050 
   2051   if (Id.getKind() == UnqualifiedId::IK_Identifier ||
   2052       Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
   2053       Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
   2054     // Form a parsed representation of the template-id to be stored in the
   2055     // UnqualifiedId.
   2056     TemplateIdAnnotation *TemplateId
   2057       = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
   2058 
   2059     // FIXME: Store name for literal operator too.
   2060     if (Id.getKind() == UnqualifiedId::IK_Identifier) {
   2061       TemplateId->Name = Id.Identifier;
   2062       TemplateId->Operator = OO_None;
   2063       TemplateId->TemplateNameLoc = Id.StartLocation;
   2064     } else {
   2065       TemplateId->Name = nullptr;
   2066       TemplateId->Operator = Id.OperatorFunctionId.Operator;
   2067       TemplateId->TemplateNameLoc = Id.StartLocation;
   2068     }
   2069 
   2070     TemplateId->SS = SS;
   2071     TemplateId->TemplateKWLoc = TemplateKWLoc;
   2072     TemplateId->Template = Template;
   2073     TemplateId->Kind = TNK;
   2074     TemplateId->LAngleLoc = LAngleLoc;
   2075     TemplateId->RAngleLoc = RAngleLoc;
   2076     ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
   2077     for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
   2078          Arg != ArgEnd; ++Arg)
   2079       Args[Arg] = TemplateArgs[Arg];
   2080 
   2081     Id.setTemplateId(TemplateId);
   2082     return false;
   2083   }
   2084 
   2085   // Bundle the template arguments together.
   2086   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
   2087 
   2088   // Constructor and destructor names.
   2089   TypeResult Type
   2090     = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
   2091                                   Template, NameLoc,
   2092                                   LAngleLoc, TemplateArgsPtr, RAngleLoc,
   2093                                   /*IsCtorOrDtorName=*/true);
   2094   if (Type.isInvalid())
   2095     return true;
   2096 
   2097   if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
   2098     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
   2099   else
   2100     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
   2101 
   2102   return false;
   2103 }
   2104 
   2105 /// \brief Parse an operator-function-id or conversion-function-id as part
   2106 /// of a C++ unqualified-id.
   2107 ///
   2108 /// This routine is responsible only for parsing the operator-function-id or
   2109 /// conversion-function-id; it does not handle template arguments in any way.
   2110 ///
   2111 /// \code
   2112 ///       operator-function-id: [C++ 13.5]
   2113 ///         'operator' operator
   2114 ///
   2115 ///       operator: one of
   2116 ///            new   delete  new[]   delete[]
   2117 ///            +     -    *  /    %  ^    &   |   ~
   2118 ///            !     =    <  >    += -=   *=  /=  %=
   2119 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
   2120 ///            <=    >=   && ||   ++ --   ,   ->* ->
   2121 ///            ()    []
   2122 ///
   2123 ///       conversion-function-id: [C++ 12.3.2]
   2124 ///         operator conversion-type-id
   2125 ///
   2126 ///       conversion-type-id:
   2127 ///         type-specifier-seq conversion-declarator[opt]
   2128 ///
   2129 ///       conversion-declarator:
   2130 ///         ptr-operator conversion-declarator[opt]
   2131 /// \endcode
   2132 ///
   2133 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
   2134 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
   2135 ///
   2136 /// \param EnteringContext whether we are entering the scope of the
   2137 /// nested-name-specifier.
   2138 ///
   2139 /// \param ObjectType if this unqualified-id occurs within a member access
   2140 /// expression, the type of the base object whose member is being accessed.
   2141 ///
   2142 /// \param Result on a successful parse, contains the parsed unqualified-id.
   2143 ///
   2144 /// \returns true if parsing fails, false otherwise.
   2145 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
   2146                                         ParsedType ObjectType,
   2147                                         UnqualifiedId &Result) {
   2148   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
   2149 
   2150   // Consume the 'operator' keyword.
   2151   SourceLocation KeywordLoc = ConsumeToken();
   2152 
   2153   // Determine what kind of operator name we have.
   2154   unsigned SymbolIdx = 0;
   2155   SourceLocation SymbolLocations[3];
   2156   OverloadedOperatorKind Op = OO_None;
   2157   switch (Tok.getKind()) {
   2158     case tok::kw_new:
   2159     case tok::kw_delete: {
   2160       bool isNew = Tok.getKind() == tok::kw_new;
   2161       // Consume the 'new' or 'delete'.
   2162       SymbolLocations[SymbolIdx++] = ConsumeToken();
   2163       // Check for array new/delete.
   2164       if (Tok.is(tok::l_square) &&
   2165           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
   2166         // Consume the '[' and ']'.
   2167         BalancedDelimiterTracker T(*this, tok::l_square);
   2168         T.consumeOpen();
   2169         T.consumeClose();
   2170         if (T.getCloseLocation().isInvalid())
   2171           return true;
   2172 
   2173         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2174         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2175         Op = isNew? OO_Array_New : OO_Array_Delete;
   2176       } else {
   2177         Op = isNew? OO_New : OO_Delete;
   2178       }
   2179       break;
   2180     }
   2181 
   2182 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
   2183     case tok::Token:                                                     \
   2184       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
   2185       Op = OO_##Name;                                                    \
   2186       break;
   2187 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
   2188 #include "clang/Basic/OperatorKinds.def"
   2189 
   2190     case tok::l_paren: {
   2191       // Consume the '(' and ')'.
