Home | History | Annotate | Download | only in IR
      1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declarations of classes that represent "derived
     11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
     12 // "function returning x taking (y,z) as parameters", etc...
     13 //
     14 // The implementations of these classes live in the Type.cpp file.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_IR_DERIVEDTYPES_H
     19 #define LLVM_IR_DERIVEDTYPES_H
     20 
     21 #include "llvm/IR/Type.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/DataTypes.h"
     24 
     25 namespace llvm {
     26 
     27 class Value;
     28 class APInt;
     29 class LLVMContext;
     30 template<typename T> class ArrayRef;
     31 class StringRef;
     32 
     33 /// Class to represent integer types. Note that this class is also used to
     34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
     35 /// Int64Ty.
     36 /// @brief Integer representation type
     37 class IntegerType : public Type {
     38   friend class LLVMContextImpl;
     39 
     40 protected:
     41   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
     42     setSubclassData(NumBits);
     43   }
     44 public:
     45   /// This enum is just used to hold constants we need for IntegerType.
     46   enum {
     47     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
     48     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
     49       ///< Note that bit width is stored in the Type classes SubclassData field
     50       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
     51   };
     52 
     53   /// This static method is the primary way of constructing an IntegerType.
     54   /// If an IntegerType with the same NumBits value was previously instantiated,
     55   /// that instance will be returned. Otherwise a new one will be created. Only
     56   /// one instance with a given NumBits value is ever created.
     57   /// @brief Get or create an IntegerType instance.
     58   static IntegerType *get(LLVMContext &C, unsigned NumBits);
     59 
     60   /// @brief Get the number of bits in this IntegerType
     61   unsigned getBitWidth() const { return getSubclassData(); }
     62 
     63   /// getBitMask - Return a bitmask with ones set for all of the bits
     64   /// that can be set by an unsigned version of this type.  This is 0xFF for
     65   /// i8, 0xFFFF for i16, etc.
     66   uint64_t getBitMask() const {
     67     return ~uint64_t(0UL) >> (64-getBitWidth());
     68   }
     69 
     70   /// getSignBit - Return a uint64_t with just the most significant bit set (the
     71   /// sign bit, if the value is treated as a signed number).
     72   uint64_t getSignBit() const {
     73     return 1ULL << (getBitWidth()-1);
     74   }
     75 
     76   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
     77   /// @returns a bit mask with ones set for all the bits of this type.
     78   /// @brief Get a bit mask for this type.
     79   APInt getMask() const;
     80 
     81   /// This method determines if the width of this IntegerType is a power-of-2
     82   /// in terms of 8 bit bytes.
     83   /// @returns true if this is a power-of-2 byte width.
     84   /// @brief Is this a power-of-2 byte-width IntegerType ?
     85   bool isPowerOf2ByteWidth() const;
     86 
     87   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     88   static inline bool classof(const Type *T) {
     89     return T->getTypeID() == IntegerTyID;
     90   }
     91 };
     92 
     93 
     94 /// FunctionType - Class to represent function types
     95 ///
     96 class FunctionType : public Type {
     97   FunctionType(const FunctionType &) = delete;
     98   const FunctionType &operator=(const FunctionType &) = delete;
     99   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
    100 
    101 public:
    102   /// FunctionType::get - This static method is the primary way of constructing
    103   /// a FunctionType.
    104   ///
    105   static FunctionType *get(Type *Result,
    106                            ArrayRef<Type*> Params, bool isVarArg);
    107 
    108   /// FunctionType::get - Create a FunctionType taking no parameters.
    109   ///
    110   static FunctionType *get(Type *Result, bool isVarArg);
    111 
    112   /// isValidReturnType - Return true if the specified type is valid as a return
    113   /// type.
    114   static bool isValidReturnType(Type *RetTy);
    115 
    116   /// isValidArgumentType - Return true if the specified type is valid as an
    117   /// argument type.
    118   static bool isValidArgumentType(Type *ArgTy);
    119 
    120   bool isVarArg() const { return getSubclassData()!=0; }
    121   Type *getReturnType() const { return ContainedTys[0]; }
    122 
    123   typedef Type::subtype_iterator param_iterator;
    124   param_iterator param_begin() const { return ContainedTys + 1; }
    125   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
    126   ArrayRef<Type *> params() const {
    127     return makeArrayRef(param_begin(), param_end());
    128   }
    129 
    130   /// Parameter type accessors.
