Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "utils.h"
     18 
     19 #include <inttypes.h>
     20 #include <pthread.h>
     21 #include <sys/stat.h>
     22 #include <sys/syscall.h>
     23 #include <sys/types.h>
     24 #include <sys/wait.h>
     25 #include <unistd.h>
     26 #include <memory>
     27 
     28 #include "art_field-inl.h"
     29 #include "art_method-inl.h"
     30 #include "base/stl_util.h"
     31 #include "base/unix_file/fd_file.h"
     32 #include "dex_file-inl.h"
     33 #include "mirror/class-inl.h"
     34 #include "mirror/class_loader.h"
     35 #include "mirror/object-inl.h"
     36 #include "mirror/object_array-inl.h"
     37 #include "mirror/string.h"
     38 #include "os.h"
     39 #include "scoped_thread_state_change.h"
     40 #include "utf-inl.h"
     41 
     42 #if defined(__APPLE__)
     43 #include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
     44 #include <sys/syscall.h>
     45 #endif
     46 
     47 #include <backtrace/Backtrace.h>  // For DumpNativeStack.
     48 
     49 #if defined(__linux__)
     50 #include <linux/unistd.h>
     51 #endif
     52 
     53 namespace art {
     54 
     55 #if defined(__linux__)
     56 static constexpr bool kUseAddr2line = !kIsTargetBuild;
     57 #endif
     58 
     59 pid_t GetTid() {
     60 #if defined(__APPLE__)
     61   uint64_t owner;
     62   CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__);  // Requires Mac OS 10.6
     63   return owner;
     64 #elif defined(__BIONIC__)
     65   return gettid();
     66 #else
     67   return syscall(__NR_gettid);
     68 #endif
     69 }
     70 
     71 std::string GetThreadName(pid_t tid) {
     72   std::string result;
     73   if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
     74     result.resize(result.size() - 1);  // Lose the trailing '\n'.
     75   } else {
     76     result = "<unknown>";
     77   }
     78   return result;
     79 }
     80 
     81 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
     82 #if defined(__APPLE__)
     83   *stack_size = pthread_get_stacksize_np(thread);
     84   void* stack_addr = pthread_get_stackaddr_np(thread);
     85 
     86   // Check whether stack_addr is the base or end of the stack.
     87   // (On Mac OS 10.7, it's the end.)
     88   int stack_variable;
     89   if (stack_addr > &stack_variable) {
     90     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
     91   } else {
     92     *stack_base = stack_addr;
     93   }
     94 
     95   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
     96   pthread_attr_t attributes;
     97   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
     98   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
     99   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    100 #else
    101   pthread_attr_t attributes;
    102   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
    103   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
    104   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
    105   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    106 
    107 #if defined(__GLIBC__)
    108   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
    109   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
    110   // will be broken because we'll die long before we get close to 2GB.
    111   bool is_main_thread = (::art::GetTid() == getpid());
    112   if (is_main_thread) {
    113     rlimit stack_limit;
    114     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
    115       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
    116     }
    117     if (stack_limit.rlim_cur == RLIM_INFINITY) {
    118       size_t old_stack_size = *stack_size;
    119 
    120       // Use the kernel default limit as our size, and adjust the base to match.
    121       *stack_size = 8 * MB;
    122       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
    123 
    124       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
    125                     << " to " << PrettySize(*stack_size)
    126                     << " with base " << *stack_base;
    127     }
    128   }
    129 #endif
    130 
    131 #endif
    132 }
    133 
    134 bool ReadFileToString(const std::string& file_name, std::string* result) {
    135   File file;
    136   if (!file.Open(file_name, O_RDONLY)) {
    137     return false;
    138   }
    139 
    140   std::vector<char> buf(8 * KB);
    141   while (true) {
    142     int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size()));
    143     if (n == -1) {
    144       return false;
    145     }
    146     if (n == 0) {
    147       return true;
    148     }
    149     result->append(&buf[0], n);
    150   }
    151 }
    152 
    153 bool PrintFileToLog(const std::string& file_name, LogSeverity level) {
    154   File file;
    155   if (!file.Open(file_name, O_RDONLY)) {
    156     return false;
    157   }
    158 
    159   constexpr size_t kBufSize = 256;  // Small buffer. Avoid stack overflow and stack size warnings.
    160   char buf[kBufSize + 1];           // +1 for terminator.
    161   size_t filled_to = 0;
    162   while (true) {
    163     DCHECK_LT(filled_to, kBufSize);
    164     int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to));
    165     if (n <= 0) {
    166       // Print the rest of the buffer, if it exists.
    167       if (filled_to > 0) {
    168         buf[filled_to] = 0;
    169         LOG(level) << buf;
    170       }
    171       return n == 0;
    172     }
    173     // Scan for '\n'.
    174     size_t i = filled_to;
    175     bool found_newline = false;
    176     for (; i < filled_to + n; ++i) {
    177       if (buf[i] == '\n') {
    178         // Found a line break, that's something to print now.
    179         buf[i] = 0;
    180         LOG(level) << buf;
    181         // Copy the rest to the front.
    182         if (i + 1 < filled_to + n) {
    183           memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1);
    184           filled_to = filled_to + n - i - 1;
    185         } else {
    186           filled_to = 0;
    187         }
    188         found_newline = true;
    189         break;
    190       }
    191     }
    192     if (found_newline) {
    193       continue;
    194     } else {
    195       filled_to += n;
    196       // Check if we must flush now.
    197       if (filled_to == kBufSize) {
    198         buf[kBufSize] = 0;
    199         LOG(level) << buf;
    200         filled_to = 0;
    201       }
    202     }
    203   }
    204 }
    205 
    206 std::string PrettyDescriptor(mirror::String* java_descriptor) {
    207   if (java_descriptor == nullptr) {
    208     return "null";
    209   }
    210   return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
    211 }
    212 
    213 std::string PrettyDescriptor(mirror::Class* klass) {
    214   if (klass == nullptr) {
    215     return "null";
    216   }
    217   std::string temp;
    218   return PrettyDescriptor(klass->GetDescriptor(&temp));
    219 }
    220 
    221 std::string PrettyDescriptor(const char* descriptor) {
    222   // Count the number of '['s to get the dimensionality.