   2192       BalancedDelimiterTracker T(*this, tok::l_paren);
   2193       T.consumeOpen();
   2194       T.consumeClose();
   2195       if (T.getCloseLocation().isInvalid())
   2196         return true;
   2197 
   2198       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2199       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2200       Op = OO_Call;
   2201       break;
   2202     }
   2203 
   2204     case tok::l_square: {
   2205       // Consume the '[' and ']'.
   2206       BalancedDelimiterTracker T(*this, tok::l_square);
   2207       T.consumeOpen();
   2208       T.consumeClose();
   2209       if (T.getCloseLocation().isInvalid())
   2210         return true;
   2211 
   2212       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2213       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2214       Op = OO_Subscript;
   2215       break;
   2216     }
   2217 
   2218     case tok::code_completion: {
   2219       // Code completion for the operator name.
   2220       Actions.CodeCompleteOperatorName(getCurScope());
   2221       cutOffParsing();
   2222       // Don't try to parse any further.
   2223       return true;
   2224     }
   2225 
   2226     default:
   2227       break;
   2228   }
   2229 
   2230   if (Op != OO_None) {
   2231     // We have parsed an operator-function-id.
   2232     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
   2233     return false;
   2234   }
   2235 
   2236   // Parse a literal-operator-id.
   2237   //
   2238   //   literal-operator-id: C++11 [over.literal]
   2239   //     operator string-literal identifier
   2240   //     operator user-defined-string-literal
   2241 
   2242   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
   2243     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
   2244 
   2245     SourceLocation DiagLoc;
   2246     unsigned DiagId = 0;
   2247 
   2248     // We're past translation phase 6, so perform string literal concatenation
   2249     // before checking for "".
   2250     SmallVector<Token, 4> Toks;
   2251     SmallVector<SourceLocation, 4> TokLocs;
   2252     while (isTokenStringLiteral()) {
   2253       if (!Tok.is(tok::string_literal) && !DiagId) {
   2254         // C++11 [over.literal]p1:
   2255         //   The string-literal or user-defined-string-literal in a
   2256         //   literal-operator-id shall have no encoding-prefix [...].
   2257         DiagLoc = Tok.getLocation();
   2258         DiagId = diag::err_literal_operator_string_prefix;
   2259       }
   2260       Toks.push_back(Tok);
   2261       TokLocs.push_back(ConsumeStringToken());
   2262     }
   2263 
   2264     StringLiteralParser Literal(Toks, PP);
   2265     if (Literal.hadError)
   2266       return true;
   2267 
   2268     // Grab the literal operator's suffix, which will be either the next token
   2269     // or a ud-suffix from the string literal.
   2270     IdentifierInfo *II = nullptr;
   2271     SourceLocation SuffixLoc;
   2272     if (!Literal.getUDSuffix().empty()) {
   2273       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
   2274       SuffixLoc =
   2275         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
   2276                                        Literal.getUDSuffixOffset(),
   2277                                        PP.getSourceManager(), getLangOpts());
   2278     } else if (Tok.is(tok::identifier)) {
   2279       II = Tok.getIdentifierInfo();
   2280       SuffixLoc = ConsumeToken();
   2281       TokLocs.push_back(SuffixLoc);
   2282     } else {
   2283       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
   2284       return true;
   2285     }
   2286 
   2287     // The string literal must be empty.
   2288     if (!Literal.GetString().empty() || Literal.Pascal) {
   2289       // C++11 [over.literal]p1:
   2290       //   The string-literal or user-defined-string-literal in a
   2291       //   literal-operator-id shall [...] contain no characters
   2292       //   other than the implicit terminating '\0'.
   2293       DiagLoc = TokLocs.front();
   2294       DiagId = diag::err_literal_operator_string_not_empty;
   2295     }
   2296 
   2297     if (DiagId) {
   2298       // This isn't a valid literal-operator-id, but we think we know
   2299       // what the user meant. Tell them what they should have written.
   2300       SmallString<32> Str;
   2301       Str += "\"\" ";
   2302       Str += II->getName();
   2303       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
   2304           SourceRange(TokLocs.front(), TokLocs.back()), Str);
   2305     }
   2306 
   2307     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
   2308 
   2309     return Actions.checkLiteralOperatorId(SS, Result);
   2310   }
   2311 
   2312   // Parse a conversion-function-id.
   2313   //
   2314   //   conversion-function-id: [C++ 12.3.2]
   2315   //     operator conversion-type-id
   2316   //
   2317   //   conversion-type-id:
   2318   //     type-specifier-seq conversion-declarator[opt]
   2319   //
   2320   //   conversion-declarator:
   2321   //     ptr-operator conversion-declarator[opt]
   2322 
   2323   // Parse the type-specifier-seq.