    131   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
    132 
    133   /// getNumParams - Return the number of fixed parameters this function type
    134   /// requires.  This does not consider varargs.
    135   ///
    136   unsigned getNumParams() const { return NumContainedTys - 1; }
    137 
    138   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    139   static inline bool classof(const Type *T) {
    140     return T->getTypeID() == FunctionTyID;
    141   }
    142 };
    143 
    144 
    145 /// CompositeType - Common super class of ArrayType, StructType, PointerType
    146 /// and VectorType.
    147 class CompositeType : public Type {
    148 protected:
    149   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
    150 public:
    151 
    152   /// getTypeAtIndex - Given an index value into the type, return the type of
    153   /// the element.
    154   ///
    155   Type *getTypeAtIndex(const Value *V);
    156   Type *getTypeAtIndex(unsigned Idx);
    157   bool indexValid(const Value *V) const;
    158   bool indexValid(unsigned Idx) const;
    159 
    160   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    161   static inline bool classof(const Type *T) {
    162     return T->getTypeID() == ArrayTyID ||
    163            T->getTypeID() == StructTyID ||
    164            T->getTypeID() == PointerTyID ||
    165            T->getTypeID() == VectorTyID;
    166   }
    167 };
    168 
    169 
    170 /// StructType - Class to represent struct types.  There are two different kinds
    171 /// of struct types: Literal structs and Identified structs.
    172 ///
    173 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
    174 /// always have a body when created.  You can get one of these by using one of
    175 /// the StructType::get() forms.
    176 ///
    177 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
    178 /// uniqued.  The names for identified structs are managed at the LLVMContext
    179 /// level, so there can only be a single identified struct with a given name in
    180 /// a particular LLVMContext.  Identified structs may also optionally be opaque
    181 /// (have no body specified).  You get one of these by using one of the
    182 /// StructType::create() forms.
    183 ///
    184 /// Independent of what kind of struct you have, the body of a struct type are
    185 /// laid out in memory consequtively with the elements directly one after the
    186 /// other (if the struct is packed) or (if not packed) with padding between the
    187 /// elements as defined by DataLayout (which is required to match what the code
    188 /// generator for a target expects).
    189 ///
    190 class StructType : public CompositeType {
    191   StructType(const StructType &) = delete;
    192   const StructType &operator=(const StructType &) = delete;
    193   StructType(LLVMContext &C)
    194     : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
    195   enum {
    196     /// This is the contents of the SubClassData field.
    197     SCDB_HasBody = 1,
    198     SCDB_Packed = 2,
    199     SCDB_IsLiteral = 4,
    200     SCDB_IsSized = 8
    201   };
    202 
    203   /// SymbolTableEntry - For a named struct that actually has a name, this is a
    204   /// pointer to the symbol table entry (maintained by LLVMContext) for the
    205   /// struct.  This is null if the type is an literal struct or if it is
    206   /// a identified type that has an empty name.
    207   ///
    208   void *SymbolTableEntry;
    209 public:
    210 
    211   /// StructType::create - This creates an identified struct.
    212   static StructType *create(LLVMContext &Context, StringRef Name);
    213   static StructType *create(LLVMContext &Context);
    214 
    215   static StructType *create(ArrayRef<Type*> Elements,
    216                             StringRef Name,
    217                             bool isPacked = false);
    218   static StructType *create(ArrayRef<Type*> Elements);
    219   static StructType *create(LLVMContext &Context,
    220                             ArrayRef<Type*> Elements,
    221                             StringRef Name,
    222                             bool isPacked = false);
    223   static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
    224   static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
    225 
    226   /// StructType::get - This static method is the primary way to create a
    227   /// literal StructType.
    228   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
    229                          bool isPacked = false);
    230 
    231   /// StructType::get - Create an empty structure type.
    232   ///
    233   static StructType *get(LLVMContext &Context, bool isPacked = false);
    234 
    235   /// StructType::get - This static method is a convenience method for creating
    236   /// structure types by specifying the elements as arguments.  Note that this
    237   /// method always returns a non-packed struct, and requires at least one
    238   /// element type.
    239   static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
    240 
    241   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
    242 
    243   /// isLiteral - Return true if this type is uniqued by structural
    244   /// equivalence, false if it is a struct definition.