    223   const char* c = descriptor;
    224   size_t dim = 0;
    225   while (*c == '[') {
    226     dim++;
    227     c++;
    228   }
    229 
    230   // Reference or primitive?
    231   if (*c == 'L') {
    232     // "[[La/b/C;" -> "a.b.C[][]".
    233     c++;  // Skip the 'L'.
    234   } else {
    235     // "[[B" -> "byte[][]".
    236     // To make life easier, we make primitives look like unqualified
    237     // reference types.
    238     switch (*c) {
    239     case 'B': c = "byte;"; break;
    240     case 'C': c = "char;"; break;
    241     case 'D': c = "double;"; break;
    242     case 'F': c = "float;"; break;
    243     case 'I': c = "int;"; break;
    244     case 'J': c = "long;"; break;
    245     case 'S': c = "short;"; break;
    246     case 'Z': c = "boolean;"; break;
    247     case 'V': c = "void;"; break;  // Used when decoding return types.
    248     default: return descriptor;
    249     }
    250   }
    251 
    252   // At this point, 'c' is a string of the form "fully/qualified/Type;"
    253   // or "primitive;". Rewrite the type with '.' instead of '/':
    254   std::string result;
    255   const char* p = c;
    256   while (*p != ';') {
    257     char ch = *p++;
    258     if (ch == '/') {
    259       ch = '.';
    260     }
    261     result.push_back(ch);
    262   }
    263   // ...and replace the semicolon with 'dim' "[]" pairs:
    264   for (size_t i = 0; i < dim; ++i) {
    265     result += "[]";
    266   }
    267   return result;
    268 }
    269 
    270 std::string PrettyField(ArtField* f, bool with_type) {
    271   if (f == nullptr) {
    272     return "null";
    273   }
    274   std::string result;
    275   if (with_type) {
    276     result += PrettyDescriptor(f->GetTypeDescriptor());
    277     result += ' ';
    278   }
    279   std::string temp;
    280   result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp));
    281   result += '.';
    282   result += f->GetName();
    283   return result;
    284 }
    285 
    286 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
    287   if (field_idx >= dex_file.NumFieldIds()) {
    288     return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
    289   }
    290   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
    291   std::string result;
    292   if (with_type) {
    293     result += dex_file.GetFieldTypeDescriptor(field_id);
    294     result += ' ';
    295   }
    296   result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
    297   result += '.';
    298   result += dex_file.GetFieldName(field_id);
    299   return result;
    300 }
    301 
    302 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
    303   if (type_idx >= dex_file.NumTypeIds()) {
    304     return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
    305   }
    306   const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
    307   return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
    308 }
    309 
    310 std::string PrettyArguments(const char* signature) {
    311   std::string result;
    312   result += '(';
    313   CHECK_EQ(*signature, '(');
    314   ++signature;  // Skip the '('.
    315   while (*signature != ')') {
    316     size_t argument_length = 0;
    317     while (signature[argument_length] == '[') {
    318       ++argument_length;
    319     }
    320     if (signature[argument_length] == 'L') {
    321       argument_length = (strchr(signature, ';') - signature + 1);
    322     } else {
    323       ++argument_length;
    324     }
    325     {
    326       std::string argument_descriptor(signature, argument_length);
    327       result += PrettyDescriptor(argument_descriptor.c_str());
    328     }
    329     if (signature[argument_length] != ')') {
    330       result += ", ";
    331     }
    332     signature += argument_length;
    333   }
    334   CHECK_EQ(*signature, ')');
    335   ++signature;  // Skip the ')'.
    336   result += ')';
    337   return result;
    338 }
    339 
    340 std::string PrettyReturnType(const char* signature) {
    341   const char* return_type = strchr(signature, ')');
    342   CHECK(return_type != nullptr);
    343   ++return_type;  // Skip ')'.