   2324   DeclSpec DS(AttrFactory);
   2325   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
   2326     return true;
   2327 
   2328   // Parse the conversion-declarator, which is merely a sequence of
   2329   // ptr-operators.
   2330   Declarator D(DS, Declarator::ConversionIdContext);
   2331   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
   2332 
   2333   // Finish up the type.
   2334   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
   2335   if (Ty.isInvalid())
   2336     return true;
   2337 
   2338   // Note that this is a conversion-function-id.
   2339   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
   2340                                  D.getSourceRange().getEnd());
   2341   return false;
   2342 }
   2343 
   2344 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
   2345 /// name of an entity.
   2346 ///
   2347 /// \code
   2348 ///       unqualified-id: [C++ expr.prim.general]
   2349 ///         identifier
   2350 ///         operator-function-id
   2351 ///         conversion-function-id
   2352 /// [C++0x] literal-operator-id [TODO]
   2353 ///         ~ class-name
   2354 ///         template-id
   2355 ///
   2356 /// \endcode
   2357 ///
   2358 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
   2359 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
   2360 ///
   2361 /// \param EnteringContext whether we are entering the scope of the
   2362 /// nested-name-specifier.
   2363 ///
   2364 /// \param AllowDestructorName whether we allow parsing of a destructor name.
   2365 ///
   2366 /// \param AllowConstructorName whether we allow parsing a constructor name.
   2367 ///
   2368 /// \param ObjectType if this unqualified-id occurs within a member access
   2369 /// expression, the type of the base object whose member is being accessed.
   2370 ///
   2371 /// \param Result on a successful parse, contains the parsed unqualified-id.
   2372 ///
   2373 /// \returns true if parsing fails, false otherwise.
   2374 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
   2375                                 bool AllowDestructorName,
   2376                                 bool AllowConstructorName,
   2377                                 ParsedType ObjectType,
   2378                                 SourceLocation& TemplateKWLoc,
   2379                                 UnqualifiedId &Result) {
   2380 
   2381   // Handle 'A::template B'. This is for template-ids which have not
   2382   // already been annotated by ParseOptionalCXXScopeSpecifier().
   2383   bool TemplateSpecified = false;
   2384   if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
   2385       (ObjectType || SS.isSet())) {
   2386     TemplateSpecified = true;
   2387     TemplateKWLoc = ConsumeToken();
   2388   }
   2389 
   2390   // unqualified-id:
   2391   //   identifier
   2392   //   template-id (when it hasn't already been annotated)
   2393   if (Tok.is(tok::identifier)) {
   2394     // Consume the identifier.
   2395     IdentifierInfo *Id = Tok.getIdentifierInfo();
   2396     SourceLocation IdLoc = ConsumeToken();
   2397 
   2398     if (!getLangOpts().CPlusPlus) {
   2399       // If we're not in C++, only identifiers matter. Record the
   2400       // identifier and return.
   2401       Result.setIdentifier(Id, IdLoc);
   2402       return false;
   2403     }
   2404 
   2405     if (AllowConstructorName &&
   2406         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
   2407       // We have parsed a constructor name.
   2408       ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
   2409                                           &SS, false, false,
   2410                                           ParsedType(),
   2411                                           /*IsCtorOrDtorName=*/true,
   2412                                           /*NonTrivialTypeSourceInfo=*/true);
   2413       Result.setConstructorName(Ty, IdLoc, IdLoc);
   2414     } else {
   2415       // We have parsed an identifier.
   2416       Result.setIdentifier(Id, IdLoc);
   2417     }
   2418 
   2419     // If the next token is a '<', we may have a template.
   2420     if (TemplateSpecified || Tok.is(tok::less))
   2421       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
   2422                                           EnteringContext, ObjectType,
   2423                                           Result, TemplateSpecified);
   2424 
   2425     return false;
   2426   }
   2427 
   2428   // unqualified-id:
   2429   //   template-id (already parsed and annotated)
   2430   if (Tok.is(tok::annot_template_id)) {
   2431     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   2432 
   2433     // If the template-name names the current class, then this is a constructor
   2434     if (AllowConstructorName && TemplateId->Name &&
   2435         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
   2436       if (SS.isSet()) {
   2437         // C++ [class.qual]p2 specifies that a qualified template-name
   2438         // is taken as the constructor name where a constructor can be
   2439         // declared. Thus, the template arguments are extraneous, so
   2440         // complain about them and remove them entirely.
   2441         Diag(TemplateId->TemplateNameLoc,
   2442              diag::err_out_of_line_constructor_template_id)
   2443           << TemplateId->Name
   2444           << FixItHint::CreateRemoval(
   2445                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
   2446         ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
   2447                                             TemplateId->TemplateNameLoc,
   2448                                             getCurScope(),
   2449                                             &SS, false, false,
   2450                                             ParsedType(),
   2451                                             /*IsCtorOrDtorName=*/true,
   2452                                             /*NontrivialTypeSourceInfo=*/true);
   2453         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
   2454                                   TemplateId->RAngleLoc);
   2455         ConsumeToken();
   2456         return false;
   2457       }
   2458 
   2459       Result.setConstructorTemplateId(TemplateId);
   2460       ConsumeToken();
   2461       return false;
   2462     }
   2463 
   2464     // We have already parsed a template-id; consume the annotation token as
   2465     // our unqualified-id.
