Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86RecognizableInstr.h"
     18 #include "X86DisassemblerShared.h"
     19 #include "X86ModRMFilters.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 #include <string>
     22 
     23 using namespace llvm;
     24 
     25 #define MRM_MAPPING     \
     26   MAP(C0, 32)           \
     27   MAP(C1, 33)           \
     28   MAP(C2, 34)           \
     29   MAP(C3, 35)           \
     30   MAP(C4, 36)           \
     31   MAP(C5, 37)           \
     32   MAP(C6, 38)           \
     33   MAP(C7, 39)           \
     34   MAP(C8, 40)           \
     35   MAP(C9, 41)           \
     36   MAP(CA, 42)           \
     37   MAP(CB, 43)           \
     38   MAP(CC, 44)           \
     39   MAP(CD, 45)           \
     40   MAP(CE, 46)           \
     41   MAP(CF, 47)           \
     42   MAP(D0, 48)           \
     43   MAP(D1, 49)           \
     44   MAP(D2, 50)           \
     45   MAP(D3, 51)           \
     46   MAP(D4, 52)           \
     47   MAP(D5, 53)           \
     48   MAP(D6, 54)           \
     49   MAP(D7, 55)           \
     50   MAP(D8, 56)           \
     51   MAP(D9, 57)           \
     52   MAP(DA, 58)           \
     53   MAP(DB, 59)           \
     54   MAP(DC, 60)           \
     55   MAP(DD, 61)           \
     56   MAP(DE, 62)           \
     57   MAP(DF, 63)           \
     58   MAP(E0, 64)           \
     59   MAP(E1, 65)           \
     60   MAP(E2, 66)           \
     61   MAP(E3, 67)           \
     62   MAP(E4, 68)           \
     63   MAP(E5, 69)           \
     64   MAP(E6, 70)           \
     65   MAP(E7, 71)           \
     66   MAP(E8, 72)           \
     67   MAP(E9, 73)           \
     68   MAP(EA, 74)           \
     69   MAP(EB, 75)           \
     70   MAP(EC, 76)           \
     71   MAP(ED, 77)           \
     72   MAP(EE, 78)           \
     73   MAP(EF, 79)           \
     74   MAP(F0, 80)           \
     75   MAP(F1, 81)           \
     76   MAP(F2, 82)           \
     77   MAP(F3, 83)           \
     78   MAP(F4, 84)           \
     79   MAP(F5, 85)           \
     80   MAP(F6, 86)           \
     81   MAP(F7, 87)           \
     82   MAP(F8, 88)           \
     83   MAP(F9, 89)           \
     84   MAP(FA, 90)           \
     85   MAP(FB, 91)           \
     86   MAP(FC, 92)           \
     87   MAP(FD, 93)           \
     88   MAP(FE, 94)           \
     89   MAP(FF, 95)
     90 
     91 // A clone of X86 since we can't depend on something that is generated.
     92 namespace X86Local {
     93   enum {
     94     Pseudo      = 0,
     95     RawFrm      = 1,
     96     AddRegFrm   = 2,
     97     MRMDestReg  = 3,
     98     MRMDestMem  = 4,
     99     MRMSrcReg   = 5,
    100     MRMSrcMem   = 6,
    101     RawFrmMemOffs = 7,
    102     RawFrmSrc   = 8,
    103     RawFrmDst   = 9,
    104     RawFrmDstSrc = 10,
    105     RawFrmImm8  = 11,
    106     RawFrmImm16 = 12,
    107     MRMXr = 14, MRMXm = 15,
    108     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
    109     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
    110     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
    111     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
    112 #define MAP(from, to) MRM_##from = to,
    113     MRM_MAPPING
    114 #undef MAP
    115     lastMRM
    116   };
    117 
    118   enum {
    119     OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
    120   };
    121 
    122   enum {
    123     PS = 1, PD = 2, XS = 3, XD = 4
    124   };
    125 
    126   enum {
    127     VEX = 1, XOP = 2, EVEX = 3
    128   };
    129 
    130   enum {
    131     OpSize16 = 1, OpSize32 = 2
    132   };
    133 
    134   enum {
    135     AdSize16 = 1, AdSize32 = 2, AdSize64 = 3
    136   };
    137 }
    138 
    139 using namespace X86Disassembler;
    140 
    141 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    142 ///   the ModR/M byte to be 0b11.
    143 ///
    144 /// @param form - The form of the instruction.
    145 /// @return     - true if the form implies that Mod must be 0b11, false
    146 ///               otherwise.
    147 static bool isRegFormat(uint8_t form) {
    148   return (form == X86Local::MRMDestReg ||
    149           form == X86Local::MRMSrcReg  ||
    150           form == X86Local::MRMXr ||
    151           (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
    152 }
    153 
    154 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    155 ///   Useful for switch statements and the like.