    344   return PrettyDescriptor(return_type);
    345 }
    346 
    347 std::string PrettyMethod(ArtMethod* m, bool with_signature) {
    348   if (m == nullptr) {
    349     return "null";
    350   }
    351   if (!m->IsRuntimeMethod()) {
    352     m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize());
    353   }
    354   std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
    355   result += '.';
    356   result += m->GetName();
    357   if (UNLIKELY(m->IsFastNative())) {
    358     result += "!";
    359   }
    360   if (with_signature) {
    361     const Signature signature = m->GetSignature();
    362     std::string sig_as_string(signature.ToString());
    363     if (signature == Signature::NoSignature()) {
    364       return result + sig_as_string;
    365     }
    366     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    367         PrettyArguments(sig_as_string.c_str());
    368   }
    369   return result;
    370 }
    371 
    372 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
    373   if (method_idx >= dex_file.NumMethodIds()) {
    374     return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
    375   }
    376   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
    377   std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
    378   result += '.';
    379   result += dex_file.GetMethodName(method_id);
    380   if (with_signature) {
    381     const Signature signature = dex_file.GetMethodSignature(method_id);
    382     std::string sig_as_string(signature.ToString());
    383     if (signature == Signature::NoSignature()) {
    384       return result + sig_as_string;
    385     }
    386     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    387         PrettyArguments(sig_as_string.c_str());
    388   }
    389   return result;
    390 }
    391 
    392 std::string PrettyTypeOf(mirror::Object* obj) {
    393   if (obj == nullptr) {
    394     return "null";
    395   }
    396   if (obj->GetClass() == nullptr) {
    397     return "(raw)";
    398   }
    399   std::string temp;
    400   std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
    401   if (obj->IsClass()) {
    402     result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
    403   }
    404   return result;
    405 }
    406 
    407 std::string PrettyClass(mirror::Class* c) {
    408   if (c == nullptr) {
    409     return "null";
    410   }
    411   std::string result;
    412   result += "java.lang.Class<";
    413   result += PrettyDescriptor(c);
    414   result += ">";
    415   return result;
    416 }
    417 
    418 std::string PrettyClassAndClassLoader(mirror::Class* c) {
    419   if (c == nullptr) {
    420     return "null";
    421   }
    422   std::string result;
    423   result += "java.lang.Class<";
    424   result += PrettyDescriptor(c);
    425   result += ",";
    426   result += PrettyTypeOf(c->GetClassLoader());
    427   // TODO: add an identifying hash value for the loader
    428   result += ">";
    429   return result;
    430 }
    431 
    432 std::string PrettyJavaAccessFlags(uint32_t access_flags) {
    433   std::string result;
    434   if ((access_flags & kAccPublic) != 0) {
    435     result += "public ";
    436   }
    437   if ((access_flags & kAccProtected) != 0) {
    438     result += "protected ";
    439   }
    440   if ((access_flags & kAccPrivate) != 0) {
    441     result += "private ";
    442   }
    443   if ((access_flags & kAccFinal) != 0) {
    444     result += "final ";
    445   }
    446   if ((access_flags & kAccStatic) != 0) {
    447     result += "static ";
    448   }
    449   if ((access_flags & kAccTransient) != 0) {
    450     result += "transient ";
    451   }
    452   if ((access_flags & kAccVolatile) != 0) {
    453     result += "volatile ";
    454   }
    455   if ((access_flags & kAccSynchronized) != 0) {
    456     result += "synchronized ";
    457   }
    458   return result;
    459 }
    460 
    461 std::string PrettySize(int64_t byte_count) {
    462   // The byte thresholds at which we display amounts.  A byte count is displayed
    463   // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
    464   static const int64_t kUnitThresholds[] = {
    465     0,              // B up to...
    466     3*1024,         // KB up to...
    467     2*1024*1024,    // MB up to...
    468     1024*1024*1024  // GB from here.
    469   };
    470   static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
    471   static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
    472   const char* negative_str = "";
    473   if (byte_count < 0) {
    474     negative_str = "-";
    475     byte_count = -byte_count;
    476   }
    477   int i = arraysize(kUnitThresholds);
    478   while (--i > 0) {
    479     if (byte_count >= kUnitThresholds[i]) {
    480       break;
    481     }
    482   }
    483   return StringPrintf("%s%" PRId64 "%s",
    484                       negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
    485 }
    486 
    487 std::string PrintableChar(uint16_t ch) {
    488   std::string result;
    489   result += '\'';
    490   if (NeedsEscaping(ch)) {
    491     StringAppendF(&result, "\\u%04x", ch);
    492   } else {
    493     result += ch;
    494   }
    495   result += '\'';
    496   return result;
    497 }
    498 
    499 std::string PrintableString(const char* utf) {
    500   std::string result;
    501   result += '"';
    502   const char* p = utf;
    503   size_t char_count = CountModifiedUtf8Chars(p);
    504   for (size_t i = 0; i < char_count; ++i) {
    505     uint32_t ch = GetUtf16FromUtf8(&p);
    506     if (ch == '\\') {
    507       result += "\\\\";
    508     } else if (ch == '\n') {
    509       result += "\\n";
    510     } else if (ch == '\r') {
    511       result += "\\r";
    512     } else if (ch == '\t') {
    513       result += "\\t";
    514     } else {
    515       const uint16_t leading = GetLeadingUtf16Char(ch);
    516 
    517       if (NeedsEscaping(leading)) {
    518         StringAppendF(&result, "\\u%04x", leading);
    519       } else {
    520         result += leading;
    521       }
    522 
    523       const uint32_t trailing = GetTrailingUtf16Char(ch);
    524       if (trailing != 0) {
    525         // All high surrogates will need escaping.
    526         StringAppendF(&result, "\\u%04x", trailing);
    527       }
    528     }
    529   }
    530   result += '"';
    531   return result;
    532 }
    533 
    534 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
    535 std::string MangleForJni(const std::string& s) {
    536   std::string result;
    537   size_t char_count = CountModifiedUtf8Chars(s.c_str());
    538   const char* cp = &s[0];
    539   for (size_t i = 0; i < char_count; ++i) {
    540     uint32_t ch = GetUtf16FromUtf8(&cp);
    541     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
    542       result.push_back(ch);
    543     } else if (ch == '.' || ch == '/') {
    544       result += "_";
    545     } else if (ch == '_') {
    546       result += "_1";
    547     } else if (ch == ';') {
    548       result += "_2";
    549     } else if (ch == '[') {
    550       result += "_3";
    551     } else {
    552       const uint16_t leading = GetLeadingUtf16Char(ch);
    553       const uint32_t trailing = GetTrailingUtf16Char(ch);
    554 
    555       StringAppendF(&result, "_0%04x", leading);
    556       if (trailing != 0) {
    557         StringAppendF(&result, "_0%04x", trailing);
    558       }
    559     }
    560   }
    561   return result;
    562 }
    563 
    564 std::string DotToDescriptor(const char* class_name) {
    565   std::string descriptor(class_name);
    566   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
    567   if (descriptor.length() > 0 && descriptor[0] != '[') {
    568     descriptor = "L" + descriptor + ";";
    569   }
    570   return descriptor;
    571 }
    572 
    573 std::string DescriptorToDot(const char* descriptor) {
    574   size_t length = strlen(descriptor);
    575   if (length > 1) {
    576     if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    577       // Descriptors have the leading 'L' and trailing ';' stripped.