   2466     Result.setTemplateId(TemplateId);
   2467     TemplateKWLoc = TemplateId->TemplateKWLoc;
   2468     ConsumeToken();
   2469     return false;
   2470   }
   2471 
   2472   // unqualified-id:
   2473   //   operator-function-id
   2474   //   conversion-function-id
   2475   if (Tok.is(tok::kw_operator)) {
   2476     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
   2477       return true;
   2478 
   2479     // If we have an operator-function-id or a literal-operator-id and the next
   2480     // token is a '<', we may have a
   2481     //
   2482     //   template-id:
   2483     //     operator-function-id < template-argument-list[opt] >
   2484     if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
   2485          Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
   2486         (TemplateSpecified || Tok.is(tok::less)))
   2487       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
   2488                                           nullptr, SourceLocation(),
   2489                                           EnteringContext, ObjectType,
   2490                                           Result, TemplateSpecified);
   2491 
   2492     return false;
   2493   }
   2494 
   2495   if (getLangOpts().CPlusPlus &&
   2496       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
   2497     // C++ [expr.unary.op]p10:
   2498     //   There is an ambiguity in the unary-expression ~X(), where X is a
   2499     //   class-name. The ambiguity is resolved in favor of treating ~ as a
   2500     //    unary complement rather than treating ~X as referring to a destructor.
   2501 
   2502     // Parse the '~'.
   2503     SourceLocation TildeLoc = ConsumeToken();
   2504 
   2505     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
   2506       DeclSpec DS(AttrFactory);
   2507       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
   2508       if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
   2509         Result.setDestructorName(TildeLoc, Type, EndLoc);
   2510         return false;
   2511       }
   2512       return true;
   2513     }
   2514 
   2515     // Parse the class-name.
   2516     if (Tok.isNot(tok::identifier)) {
   2517       Diag(Tok, diag::err_destructor_tilde_identifier);
   2518       return true;
   2519     }
   2520 
   2521     // If the user wrote ~T::T, correct it to T::~T.
   2522     DeclaratorScopeObj DeclScopeObj(*this, SS);
   2523     if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
   2524       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
   2525       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
   2526       // it will confuse this recovery logic.
   2527       ColonProtectionRAIIObject ColonRAII(*this, false);
   2528 
   2529       if (SS.isSet()) {
   2530         AnnotateScopeToken(SS, /*NewAnnotation*/true);
   2531         SS.clear();
   2532       }
   2533       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
   2534         return true;
   2535       if (SS.isNotEmpty())
   2536         ObjectType = ParsedType();
   2537       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
   2538           !SS.isSet()) {
   2539         Diag(TildeLoc, diag::err_destructor_tilde_scope);
   2540         return true;
   2541       }
   2542 
   2543       // Recover as if the tilde had been written before the identifier.
   2544       Diag(TildeLoc, diag::err_destructor_tilde_scope)
   2545         << FixItHint::CreateRemoval(TildeLoc)
   2546         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
   2547 
   2548       // Temporarily enter the scope for the rest of this function.
   2549       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
   2550         DeclScopeObj.EnterDeclaratorScope();
   2551     }
   2552 
   2553     // Parse the class-name (or template-name in a simple-template-id).
   2554     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
   2555     SourceLocation ClassNameLoc = ConsumeToken();
   2556 
   2557     if (TemplateSpecified || Tok.is(tok::less)) {
   2558       Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
   2559       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
   2560                                           ClassName, ClassNameLoc,
   2561                                           EnteringContext, ObjectType,
   2562                                           Result, TemplateSpecified);
   2563     }
   2564 
   2565     // Note that this is a destructor name.
   2566     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
   2567                                               ClassNameLoc, getCurScope(),
   2568                                               SS, ObjectType,
   2569                                               EnteringContext);
   2570     if (!Ty)
   2571       return true;
   2572 
   2573     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
   2574     return false;
   2575   }
   2576 
   2577   Diag(Tok, diag::err_expected_unqualified_id)
   2578     << getLangOpts().CPlusPlus;
   2579   return true;
   2580 }
   2581 
   2582 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
   2583 /// memory in a typesafe manner and call constructors.
   2584 ///
   2585 /// This method is called to parse the new expression after the optional :: has
   2586 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
   2587 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
   2588 ///
   2589 ///        new-expression:
   2590 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
   2591 ///                                     new-initializer[opt]
   2592 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
   2593 ///                                     new-initializer[opt]
   2594 ///
   2595 ///        new-placement:
   2596 ///                   '(' expression-list ')'
   2597 ///
   2598 ///        new-type-id:
   2599 ///                   type-specifier-seq new-declarator[opt]
   2600 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
   2601 ///
   2602 ///        new-declarator:
   2603 ///                   ptr-operator new-declarator[opt]
   2604 ///                   direct-new-declarator
   2605 ///
   2606 ///        new-initializer:
   2607 ///                   '(' expression-list[opt] ')'
   2608 /// [C++0x]           braced-init-list
   2609 ///
   2610 ExprResult
   2611 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
   2612   assert(Tok.is(tok::kw_new) && "expected 'new' token");
   2613   ConsumeToken();   // Consume 'new'
   2614 
   2615   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
   2616   // second form of new-expression. It can't be a new-type-id.