    156 ///
    157 /// @param init - A reference to the BitsInit to be decoded.
    158 /// @return     - The field, with the first bit in the BitsInit as the lowest
    159 ///               order bit.
    160 static uint8_t byteFromBitsInit(BitsInit &init) {
    161   int width = init.getNumBits();
    162 
    163   assert(width <= 8 && "Field is too large for uint8_t!");
    164 
    165   int     index;
    166   uint8_t mask = 0x01;
    167 
    168   uint8_t ret = 0;
    169 
    170   for (index = 0; index < width; index++) {
    171     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    172       ret |= mask;
    173 
    174     mask <<= 1;
    175   }
    176 
    177   return ret;
    178 }
    179 
    180 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    181 ///   name of the field.
    182 ///
    183 /// @param rec  - The record from which to extract the value.
    184 /// @param name - The name of the field in the record.
    185 /// @return     - The field, as translated by byteFromBitsInit().
    186 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    187   BitsInit* bits = rec->getValueAsBitsInit(name);
    188   return byteFromBitsInit(*bits);
    189 }
    190 
    191 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    192                                      const CodeGenInstruction &insn,
    193                                      InstrUID uid) {
    194   UID = uid;
    195 
    196   Rec = insn.TheDef;
    197   Name = Rec->getName();
    198   Spec = &tables.specForUID(UID);
    199 
    200   if (!Rec->isSubClassOf("X86Inst")) {
    201     ShouldBeEmitted = false;
    202     return;
    203   }
    204 
    205   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
    206   OpMap    = byteFromRec(Rec, "OpMapBits");
    207   Opcode   = byteFromRec(Rec, "Opcode");
    208   Form     = byteFromRec(Rec, "FormBits");
    209   Encoding = byteFromRec(Rec, "OpEncBits");
    210 
    211   OpSize           = byteFromRec(Rec, "OpSizeBits");
    212   AdSize           = byteFromRec(Rec, "AdSizeBits");
    213   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    214   HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
    215   HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
    216   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    217   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
    218   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    219   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
    220   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
    221   HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
    222   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
    223   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    224   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
    225   CD8_Scale        = byteFromRec(Rec, "CD8_Scale");
    226 
    227   Name      = Rec->getName();
    228   AsmString = Rec->getValueAsString("AsmString");
    229 
    230   Operands = &insn.Operands.OperandList;
    231 
    232   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
    233 
    234   // Check for 64-bit inst which does not require REX
    235   Is32Bit = false;
    236   Is64Bit = false;
    237   // FIXME: Is there some better way to check for In64BitMode?
    238   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    239   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    240     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
    241 	Predicates[i]->getName().find("In32Bit") != Name.npos) {
    242       Is32Bit = true;
    243       break;
    244     }
    245     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
    246       Is64Bit = true;
    247       break;
    248     }
    249   }
    250 
    251   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
    252     ShouldBeEmitted = false;
    253     return;
    254   }
    255 
    256   // Special case since there is no attribute class for 64-bit and VEX
    257   if (Name == "VMASKMOVDQU64") {
    258     ShouldBeEmitted = false;
    259     return;
    260   }
    261 
    262   ShouldBeEmitted  = true;
    263 }
    264 
    265 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    266                                      const CodeGenInstruction &insn,
    267                                      InstrUID uid)
    268 {
    269   // Ignore "asm parser only" instructions.