    578       std::string result(descriptor + 1, length - 2);
    579       std::replace(result.begin(), result.end(), '/', '.');
    580       return result;
    581     } else {
    582       // For arrays the 'L' and ';' remain intact.
    583       std::string result(descriptor);
    584       std::replace(result.begin(), result.end(), '/', '.');
    585       return result;
    586     }
    587   }
    588   // Do nothing for non-class/array descriptors.
    589   return descriptor;
    590 }
    591 
    592 std::string DescriptorToName(const char* descriptor) {
    593   size_t length = strlen(descriptor);
    594   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    595     std::string result(descriptor + 1, length - 2);
    596     return result;
    597   }
    598   return descriptor;
    599 }
    600 
    601 std::string JniShortName(ArtMethod* m) {
    602   std::string class_name(m->GetDeclaringClassDescriptor());
    603   // Remove the leading 'L' and trailing ';'...
    604   CHECK_EQ(class_name[0], 'L') << class_name;
    605   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
    606   class_name.erase(0, 1);
    607   class_name.erase(class_name.size() - 1, 1);
    608 
    609   std::string method_name(m->GetName());
    610 
    611   std::string short_name;
    612   short_name += "Java_";
    613   short_name += MangleForJni(class_name);
    614   short_name += "_";
    615   short_name += MangleForJni(method_name);
    616   return short_name;
    617 }
    618 
    619 std::string JniLongName(ArtMethod* m) {
    620   std::string long_name;
    621   long_name += JniShortName(m);
    622   long_name += "__";
    623 
    624   std::string signature(m->GetSignature().ToString());
    625   signature.erase(0, 1);
    626   signature.erase(signature.begin() + signature.find(')'), signature.end());
    627 
    628   long_name += MangleForJni(signature);
    629 
    630   return long_name;
    631 }
    632 
    633 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
    634 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
    635   0x00000000,  // 00..1f low control characters; nothing valid
    636   0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
    637   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
    638   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
    639 };
    640 
    641 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
    642 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
    643   /*
    644    * It's a multibyte encoded character. Decode it and analyze. We
    645    * accept anything that isn't (a) an improperly encoded low value,
    646    * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
    647    * control character, or (e) a high space, layout, or special
    648    * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
    649    * U+fff0..U+ffff). This is all specified in the dex format
    650    * document.
    651    */
    652 
    653   const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
    654   const uint16_t leading = GetLeadingUtf16Char(pair);
    655 
    656   // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
    657   // No further checks are necessary because 4 byte sequences span code
    658   // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
    659   // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
    660   // the surrogate halves are valid and well formed in this instance.
    661   if (GetTrailingUtf16Char(pair) != 0) {
    662     return true;
    663   }
    664 
    665 
    666   // We've encountered a one, two or three byte UTF-8 sequence. The
    667   // three byte UTF-8 sequence could be one half of a surrogate pair.
    668   switch (leading >> 8) {
    669     case 0x00:
    670       // It's only valid if it's above the ISO-8859-1 high space (0xa0).
    671       return (leading > 0x00a0);
    672     case 0xd8:
    673     case 0xd9:
    674     case 0xda:
    675     case 0xdb:
    676       {
    677         // We found a three byte sequence encoding one half of a surrogate.
    678         // Look for the other half.
    679         const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
    680         const uint16_t trailing = GetLeadingUtf16Char(pair2);
    681 
    682         return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
    683       }
    684     case 0xdc:
    685     case 0xdd:
    686     case 0xde:
    687     case 0xdf:
    688       // It's a trailing surrogate, which is not valid at this point.
    689       return false;
    690     case 0x20:
    691     case 0xff:
    692       // It's in the range that has spaces, controls, and specials.
    693       switch (leading & 0xfff8) {
    694         case 0x2000:
    695         case 0x2008:
    696         case 0x2028:
    697         case 0xfff0:
    698         case 0xfff8:
    699           return false;
    700       }
    701       return true;
    702     default:
    703       return true;
    704   }
    705 
    706   UNREACHABLE();
    707 }
    708 
    709 /* Return whether the pointed-at modified-UTF-8 encoded character is
    710  * valid as part of a member name, updating the pointer to point past
    711  * the consumed character. This will consume two encoded UTF-16 code
    712  * points if the character is encoded as a surrogate pair. Also, if
    713  * this function returns false, then the given pointer may only have
    714  * been partially advanced.
    715  */
    716 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
    717   uint8_t c = (uint8_t) **pUtf8Ptr;
    718   if (LIKELY(c <= 0x7f)) {
    719     // It's low-ascii, so check the table.
    720     uint32_t wordIdx = c >> 5;
    721     uint32_t bitIdx = c & 0x1f;
    722     (*pUtf8Ptr)++;
    723     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
    724   }
    725 
    726   // It's a multibyte encoded character. Call a non-inline function
    727   // for the heavy lifting.
    728   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
    729 }
    730 
    731 bool IsValidMemberName(const char* s) {
    732   bool angle_name = false;
    733 
    734   switch (*s) {
    735     case '\0':
    736       // The empty string is not a valid name.
    737       return false;
    738     case '<':
    739       angle_name = true;
    740       s++;
    741       break;
    742   }
    743 
    744   while (true) {
    745     switch (*s) {
    746       case '\0':
    747         return !angle_name;
    748       case '>':
    749         return angle_name && s[1] == '\0';
    750     }
    751 
    752     if (!IsValidPartOfMemberNameUtf8(&s)) {
    753       return false;
    754     }
    755   }
    756 }
    757 
    758 enum ClassNameType { kName, kDescriptor };
    759 template<ClassNameType kType, char kSeparator>
    760 static bool IsValidClassName(const char* s) {
    761   int arrayCount = 0;
    762   while (*s == '[') {
    763     arrayCount++;
    764     s++;
    765   }
    766 
    767   if (arrayCount > 255) {
    768     // Arrays may have no more than 255 dimensions.