   2617 
   2618   ExprVector PlacementArgs;
   2619   SourceLocation PlacementLParen, PlacementRParen;
   2620 
   2621   SourceRange TypeIdParens;
   2622   DeclSpec DS(AttrFactory);
   2623   Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
   2624   if (Tok.is(tok::l_paren)) {
   2625     // If it turns out to be a placement, we change the type location.
   2626     BalancedDelimiterTracker T(*this, tok::l_paren);
   2627     T.consumeOpen();
   2628     PlacementLParen = T.getOpenLocation();
   2629     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
   2630       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2631       return ExprError();
   2632     }
   2633 
   2634     T.consumeClose();
   2635     PlacementRParen = T.getCloseLocation();
   2636     if (PlacementRParen.isInvalid()) {
   2637       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2638       return ExprError();
   2639     }
   2640 
   2641     if (PlacementArgs.empty()) {
   2642       // Reset the placement locations. There was no placement.
   2643       TypeIdParens = T.getRange();
   2644       PlacementLParen = PlacementRParen = SourceLocation();
   2645     } else {
   2646       // We still need the type.
   2647       if (Tok.is(tok::l_paren)) {
   2648         BalancedDelimiterTracker T(*this, tok::l_paren);
   2649         T.consumeOpen();
   2650         MaybeParseGNUAttributes(DeclaratorInfo);
   2651         ParseSpecifierQualifierList(DS);
   2652         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2653         ParseDeclarator(DeclaratorInfo);
   2654         T.consumeClose();
   2655         TypeIdParens = T.getRange();
   2656       } else {
   2657         MaybeParseGNUAttributes(DeclaratorInfo);
   2658         if (ParseCXXTypeSpecifierSeq(DS))
   2659           DeclaratorInfo.setInvalidType(true);
   2660         else {
   2661           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2662           ParseDeclaratorInternal(DeclaratorInfo,
   2663                                   &Parser::ParseDirectNewDeclarator);
   2664         }
   2665       }
   2666     }
   2667   } else {
   2668     // A new-type-id is a simplified type-id, where essentially the
   2669     // direct-declarator is replaced by a direct-new-declarator.
   2670     MaybeParseGNUAttributes(DeclaratorInfo);
   2671     if (ParseCXXTypeSpecifierSeq(DS))
   2672       DeclaratorInfo.setInvalidType(true);
   2673     else {
   2674       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2675       ParseDeclaratorInternal(DeclaratorInfo,
   2676                               &Parser::ParseDirectNewDeclarator);
   2677     }
   2678   }
   2679   if (DeclaratorInfo.isInvalidType()) {
   2680     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2681     return ExprError();
   2682   }
   2683 
   2684   ExprResult Initializer;
   2685 
   2686   if (Tok.is(tok::l_paren)) {
   2687     SourceLocation ConstructorLParen, ConstructorRParen;
   2688     ExprVector ConstructorArgs;
   2689     BalancedDelimiterTracker T(*this, tok::l_paren);
   2690     T.consumeOpen();
   2691     ConstructorLParen = T.getOpenLocation();
   2692     if (Tok.isNot(tok::r_paren)) {
   2693       CommaLocsTy CommaLocs;
   2694       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
   2695             ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
   2696                                                        DeclaratorInfo).get();
   2697             Actions.CodeCompleteConstructor(getCurScope(),
   2698                                       TypeRep.get()->getCanonicalTypeInternal(),
   2699                                             DeclaratorInfo.getLocEnd(),
   2700                                             ConstructorArgs);
   2701       })) {
   2702         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2703         return ExprError();
   2704       }
   2705     }
   2706     T.consumeClose();
   2707     ConstructorRParen = T.getCloseLocation();
   2708     if (ConstructorRParen.isInvalid()) {
   2709       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2710       return ExprError();
   2711     }
   2712     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
   2713                                              ConstructorRParen,
   2714                                              ConstructorArgs);
   2715   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
   2716     Diag(Tok.getLocation(),
   2717          diag::warn_cxx98_compat_generalized_initializer_lists);
   2718     Initializer = ParseBraceInitializer();
   2719   }
   2720   if (Initializer.isInvalid())
   2721     return Initializer;
   2722 
   2723   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
   2724                              PlacementArgs, PlacementRParen,
   2725                              TypeIdParens, DeclaratorInfo, Initializer.get());
   2726 }
   2727 
   2728 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
   2729 /// passed to ParseDeclaratorInternal.
   2730 ///
   2731 ///        direct-new-declarator:
   2732 ///                   '[' expression ']'
   2733 ///                   direct-new-declarator '[' constant-expression ']'
   2734 ///
   2735 void Parser::ParseDirectNewDeclarator(Declarator &D) {
   2736   // Parse the array dimensions.
   2737   bool first = true;
   2738   while (Tok.is(tok::l_square)) {
   2739     // An array-size expression can't start with a lambda.