    245   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
    246 
    247   /// isOpaque - Return true if this is a type with an identity that has no body
    248   /// specified yet.  These prints as 'opaque' in .ll files.
    249   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
    250 
    251   /// isSized - Return true if this is a sized type.
    252   bool isSized(SmallPtrSetImpl<const Type*> *Visited = nullptr) const;
    253 
    254   /// hasName - Return true if this is a named struct that has a non-empty name.
    255   bool hasName() const { return SymbolTableEntry != nullptr; }
    256 
    257   /// getName - Return the name for this struct type if it has an identity.
    258   /// This may return an empty string for an unnamed struct type.  Do not call
    259   /// this on an literal type.
    260   StringRef getName() const;
    261 
    262   /// setName - Change the name of this type to the specified name, or to a name
    263   /// with a suffix if there is a collision.  Do not call this on an literal
    264   /// type.
    265   void setName(StringRef Name);
    266 
    267   /// setBody - Specify a body for an opaque identified type.
    268   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
    269   void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
    270 
    271   /// isValidElementType - Return true if the specified type is valid as a
    272   /// element type.
    273   static bool isValidElementType(Type *ElemTy);
    274 
    275 
    276   // Iterator access to the elements.
    277   typedef Type::subtype_iterator element_iterator;
    278   element_iterator element_begin() const { return ContainedTys; }
    279   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
    280   ArrayRef<Type *> const elements() const {
    281     return makeArrayRef(element_begin(), element_end());
    282   }
    283 
    284   /// isLayoutIdentical - Return true if this is layout identical to the
    285   /// specified struct.
    286   bool isLayoutIdentical(StructType *Other) const;
    287 
    288   /// Random access to the elements
    289   unsigned getNumElements() const { return NumContainedTys; }
    290   Type *getElementType(unsigned N) const {
    291     assert(N < NumContainedTys && "Element number out of range!");
    292     return ContainedTys[N];
    293   }
    294 
    295   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    296   static inline bool classof(const Type *T) {
    297     return T->getTypeID() == StructTyID;
    298   }
    299 };
    300 
    301 /// SequentialType - This is the superclass of the array, pointer and vector
    302 /// type classes.  All of these represent "arrays" in memory.  The array type
    303 /// represents a specifically sized array, pointer types are unsized/unknown
    304 /// size arrays, vector types represent specifically sized arrays that
    305 /// allow for use of SIMD instructions.  SequentialType holds the common
    306 /// features of all, which stem from the fact that all three lay their
    307 /// components out in memory identically.
    308 ///
    309 class SequentialType : public CompositeType {
    310   Type *ContainedType;               ///< Storage for the single contained type.
    311   SequentialType(const SequentialType &) = delete;
    312   const SequentialType &operator=(const SequentialType &) = delete;
    313 
    314 protected:
    315   SequentialType(TypeID TID, Type *ElType)
    316     : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
    317     ContainedTys = &ContainedType;
    318     NumContainedTys = 1;
    319   }
    320 
    321 public:
    322   Type *getElementType() const { return ContainedTys[0]; }
    323 
    324   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    325   static inline bool classof(const Type *T) {
    326     return T->getTypeID() == ArrayTyID ||
    327            T->getTypeID() == PointerTyID ||
    328            T->getTypeID() == VectorTyID;
    329   }
    330 };
    331 
    332 
    333 /// ArrayType - Class to represent array types.
    334 ///
    335 class ArrayType : public SequentialType {
    336   uint64_t NumElements;
    337 
    338   ArrayType(const ArrayType &) = delete;
    339   const ArrayType &operator=(const ArrayType &) = delete;
    340   ArrayType(Type *ElType, uint64_t NumEl);
    341 public:
    342   /// ArrayType::get - This static method is the primary way to construct an
    343   /// ArrayType
    344   ///
    345   static ArrayType *get(Type *ElementType, uint64_t NumElements);
    346 
    347   /// isValidElementType - Return true if the specified type is valid as a
    348   /// element type.
    349   static bool isValidElementType(Type *ElemTy);
    350 
    351   uint64_t getNumElements() const { return NumElements; }
    352 
    353   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    354   static inline bool classof(const Type *T) {
    355     return T->getTypeID() == ArrayTyID;
    356   }
    357 };
    358 
    359 /// VectorType - Class to represent vector types.