    769     return false;
    770   }
    771 
    772   ClassNameType type = kType;
    773   if (type != kDescriptor && arrayCount != 0) {
    774     /*
    775      * If we're looking at an array of some sort, then it doesn't
    776      * matter if what is being asked for is a class name; the
    777      * format looks the same as a type descriptor in that case, so
    778      * treat it as such.
    779      */
    780     type = kDescriptor;
    781   }
    782 
    783   if (type == kDescriptor) {
    784     /*
    785      * We are looking for a descriptor. Either validate it as a
    786      * single-character primitive type, or continue on to check the
    787      * embedded class name (bracketed by "L" and ";").
    788      */
    789     switch (*(s++)) {
    790     case 'B':
    791     case 'C':
    792     case 'D':
    793     case 'F':
    794     case 'I':
    795     case 'J':
    796     case 'S':
    797     case 'Z':
    798       // These are all single-character descriptors for primitive types.
    799       return (*s == '\0');
    800     case 'V':
    801       // Non-array void is valid, but you can't have an array of void.
    802       return (arrayCount == 0) && (*s == '\0');
    803     case 'L':
    804       // Class name: Break out and continue below.
    805       break;
    806     default:
    807       // Oddball descriptor character.
    808       return false;
    809     }
    810   }
    811 
    812   /*
    813    * We just consumed the 'L' that introduces a class name as part
    814    * of a type descriptor, or we are looking for an unadorned class
    815    * name.
    816    */
    817 
    818   bool sepOrFirst = true;  // first character or just encountered a separator.
    819   for (;;) {
    820     uint8_t c = (uint8_t) *s;
    821     switch (c) {
    822     case '\0':
    823       /*
    824        * Premature end for a type descriptor, but valid for
    825        * a class name as long as we haven't encountered an
    826        * empty component (including the degenerate case of
    827        * the empty string "").
    828        */
    829       return (type == kName) && !sepOrFirst;
    830     case ';':
    831       /*
    832        * Invalid character for a class name, but the
    833        * legitimate end of a type descriptor. In the latter
    834        * case, make sure that this is the end of the string
    835        * and that it doesn't end with an empty component
    836        * (including the degenerate case of "L;").
    837        */
    838       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
    839     case '/':
    840     case '.':
    841       if (c != kSeparator) {
    842         // The wrong separator character.
    843         return false;
    844       }
    845       if (sepOrFirst) {
    846         // Separator at start or two separators in a row.
    847         return false;
    848       }
    849       sepOrFirst = true;
    850       s++;
    851       break;
    852     default:
    853       if (!IsValidPartOfMemberNameUtf8(&s)) {
    854         return false;
    855       }
    856       sepOrFirst = false;
    857       break;
    858     }
    859   }
    860 }
    861 
    862 bool IsValidBinaryClassName(const char* s) {
    863   return IsValidClassName<kName, '.'>(s);
    864 }
    865 
    866 bool IsValidJniClassName(const char* s) {
    867   return IsValidClassName<kName, '/'>(s);
    868 }
    869 
    870 bool IsValidDescriptor(const char* s) {
    871   return IsValidClassName<kDescriptor, '/'>(s);
    872 }
    873 
    874 void Split(const std::string& s, char separator, std::vector<std::string>* result) {
    875   const char* p = s.data();
    876   const char* end = p + s.size();
    877   while (p != end) {
    878     if (*p == separator) {
    879       ++p;
    880     } else {
    881       const char* start = p;
    882       while (++p != end && *p != separator) {
    883         // Skip to the next occurrence of the separator.
    884       }
    885       result->push_back(std::string(start, p - start));
    886     }
    887   }
    888 }
    889 
    890 std::string Trim(const std::string& s) {
    891   std::string result;
    892   unsigned int start_index = 0;
    893   unsigned int end_index = s.size() - 1;
    894 
    895   // Skip initial whitespace.
    896   while (start_index < s.size()) {
    897     if (!isspace(s[start_index])) {
    898       break;
    899     }
    900     start_index++;
    901   }
    902 
    903   // Skip terminating whitespace.
    904   while (end_index >= start_index) {
    905     if (!isspace(s[end_index])) {
    906       break;
    907     }
    908     end_index--;
    909   }
    910 
    911   // All spaces, no beef.
    912   if (end_index < start_index) {
    913     return "";
    914   }
    915   // Start_index is the first non-space, end_index is the last one.
    916   return s.substr(start_index, end_index - start_index + 1);
    917 }
    918 
    919 template <typename StringT>
    920 std::string Join(const std::vector<StringT>& strings, char separator) {
    921   if (strings.empty()) {
    922     return "";
    923   }
    924 
    925   std::string result(strings[0]);
    926   for (size_t i = 1; i < strings.size(); ++i) {
    927     result += separator;
    928     result += strings[i];
    929   }
    930   return result;
    931 }
    932 
    933 // Explicit instantiations.
    934 template std::string Join<std::string>(const std::vector<std::string>& strings, char separator);
    935 template std::string Join<const char*>(const std::vector<const char*>& strings, char separator);
    936 
    937 bool StartsWith(const std::string& s, const char* prefix) {
    938   return s.compare(0, strlen(prefix), prefix) == 0;
    939 }
    940 
    941 bool EndsWith(const std::string& s, const char* suffix) {
    942   size_t suffix_length = strlen(suffix);
    943   size_t string_length = s.size();
    944   if (suffix_length > string_length) {
    945     return false;
    946   }
    947   size_t offset = string_length - suffix_length;
    948   return s.compare(offset, suffix_length, suffix) == 0;
    949 }
    950 
    951 void SetThreadName(const char* thread_name) {
    952   int hasAt = 0;
    953   int hasDot = 0;
    954   const char* s = thread_name;
    955   while (*s) {
    956     if (*s == '.') {
    957       hasDot = 1;
    958     } else if (*s == '@') {
    959       hasAt = 1;
    960     }
    961     s++;
    962   }
    963   int len = s - thread_name;
    964   if (len < 15 || hasAt || !hasDot) {
    965     s = thread_name;
    966   } else {
    967     s = thread_name + len - 15;
    968   }
    969 #if defined(__linux__)
    970   // pthread_setname_np fails rather than truncating long strings.