   2740     if (CheckProhibitedCXX11Attribute())
   2741       continue;
   2742 
   2743     BalancedDelimiterTracker T(*this, tok::l_square);
   2744     T.consumeOpen();
   2745 
   2746     ExprResult Size(first ? ParseExpression()
   2747                                 : ParseConstantExpression());
   2748     if (Size.isInvalid()) {
   2749       // Recover
   2750       SkipUntil(tok::r_square, StopAtSemi);
   2751       return;
   2752     }
   2753     first = false;
   2754 
   2755     T.consumeClose();
   2756 
   2757     // Attributes here appertain to the array type. C++11 [expr.new]p5.
   2758     ParsedAttributes Attrs(AttrFactory);
   2759     MaybeParseCXX11Attributes(Attrs);
   2760 
   2761     D.AddTypeInfo(DeclaratorChunk::getArray(0,
   2762                                             /*static=*/false, /*star=*/false,
   2763                                             Size.get(),
   2764                                             T.getOpenLocation(),
   2765                                             T.getCloseLocation()),
   2766                   Attrs, T.getCloseLocation());
   2767 
   2768     if (T.getCloseLocation().isInvalid())
   2769       return;
   2770   }
   2771 }
   2772 
   2773 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
   2774 /// This ambiguity appears in the syntax of the C++ new operator.
   2775 ///
   2776 ///        new-expression:
   2777 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
   2778 ///                                     new-initializer[opt]
   2779 ///
   2780 ///        new-placement:
   2781 ///                   '(' expression-list ')'
   2782 ///
   2783 bool Parser::ParseExpressionListOrTypeId(
   2784                                    SmallVectorImpl<Expr*> &PlacementArgs,
   2785                                          Declarator &D) {
   2786   // The '(' was already consumed.
   2787   if (isTypeIdInParens()) {
   2788     ParseSpecifierQualifierList(D.getMutableDeclSpec());
   2789     D.SetSourceRange(D.getDeclSpec().getSourceRange());
   2790     ParseDeclarator(D);
   2791     return D.isInvalidType();
   2792   }
   2793 
   2794   // It's not a type, it has to be an expression list.
   2795   // Discard the comma locations - ActOnCXXNew has enough parameters.
   2796   CommaLocsTy CommaLocs;
   2797   return ParseExpressionList(PlacementArgs, CommaLocs);
   2798 }
   2799 
   2800 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
   2801 /// to free memory allocated by new.
   2802 ///
   2803 /// This method is called to parse the 'delete' expression after the optional
   2804 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
   2805 /// and "Start" is its location.  Otherwise, "Start" is the location of the
   2806 /// 'delete' token.
   2807 ///
   2808 ///        delete-expression:
   2809 ///                   '::'[opt] 'delete' cast-expression
   2810 ///                   '::'[opt] 'delete' '[' ']' cast-expression
   2811 ExprResult
   2812 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
   2813   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
   2814   ConsumeToken(); // Consume 'delete'
   2815 
   2816   // Array delete?
   2817   bool ArrayDelete = false;
   2818   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
   2819     // C++11 [expr.delete]p1:
   2820     //   Whenever the delete keyword is followed by empty square brackets, it
   2821     //   shall be interpreted as [array delete].
   2822     //   [Footnote: A lambda expression with a lambda-introducer that consists
   2823     //              of empty square brackets can follow the delete keyword if
   2824     //              the lambda expression is enclosed in parentheses.]
   2825     // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
   2826     //        lambda-introducer.
   2827     ArrayDelete = true;
   2828     BalancedDelimiterTracker T(*this, tok::l_square);
   2829 
   2830     T.consumeOpen();
   2831     T.consumeClose();
   2832     if (T.getCloseLocation().isInvalid())
   2833       return ExprError();
   2834   }
   2835 
   2836   ExprResult Operand(ParseCastExpression(false));
   2837   if (Operand.isInvalid())
   2838     return Operand;
   2839 
   2840   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
   2841 }
   2842 
   2843 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
   2844   switch (kind) {
   2845   default: llvm_unreachable("Not a known type trait");
   2846 #define TYPE_TRAIT_1(Spelling, Name, Key) \
   2847 case tok::kw_ ## Spelling: return UTT_ ## Name;
   2848 #define TYPE_TRAIT_2(Spelling, Name, Key) \
   2849 case tok::kw_ ## Spelling: return BTT_ ## Name;
   2850 #include "clang/Basic/TokenKinds.def"
   2851 #define TYPE_TRAIT_N(Spelling, Name, Key) \
   2852   case tok::kw_ ## Spelling: return TT_ ## Name;
   2853 #include "clang/Basic/TokenKinds.def"
   2854   }
   2855 }
   2856 
   2857 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
   2858   switch(kind) {
   2859   default: llvm_unreachable("Not a known binary type trait");
   2860   case tok::kw___array_rank:                 return ATT_ArrayRank;
   2861   case tok::kw___array_extent:               return ATT_ArrayExtent;
   2862   }
   2863 }
   2864 
   2865 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
   2866   switch(kind) {
   2867   default: llvm_unreachable("Not a known unary expression trait.");
   2868   case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
   2869   case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
   2870   }
   2871 }
   2872 
   2873 static unsigned TypeTraitArity(tok::TokenKind kind) {
   2874   switch (kind) {
   2875     default: llvm_unreachable("Not a known type trait");
   2876 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
   2877 #include "clang/Basic/TokenKinds.def"
   2878   }
   2879 }
   2880 
   2881 /// \brief Parse the built-in type-trait pseudo-functions that allow
   2882 /// implementation of the TR1/C++11 type traits templates.