    360 ///
    361 class VectorType : public SequentialType {
    362   unsigned NumElements;
    363 
    364   VectorType(const VectorType &) = delete;
    365   const VectorType &operator=(const VectorType &) = delete;
    366   VectorType(Type *ElType, unsigned NumEl);
    367 public:
    368   /// VectorType::get - This static method is the primary way to construct an
    369   /// VectorType.
    370   ///
    371   static VectorType *get(Type *ElementType, unsigned NumElements);
    372 
    373   /// VectorType::getInteger - This static method gets a VectorType with the
    374   /// same number of elements as the input type, and the element type is an
    375   /// integer type of the same width as the input element type.
    376   ///
    377   static VectorType *getInteger(VectorType *VTy) {
    378     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    379     assert(EltBits && "Element size must be of a non-zero size");
    380     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    381     return VectorType::get(EltTy, VTy->getNumElements());
    382   }
    383 
    384   /// VectorType::getExtendedElementVectorType - This static method is like
    385   /// getInteger except that the element types are twice as wide as the
    386   /// elements in the input type.
    387   ///
    388   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    389     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    390     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
    391     return VectorType::get(EltTy, VTy->getNumElements());
    392   }
    393 
    394   /// VectorType::getTruncatedElementVectorType - This static method is like
    395   /// getInteger except that the element types are half as wide as the
    396   /// elements in the input type.
    397   ///
    398   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    399     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    400     assert((EltBits & 1) == 0 &&
    401            "Cannot truncate vector element with odd bit-width");
    402     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    403     return VectorType::get(EltTy, VTy->getNumElements());
    404   }
    405 
    406   /// VectorType::getHalfElementsVectorType - This static method returns
    407   /// a VectorType with half as many elements as the input type and the
    408   /// same element type.
    409   ///
    410   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
    411     unsigned NumElts = VTy->getNumElements();
    412     assert ((NumElts & 1) == 0 &&
    413             "Cannot halve vector with odd number of elements.");
    414     return VectorType::get(VTy->getElementType(), NumElts/2);
    415   }
    416 
    417   /// VectorType::getDoubleElementsVectorType - This static method returns
    418   /// a VectorType with twice  as many elements as the input type and the
    419   /// same element type.
    420   ///
    421   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
    422     unsigned NumElts = VTy->getNumElements();
    423     return VectorType::get(VTy->getElementType(), NumElts*2);
    424   }
    425 
    426   /// isValidElementType - Return true if the specified type is valid as a
    427   /// element type.
    428   static bool isValidElementType(Type *ElemTy);
    429 
    430   /// @brief Return the number of elements in the Vector type.
    431   unsigned getNumElements() const { return NumElements; }
    432 
    433   /// @brief Return the number of bits in the Vector type.
    434   /// Returns zero when the vector is a vector of pointers.
    435   unsigned getBitWidth() const {
    436     return NumElements * getElementType()->getPrimitiveSizeInBits();
    437   }
    438 
    439   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    440   static inline bool classof(const Type *T) {
    441     return T->getTypeID() == VectorTyID;
    442   }
    443 };
    444 
    445 
    446 /// PointerType - Class to represent pointers.
    447 ///
    448 class PointerType : public SequentialType {
    449   PointerType(const PointerType &) = delete;
    450   const PointerType &operator=(const PointerType &) = delete;
    451   explicit PointerType(Type *ElType, unsigned AddrSpace);
    452 public:
    453   /// PointerType::get - This constructs a pointer to an object of the specified
    454   /// type in a numbered address space.
    455   static PointerType *get(Type *ElementType, unsigned AddressSpace);
    456 
    457   /// PointerType::getUnqual - This constructs a pointer to an object of the
    458   /// specified type in the generic address space (address space zero).
    459   static PointerType *getUnqual(Type *ElementType) {
    460     return PointerType::get(ElementType, 0);
    461   }
    462 
    463   /// isValidElementType - Return true if the specified type is valid as a
    464   /// element type.
    465   static bool isValidElementType(Type *ElemTy);
    466 
    467   /// @brief Return the address space of the Pointer type.
    468   inline unsigned getAddressSpace() const { return getSubclassData(); }
    469 
    470   /// Implement support type inquiry through isa, cast, and dyn_cast.
    471   static inline bool classof(const Type *T) {
    472     return T->getTypeID() == PointerTyID;
    473   }
    474 };
    475 
    476 } // End llvm namespace
    477 
    478 #endif
    479