    971   char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel.
    972   strncpy(buf, s, sizeof(buf)-1);
    973   buf[sizeof(buf)-1] = '\0';
    974   errno = pthread_setname_np(pthread_self(), buf);
    975   if (errno != 0) {
    976     PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
    977   }
    978 #else  // __APPLE__
    979   pthread_setname_np(thread_name);
    980 #endif
    981 }
    982 
    983 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
    984   *utime = *stime = *task_cpu = 0;
    985   std::string stats;
    986   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
    987     return;
    988   }
    989   // Skip the command, which may contain spaces.
    990   stats = stats.substr(stats.find(')') + 2);
    991   // Extract the three fields we care about.
    992   std::vector<std::string> fields;
    993   Split(stats, ' ', &fields);
    994   *state = fields[0][0];
    995   *utime = strtoull(fields[11].c_str(), nullptr, 10);
    996   *stime = strtoull(fields[12].c_str(), nullptr, 10);
    997   *task_cpu = strtoull(fields[36].c_str(), nullptr, 10);
    998 }
    999 
   1000 std::string GetSchedulerGroupName(pid_t tid) {
   1001   // /proc/<pid>/cgroup looks like this:
   1002   // 2:devices:/
   1003   // 1:cpuacct,cpu:/
   1004   // We want the third field from the line whose second field contains the "cpu" token.
   1005   std::string cgroup_file;
   1006   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1007     return "";
   1008   }
   1009   std::vector<std::string> cgroup_lines;
   1010   Split(cgroup_file, '\n', &cgroup_lines);
   1011   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1012     std::vector<std::string> cgroup_fields;
   1013     Split(cgroup_lines[i], ':', &cgroup_fields);
   1014     std::vector<std::string> cgroups;
   1015     Split(cgroup_fields[1], ',', &cgroups);
   1016     for (size_t j = 0; j < cgroups.size(); ++j) {
   1017       if (cgroups[j] == "cpu") {
   1018         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1019       }
   1020     }
   1021   }
   1022   return "";
   1023 }
   1024 
   1025 #if defined(__linux__)
   1026 
   1027 ALWAYS_INLINE
   1028 static inline void WritePrefix(std::ostream* os, const char* prefix, bool odd) {
   1029   if (prefix != nullptr) {
   1030     *os << prefix;
   1031   }
   1032   *os << "  ";
   1033   if (!odd) {
   1034     *os << " ";
   1035   }
   1036 }
   1037 
   1038 static bool RunCommand(std::string cmd, std::ostream* os, const char* prefix) {
   1039   FILE* stream = popen(cmd.c_str(), "r");
   1040   if (stream) {
   1041     if (os != nullptr) {
   1042       bool odd_line = true;               // We indent them differently.
   1043       bool wrote_prefix = false;          // Have we already written a prefix?
   1044       constexpr size_t kMaxBuffer = 128;  // Relatively small buffer. Should be OK as we're on an
   1045                                           // alt stack, but just to be sure...
   1046       char buffer[kMaxBuffer];
   1047       while (!feof(stream)) {
   1048         if (fgets(buffer, kMaxBuffer, stream) != nullptr) {
   1049           // Split on newlines.
   1050           char* tmp = buffer;
   1051           for (;;) {
   1052             char* new_line = strchr(tmp, '\n');
   1053             if (new_line == nullptr) {
   1054               // Print the rest.
   1055               if (*tmp != 0) {
   1056                 if (!wrote_prefix) {
   1057                   WritePrefix(os, prefix, odd_line);
   1058                 }
   1059                 wrote_prefix = true;
   1060                 *os << tmp;
   1061               }
   1062               break;
   1063             }
   1064             if (!wrote_prefix) {
   1065               WritePrefix(os, prefix, odd_line);
   1066             }
   1067             char saved = *(new_line + 1);
   1068             *(new_line + 1) = 0;
   1069             *os << tmp;
   1070             *(new_line + 1) = saved;
   1071             tmp = new_line + 1;
   1072             odd_line = !odd_line;
   1073             wrote_prefix = false;
   1074           }
   1075         }
   1076       }
   1077     }
   1078     pclose(stream);
   1079     return true;
   1080   } else {
   1081     return false;
   1082   }
   1083 }
   1084 
   1085 static void Addr2line(const std::string& map_src, uintptr_t offset, std::ostream& os,
   1086                       const char* prefix) {
   1087   std::string cmdline(StringPrintf("addr2line --functions --inlines --demangle -e %s %zx",
   1088                                    map_src.c_str(), offset));
   1089   RunCommand(cmdline.c_str(), &os, prefix);
   1090 }
   1091 #endif
   1092 
   1093 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
   1094     ArtMethod* current_method, void* ucontext_ptr) {
   1095 #if __linux__
   1096   // b/18119146
   1097   if (RUNNING_ON_VALGRIND != 0) {
   1098     return;
   1099   }
   1100 
   1101   std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
   1102   if (!backtrace->Unwind(0, reinterpret_cast<ucontext*>(ucontext_ptr))) {
   1103     os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
   1104     return;
   1105   } else if (backtrace->NumFrames() == 0) {
   1106     os << prefix << "(no native stack frames for thread " << tid << ")\n";
   1107     return;
   1108   }
   1109 
   1110   // Check whether we have and should use addr2line.
   1111   bool use_addr2line;
   1112   if (kUseAddr2line) {
   1113     // Try to run it to see whether we have it. Push an argument so that it doesn't assume a.out
   1114     // and print to stderr.