   2883 ///
   2884 ///       primary-expression:
   2885 ///          unary-type-trait '(' type-id ')'
   2886 ///          binary-type-trait '(' type-id ',' type-id ')'
   2887 ///          type-trait '(' type-id-seq ')'
   2888 ///
   2889 ///       type-id-seq:
   2890 ///          type-id ...[opt] type-id-seq[opt]
   2891 ///
   2892 ExprResult Parser::ParseTypeTrait() {
   2893   tok::TokenKind Kind = Tok.getKind();
   2894   unsigned Arity = TypeTraitArity(Kind);
   2895 
   2896   SourceLocation Loc = ConsumeToken();
   2897 
   2898   BalancedDelimiterTracker Parens(*this, tok::l_paren);
   2899   if (Parens.expectAndConsume())
   2900     return ExprError();
   2901 
   2902   SmallVector<ParsedType, 2> Args;
   2903   do {
   2904     // Parse the next type.
   2905     TypeResult Ty = ParseTypeName();
   2906     if (Ty.isInvalid()) {
   2907       Parens.skipToEnd();
   2908       return ExprError();
   2909     }
   2910 
   2911     // Parse the ellipsis, if present.
   2912     if (Tok.is(tok::ellipsis)) {
   2913       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
   2914       if (Ty.isInvalid()) {
   2915         Parens.skipToEnd();
   2916         return ExprError();
   2917       }
   2918     }
   2919 
   2920     // Add this type to the list of arguments.
   2921     Args.push_back(Ty.get());
   2922   } while (TryConsumeToken(tok::comma));
   2923 
   2924   if (Parens.consumeClose())
   2925     return ExprError();
   2926 
   2927   SourceLocation EndLoc = Parens.getCloseLocation();
   2928 
   2929   if (Arity && Args.size() != Arity) {
   2930     Diag(EndLoc, diag::err_type_trait_arity)
   2931       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
   2932     return ExprError();
   2933   }
   2934 
   2935   if (!Arity && Args.empty()) {
   2936     Diag(EndLoc, diag::err_type_trait_arity)
   2937       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
   2938     return ExprError();
   2939   }
   2940 
   2941   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
   2942 }
   2943 
   2944 /// ParseArrayTypeTrait - Parse the built-in array type-trait
   2945 /// pseudo-functions.
   2946 ///
   2947 ///       primary-expression:
   2948 /// [Embarcadero]     '__array_rank' '(' type-id ')'
   2949 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
   2950 ///
   2951 ExprResult Parser::ParseArrayTypeTrait() {
   2952   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
   2953   SourceLocation Loc = ConsumeToken();
   2954 
   2955   BalancedDelimiterTracker T(*this, tok::l_paren);
   2956   if (T.expectAndConsume())
   2957     return ExprError();
   2958 
   2959   TypeResult Ty = ParseTypeName();
   2960   if (Ty.isInvalid()) {
   2961     SkipUntil(tok::comma, StopAtSemi);
   2962     SkipUntil(tok::r_paren, StopAtSemi);
   2963     return ExprError();
   2964   }
   2965 
   2966   switch (ATT) {
   2967   case ATT_ArrayRank: {
   2968     T.consumeClose();
   2969     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
   2970                                        T.getCloseLocation());
   2971   }
   2972   case ATT_ArrayExtent: {
   2973     if (ExpectAndConsume(tok::comma)) {
   2974       SkipUntil(tok::r_paren, StopAtSemi);
   2975       return ExprError();
   2976     }
   2977 
   2978     ExprResult DimExpr = ParseExpression();
   2979     T.consumeClose();
   2980 
   2981     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
   2982                                        T.getCloseLocation());
   2983   }
   2984   }
   2985   llvm_unreachable("Invalid ArrayTypeTrait!");
   2986 }
   2987 
   2988 /// ParseExpressionTrait - Parse built-in expression-trait
   2989 /// pseudo-functions like __is_lvalue_expr( xxx ).
   2990 ///
   2991 ///       primary-expression:
   2992 /// [Embarcadero]     expression-trait '(' expression ')'
   2993 ///
   2994 ExprResult Parser::ParseExpressionTrait() {
   2995   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
   2996   SourceLocation Loc = ConsumeToken();
   2997 
   2998   BalancedDelimiterTracker T(*this, tok::l_paren);
   2999   if (T.expectAndConsume())
   3000     return ExprError();
   3001 
   3002   ExprResult Expr = ParseExpression();
   3003 
   3004   T.consumeClose();
   3005 
   3006   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
   3007                                       T.getCloseLocation());
   3008 }
   3009 
   3010 
   3011 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
   3012 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
   3013 /// based on the context past the parens.