    270   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    271     return;
    272 
    273   RecognizableInstr recogInstr(tables, insn, uid);
    274 
    275   if (recogInstr.shouldBeEmitted()) {
    276     recogInstr.emitInstructionSpecifier();
    277     recogInstr.emitDecodePath(tables);
    278   }
    279 }
    280 
    281 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
    282                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
    283                     (HasEVEX_KZ ? n##_KZ : \
    284                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
    285 
    286 InstructionContext RecognizableInstr::insnContext() const {
    287   InstructionContext insnContext;
    288 
    289   if (Encoding == X86Local::EVEX) {
    290     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
    291       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
    292       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
    293     }
    294     // VEX_L & VEX_W
    295     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    296       if (OpPrefix == X86Local::PD)
    297         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
    298       else if (OpPrefix == X86Local::XS)
    299         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
    300       else if (OpPrefix == X86Local::XD)
    301         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
    302       else if (OpPrefix == X86Local::PS)
    303         insnContext = EVEX_KB(IC_EVEX_L_W);
    304       else {
    305         errs() << "Instruction does not use a prefix: " << Name << "\n";
    306         llvm_unreachable("Invalid prefix");
    307       }
    308     } else if (HasVEX_LPrefix) {
    309       // VEX_L
    310       if (OpPrefix == X86Local::PD)
    311         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
    312       else if (OpPrefix == X86Local::XS)
    313         insnContext = EVEX_KB(IC_EVEX_L_XS);
    314       else if (OpPrefix == X86Local::XD)
    315         insnContext = EVEX_KB(IC_EVEX_L_XD);
    316       else if (OpPrefix == X86Local::PS)
    317         insnContext = EVEX_KB(IC_EVEX_L);
    318       else {
    319         errs() << "Instruction does not use a prefix: " << Name << "\n";
    320         llvm_unreachable("Invalid prefix");
    321       }
    322     }
    323     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
    324       // EVEX_L2 & VEX_W
    325       if (OpPrefix == X86Local::PD)
    326         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
    327       else if (OpPrefix == X86Local::XS)
    328         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
    329       else if (OpPrefix == X86Local::XD)
    330         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
    331       else if (OpPrefix == X86Local::PS)
    332         insnContext = EVEX_KB(IC_EVEX_L2_W);
    333       else {
    334         errs() << "Instruction does not use a prefix: " << Name << "\n";
    335         llvm_unreachable("Invalid prefix");
    336       }
    337     } else if (HasEVEX_L2Prefix) {
    338       // EVEX_L2
    339       if (OpPrefix == X86Local::PD)
    340         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
    341       else if (OpPrefix == X86Local::XD)
    342         insnContext = EVEX_KB(IC_EVEX_L2_XD);
    343       else if (OpPrefix == X86Local::XS)
    344         insnContext = EVEX_KB(IC_EVEX_L2_XS);
    345       else if (OpPrefix == X86Local::PS)
    346         insnContext = EVEX_KB(IC_EVEX_L2);
    347       else {
    348         errs() << "Instruction does not use a prefix: " << Name << "\n";
    349         llvm_unreachable("Invalid prefix");
    350       }
    351     }
    352     else if (HasVEX_WPrefix) {
    353       // VEX_W
    354       if (OpPrefix == X86Local::PD)
    355         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
    356       else if (OpPrefix == X86Local::XS)
    357         insnContext = EVEX_KB(IC_EVEX_W_XS);
    358       else if (OpPrefix == X86Local::XD)
    359         insnContext = EVEX_KB(IC_EVEX_W_XD);
    360       else if (OpPrefix == X86Local::PS)
    361         insnContext = EVEX_KB(IC_EVEX_W);
    362       else {
    363         errs() << "Instruction does not use a prefix: " << Name << "\n";
    364         llvm_unreachable("Invalid prefix");
    365       }
    366     }
    367     // No L, no W
    368     else if (OpPrefix == X86Local::PD)
    369       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
    370     else if (OpPrefix == X86Local::XD)
    371       insnContext = EVEX_KB(IC_EVEX_XD);
    372     else if (OpPrefix == X86Local::XS)
    373       insnContext = EVEX_KB(IC_EVEX_XS);
    374     else
    375       insnContext = EVEX_KB(IC_EVEX);
    376     /// eof EVEX
    377   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
    378     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    379       if (OpPrefix == X86Local::PD)
    380         insnContext = IC_VEX_L_W_OPSIZE;
    381       else if (OpPrefix == X86Local::XS)
    382         insnContext = IC_VEX_L_W_XS;
    383       else if (OpPrefix == X86Local::XD)
    384         insnContext = IC_VEX_L_W_XD;
    385       else if (OpPrefix == X86Local::PS)
    386         insnContext = IC_VEX_L_W;
    387       else {
    388         errs() << "Instruction does not use a prefix: " << Name << "\n";
    389         llvm_unreachable("Invalid prefix");
    390       }
    391     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
    392       insnContext = IC_VEX_L_OPSIZE;
    393     else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
    394       insnContext = IC_VEX_W_OPSIZE;
    395     else if (OpPrefix == X86Local::PD)
    396       insnContext = IC_VEX_OPSIZE;
    397     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
    398       insnContext = IC_VEX_L_XS;
    399     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
    400       insnContext = IC_VEX_L_XD;
    401     else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
    402       insnContext = IC_VEX_W_XS;
    403     else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
    404       insnContext = IC_VEX_W_XD;
    405     else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
    406       insnContext = IC_VEX_W;
    407     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
    408       insnContext = IC_VEX_L;
    409     else if (OpPrefix == X86Local::XD)
    410       insnContext = IC_VEX_XD;