   1115     use_addr2line = (gAborting > 0) && RunCommand("addr2line -h", nullptr, nullptr);
   1116   } else {
   1117     use_addr2line = false;
   1118   }
   1119 
   1120   for (Backtrace::const_iterator it = backtrace->begin();
   1121        it != backtrace->end(); ++it) {
   1122     // We produce output like this:
   1123     // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
   1124     // In order for parsing tools to continue to function, the stack dump
   1125     // format must at least adhere to this format:
   1126     //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
   1127     // The parsers require a single space before and after pc, and two spaces
   1128     // after the <RELATIVE_ADDR>. There can be any prefix data before the
   1129     // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
   1130     os << prefix << StringPrintf("#%02zu pc ", it->num);
   1131     bool try_addr2line = false;
   1132     if (!BacktraceMap::IsValid(it->map)) {
   1133       os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR "  ???"
   1134                                                             : "%08" PRIxPTR "  ???",
   1135                          it->pc);
   1136     } else {
   1137       os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR "  "
   1138                                                             : "%08" PRIxPTR "  ",
   1139                          BacktraceMap::GetRelativePc(it->map, it->pc));
   1140       os << it->map.name;
   1141       os << " (";
   1142       if (!it->func_name.empty()) {
   1143         os << it->func_name;
   1144         if (it->func_offset != 0) {
   1145           os << "+" << it->func_offset;
   1146         }
   1147         try_addr2line = true;
   1148       } else if (
   1149           current_method != nullptr && Locks::mutator_lock_->IsSharedHeld(Thread::Current()) &&
   1150           current_method->PcIsWithinQuickCode(it->pc)) {
   1151         const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
   1152         os << JniLongName(current_method) << "+"
   1153            << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
   1154       } else {
   1155         os << "???";
   1156       }
   1157       os << ")";
   1158     }
   1159     os << "\n";
   1160     if (try_addr2line && use_addr2line) {
   1161       Addr2line(it->map.name, it->pc - it->map.start, os, prefix);
   1162     }
   1163   }
   1164 #else
   1165   UNUSED(os, tid, prefix, current_method, ucontext_ptr);
   1166 #endif
   1167 }
   1168 
   1169 #if defined(__APPLE__)
   1170 
   1171 // TODO: is there any way to get the kernel stack on Mac OS?
   1172 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
   1173 
   1174 #else
   1175 
   1176 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
   1177   if (tid == GetTid()) {
   1178     // There's no point showing that we're reading our stack out of /proc!
   1179     return;
   1180   }
   1181 
   1182   std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
   1183   std::string kernel_stack;
   1184   if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
   1185     os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
   1186     return;
   1187   }
   1188 
   1189   std::vector<std::string> kernel_stack_frames;
   1190   Split(kernel_stack, '\n', &kernel_stack_frames);
   1191   // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
   1192   // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
   1193   kernel_stack_frames.pop_back();
   1194   for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
   1195     // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
   1196     // into "futex_wait_queue_me+0xcd/0x110".
   1197     const char* text = kernel_stack_frames[i].c_str();
   1198     const char* close_bracket = strchr(text, ']');
   1199     if (close_bracket != nullptr) {
   1200       text = close_bracket + 2;
   1201     }
   1202     os << prefix;
   1203     if (include_count) {
   1204       os << StringPrintf("#%02zd ", i);
   1205     }
   1206     os << text << "\n";
   1207   }
   1208 }
   1209 
   1210 #endif
   1211 
   1212 const char* GetAndroidRoot() {
   1213   const char* android_root = getenv("ANDROID_ROOT");
   1214   if (android_root == nullptr) {
   1215     if (OS::DirectoryExists("/system")) {
   1216       android_root = "/system";
   1217     } else {
   1218       LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
   1219       return "";
   1220     }
   1221   }
   1222   if (!OS::DirectoryExists(android_root)) {
   1223     LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
   1224     return "";
   1225   }
   1226   return android_root;
   1227 }
   1228 
   1229 const char* GetAndroidData() {
   1230   std::string error_msg;
   1231   const char* dir = GetAndroidDataSafe(&error_msg);
   1232   if (dir != nullptr) {
   1233     return dir;
   1234   } else {
   1235     LOG(FATAL) << error_msg;
   1236     return "";
   1237   }
   1238 }
   1239 
   1240 const char* GetAndroidDataSafe(std::string* error_msg) {
   1241   const char* android_data = getenv("ANDROID_DATA");
   1242   if (android_data == nullptr) {
   1243     if (OS::DirectoryExists("/data")) {
   1244       android_data = "/data";
   1245     } else {
   1246       *error_msg = "ANDROID_DATA not set and /data does not exist";
   1247       return nullptr;
   1248     }
   1249   }
   1250   if (!OS::DirectoryExists(android_data)) {
   1251     *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
   1252     return nullptr;
   1253   }
   1254   return android_data;
   1255 }
   1256 
   1257 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
   1258                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
   1259   CHECK(subdir != nullptr);
   1260   std::string error_msg;
   1261   const char* android_data = GetAndroidDataSafe(&error_msg);
   1262   if (android_data == nullptr) {
   1263     *have_android_data = false;
   1264     *dalvik_cache_exists = false;
   1265     *is_global_cache = false;
   1266     return;
   1267   } else {
   1268     *have_android_data = true;
   1269   }
   1270   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1271   *dalvik_cache = dalvik_cache_root + subdir;
   1272   *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
   1273   *is_global_cache = strcmp(android_data, "/data") == 0;
   1274   if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
   1275     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1276     *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
   1277                             (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
   1278   }
   1279 }
   1280 
   1281 static std::string GetDalvikCacheImpl(const char* subdir,
   1282                                       const bool create_if_absent,
   1283                                       const bool abort_on_error) {
   1284   CHECK(subdir != nullptr);
   1285   const char* android_data = GetAndroidData();
   1286   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1287   const std::string dalvik_cache = dalvik_cache_root + subdir;
   1288   if (!OS::DirectoryExists(dalvik_cache.c_str())) {
   1289     if (!create_if_absent) {
   1290       // TODO: Check callers. Traditional behavior is to not to abort, even when abort_on_error.