   3014 ExprResult
   3015 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
   3016                                          ParsedType &CastTy,
   3017                                          BalancedDelimiterTracker &Tracker,
   3018                                          ColonProtectionRAIIObject &ColonProt) {
   3019   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
   3020   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
   3021   assert(isTypeIdInParens() && "Not a type-id!");
   3022 
   3023   ExprResult Result(true);
   3024   CastTy = ParsedType();
   3025 
   3026   // We need to disambiguate a very ugly part of the C++ syntax:
   3027   //
   3028   // (T())x;  - type-id
   3029   // (T())*x; - type-id
   3030   // (T())/x; - expression
   3031   // (T());   - expression
   3032   //
   3033   // The bad news is that we cannot use the specialized tentative parser, since
   3034   // it can only verify that the thing inside the parens can be parsed as
   3035   // type-id, it is not useful for determining the context past the parens.
   3036   //
   3037   // The good news is that the parser can disambiguate this part without
   3038   // making any unnecessary Action calls.
   3039   //
   3040   // It uses a scheme similar to parsing inline methods. The parenthesized
   3041   // tokens are cached, the context that follows is determined (possibly by
   3042   // parsing a cast-expression), and then we re-introduce the cached tokens
   3043   // into the token stream and parse them appropriately.
   3044 
   3045   ParenParseOption ParseAs;
   3046   CachedTokens Toks;
   3047 
   3048   // Store the tokens of the parentheses. We will parse them after we determine
   3049   // the context that follows them.
   3050   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
   3051     // We didn't find the ')' we expected.
   3052     Tracker.consumeClose();
   3053     return ExprError();
   3054   }
   3055 
   3056   if (Tok.is(tok::l_brace)) {
   3057     ParseAs = CompoundLiteral;
   3058   } else {
   3059     bool NotCastExpr;
   3060     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
   3061       NotCastExpr = true;
   3062     } else {
   3063       // Try parsing the cast-expression that may follow.
   3064       // If it is not a cast-expression, NotCastExpr will be true and no token
   3065       // will be consumed.
   3066       ColonProt.restore();
   3067       Result = ParseCastExpression(false/*isUnaryExpression*/,
   3068                                    false/*isAddressofOperand*/,
   3069                                    NotCastExpr,
   3070                                    // type-id has priority.
   3071                                    IsTypeCast);
   3072     }
   3073 
   3074     // If we parsed a cast-expression, it's really a type-id, otherwise it's
   3075     // an expression.
   3076     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
   3077   }
   3078 
   3079   // The current token should go after the cached tokens.
   3080   Toks.push_back(Tok);
   3081   // Re-enter the stored parenthesized tokens into the token stream, so we may
   3082   // parse them now.
   3083   PP.EnterTokenStream(Toks.data(), Toks.size(),
   3084                       true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
   3085   // Drop the current token and bring the first cached one. It's the same token
   3086   // as when we entered this function.
   3087   ConsumeAnyToken();
   3088 
   3089   if (ParseAs >= CompoundLiteral) {
   3090     // Parse the type declarator.
   3091     DeclSpec DS(AttrFactory);
   3092     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   3093     {
   3094       ColonProtectionRAIIObject InnerColonProtection(*this);
   3095       ParseSpecifierQualifierList(DS);
   3096       ParseDeclarator(DeclaratorInfo);
   3097     }
   3098 
   3099     // Match the ')'.
   3100     Tracker.consumeClose();
   3101     ColonProt.restore();
   3102 
   3103     if (ParseAs == CompoundLiteral) {
   3104       ExprType = CompoundLiteral;
   3105       if (DeclaratorInfo.isInvalidType())
   3106         return ExprError();
   3107 
   3108       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   3109       return ParseCompoundLiteralExpression(Ty.get(),
   3110                                             Tracker.getOpenLocation(),
   3111                                             Tracker.getCloseLocation());
   3112     }
   3113 
   3114     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
   3115     assert(ParseAs == CastExpr);
   3116 
   3117     if (DeclaratorInfo.isInvalidType())
   3118       return ExprError();
   3119 
   3120     // Result is what ParseCastExpression returned earlier.
   3121     if (!Result.isInvalid())
   3122       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
   3123                                     DeclaratorInfo, CastTy,
   3124                                     Tracker.getCloseLocation(), Result.get());
   3125     return Result;
   3126   }
   3127 
   3128   // Not a compound literal, and not followed by a cast-expression.
   3129   assert(ParseAs == SimpleExpr);
   3130 
   3131   ExprType = SimpleExpr;
   3132   Result = ParseExpression();
   3133   if (!Result.isInvalid() && Tok.is(tok::r_paren))
   3134     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
   3135                                     Tok.getLocation(), Result.get());
   3136 
   3137   // Match the ')'.
   3138   if (Result.isInvalid()) {
   3139     SkipUntil(tok::r_paren, StopAtSemi);
   3140     return ExprError();
   3141   }
   3142 
   3143   Tracker.consumeClose();
   3144   return Result;
   3145 }
   3146