   1291       return "";
   1292     }
   1293 
   1294     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1295     if (strcmp(android_data, "/data") == 0) {
   1296       if (abort_on_error) {
   1297         LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache
   1298                    << ", cannot create /data dalvik-cache.";
   1299         UNREACHABLE();
   1300       }
   1301       return "";
   1302     }
   1303 
   1304     int result = mkdir(dalvik_cache_root.c_str(), 0700);
   1305     if (result != 0 && errno != EEXIST) {
   1306       if (abort_on_error) {
   1307         PLOG(FATAL) << "Failed to create dalvik-cache root directory " << dalvik_cache_root;
   1308         UNREACHABLE();
   1309       }
   1310       return "";
   1311     }
   1312 
   1313     result = mkdir(dalvik_cache.c_str(), 0700);
   1314     if (result != 0) {
   1315       if (abort_on_error) {
   1316         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
   1317         UNREACHABLE();
   1318       }
   1319       return "";
   1320     }
   1321   }
   1322   return dalvik_cache;
   1323 }
   1324 
   1325 std::string GetDalvikCache(const char* subdir, const bool create_if_absent) {
   1326   return GetDalvikCacheImpl(subdir, create_if_absent, false);
   1327 }
   1328 
   1329 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
   1330   return GetDalvikCacheImpl(subdir, create_if_absent, true);
   1331 }
   1332 
   1333 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
   1334                             std::string* filename, std::string* error_msg) {
   1335   if (location[0] != '/') {
   1336     *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
   1337     return false;
   1338   }
   1339   std::string cache_file(&location[1]);  // skip leading slash
   1340   if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
   1341     cache_file += "/";
   1342     cache_file += DexFile::kClassesDex;
   1343   }
   1344   std::replace(cache_file.begin(), cache_file.end(), '/', '@');
   1345   *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
   1346   return true;
   1347 }
   1348 
   1349 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
   1350   std::string ret;
   1351   std::string error_msg;
   1352   if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
   1353     LOG(FATAL) << error_msg;
   1354   }
   1355   return ret;
   1356 }
   1357 
   1358 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
   1359   // in = /foo/bar/baz
   1360   // out = /foo/bar/<isa>/baz
   1361   size_t pos = filename->rfind('/');
   1362   CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
   1363   filename->insert(pos, "/", 1);
   1364   filename->insert(pos + 1, GetInstructionSetString(isa));
   1365 }
   1366 
   1367 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
   1368   // location = /system/framework/boot.art
   1369   // filename = /system/framework/<isa>/boot.art
   1370   std::string filename(location);
   1371   InsertIsaDirectory(isa, &filename);
   1372   return filename;
   1373 }
   1374 
   1375 bool IsZipMagic(uint32_t magic) {
   1376   return (('P' == ((magic >> 0) & 0xff)) &&
   1377           ('K' == ((magic >> 8) & 0xff)));
   1378 }
   1379 
   1380 bool IsDexMagic(uint32_t magic) {
   1381   return DexFile::IsMagicValid(reinterpret_cast<const uint8_t*>(&magic));
   1382 }
   1383 
   1384 bool IsOatMagic(uint32_t magic) {
   1385   return (memcmp(reinterpret_cast<const uint8_t*>(magic),
   1386                  OatHeader::kOatMagic,
   1387                  sizeof(OatHeader::kOatMagic)) == 0);
   1388 }
   1389 
   1390 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
   1391   const std::string command_line(Join(arg_vector, ' '));
   1392 
   1393   CHECK_GE(arg_vector.size(), 1U) << command_line;
   1394 
   1395   // Convert the args to char pointers.
   1396   const char* program = arg_vector[0].c_str();
   1397   std::vector<char*> args;
   1398   for (size_t i = 0; i < arg_vector.size(); ++i) {
   1399     const std::string& arg = arg_vector[i];
   1400     char* arg_str = const_cast<char*>(arg.c_str());
   1401     CHECK(arg_str != nullptr) << i;
   1402     args.push_back(arg_str);
   1403   }
   1404   args.push_back(nullptr);
   1405 
   1406   // fork and exec
   1407   pid_t pid = fork();
   1408   if (pid == 0) {
   1409     // no allocation allowed between fork and exec
   1410 
   1411     // change process groups, so we don't get reaped by ProcessManager
   1412     setpgid(0, 0);
   1413 
   1414     execv(program, &args[0]);
   1415 
   1416     PLOG(ERROR) << "Failed to execv(" << command_line << ")";
   1417     exit(1);
   1418   } else {
   1419     if (pid == -1) {
   1420       *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
   1421                                 command_line.c_str(), strerror(errno));
   1422       return false;
   1423     }
   1424 
   1425     // wait for subprocess to finish
   1426     int status;
   1427     pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
   1428     if (got_pid != pid) {
   1429       *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
   1430                                 "wanted %d, got %d: %s",
   1431                                 command_line.c_str(), pid, got_pid, strerror(errno));
   1432       return false;
   1433     }
   1434     if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
   1435       *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
   1436                                 command_line.c_str());
   1437       return false;
   1438     }
   1439   }
   1440   return true;
   1441 }
   1442 
   1443 void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* dst) {
   1444   Leb128Encoder(dst).PushBackUnsigned(data);
   1445 }
   1446 
   1447 void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* dst) {
   1448   Leb128Encoder(dst).PushBackSigned(data);
   1449 }
   1450 
   1451 std::string PrettyDescriptor(Primitive::Type type) {
   1452   return PrettyDescriptor(Primitive::Descriptor(type));
   1453 }
   1454 
   1455 }  // namespace art
   1456