    411     else if (OpPrefix == X86Local::XS)
    412       insnContext = IC_VEX_XS;
    413     else if (OpPrefix == X86Local::PS)
    414       insnContext = IC_VEX;
    415     else {
    416       errs() << "Instruction does not use a prefix: " << Name << "\n";
    417       llvm_unreachable("Invalid prefix");
    418     }
    419   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
    420     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
    421       insnContext = IC_64BIT_REXW_OPSIZE;
    422     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
    423       insnContext = IC_64BIT_REXW_ADSIZE;
    424     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
    425       insnContext = IC_64BIT_XD_OPSIZE;
    426     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
    427       insnContext = IC_64BIT_XS_OPSIZE;
    428     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
    429       insnContext = IC_64BIT_OPSIZE_ADSIZE;
    430     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
    431       insnContext = IC_64BIT_OPSIZE;
    432     else if (AdSize == X86Local::AdSize32)
    433       insnContext = IC_64BIT_ADSIZE;
    434     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
    435       insnContext = IC_64BIT_REXW_XS;
    436     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
    437       insnContext = IC_64BIT_REXW_XD;
    438     else if (OpPrefix == X86Local::XD)
    439       insnContext = IC_64BIT_XD;
    440     else if (OpPrefix == X86Local::XS)
    441       insnContext = IC_64BIT_XS;
    442     else if (HasREX_WPrefix)
    443       insnContext = IC_64BIT_REXW;
    444     else
    445       insnContext = IC_64BIT;
    446   } else {
    447     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
    448       insnContext = IC_XD_OPSIZE;
    449     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
    450       insnContext = IC_XS_OPSIZE;
    451     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
    452       insnContext = IC_OPSIZE_ADSIZE;
    453     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
    454       insnContext = IC_OPSIZE;
    455     else if (AdSize == X86Local::AdSize16)
    456       insnContext = IC_ADSIZE;
    457     else if (OpPrefix == X86Local::XD)
    458       insnContext = IC_XD;
    459     else if (OpPrefix == X86Local::XS)
    460       insnContext = IC_XS;
    461     else
    462       insnContext = IC;
    463   }
    464 
    465   return insnContext;
    466 }
    467 
    468 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
    469   // The scaling factor for AVX512 compressed displacement encoding is an
    470   // instruction attribute.  Adjust the ModRM encoding type to include the
    471   // scale for compressed displacement.
    472   if (encoding != ENCODING_RM || CD8_Scale == 0)
    473     return;
    474   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
    475   assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
    476 }
    477 
    478 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
    479                                       unsigned &physicalOperandIndex,
    480                                       unsigned &numPhysicalOperands,
    481                                       const unsigned *operandMapping,
    482                                       OperandEncoding (*encodingFromString)
    483                                         (const std::string&,
    484                                          uint8_t OpSize)) {
    485   if (optional) {
    486     if (physicalOperandIndex >= numPhysicalOperands)
    487       return;
    488   } else {
    489     assert(physicalOperandIndex < numPhysicalOperands);
    490   }
    491 
    492   while (operandMapping[operandIndex] != operandIndex) {
    493     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    494     Spec->operands[operandIndex].type =
    495       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    496     ++operandIndex;
    497   }
    498 
    499   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    500 
    501   OperandEncoding encoding = encodingFromString(typeName, OpSize);
    502   // Adjust the encoding type for an operand based on the instruction.
    503   adjustOperandEncoding(encoding);
    504   Spec->operands[operandIndex].encoding = encoding;
    505   Spec->operands[operandIndex].type = typeFromString(typeName,
    506                                                      HasREX_WPrefix, OpSize);
    507 
    508   ++operandIndex;
    509   ++physicalOperandIndex;
    510 }
    511 
    512 void RecognizableInstr::emitInstructionSpecifier() {
    513   Spec->name       = Name;
    514 
    515   Spec->insnContext = insnContext();
    516 
    517   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    518 
    519   unsigned numOperands = OperandList.size();
    520   unsigned numPhysicalOperands = 0;
    521 
    522   // operandMapping maps from operands in OperandList to their originals.
    523   // If operandMapping[i] != i, then the entry is a duplicate.
    524   unsigned operandMapping[X86_MAX_OPERANDS];
    525   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    526 
    527   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    528     if (!OperandList[operandIndex].Constraints.empty()) {
    529       const CGIOperandList::ConstraintInfo &Constraint =
    530         OperandList[operandIndex].Constraints[0];
    531       if (Constraint.isTied()) {
    532         operandMapping[operandIndex] = operandIndex;
    533         operandMapping[Constraint.getTiedOperand()] = operandIndex;
    534       } else {
    535         ++numPhysicalOperands;
    536         operandMapping[operandIndex] = operandIndex;
    537       }
    538     } else {
    539       ++numPhysicalOperands;
    540       operandMapping[operandIndex] = operandIndex;
    541     }
    542   }
    543 
    544 #define HANDLE_OPERAND(class)               \
    545   handleOperand(false,                      \
    546                 operandIndex,               \
    547                 physicalOperandIndex,       \
    548                 numPhysicalOperands,        \
    549                 operandMapping,             \
    550                 class##EncodingFromString);
    551 
    552 #define HANDLE_OPTIONAL(class)              \
    553   handleOperand(true,                       \
    554                 operandIndex,               \
    555                 physicalOperandIndex,       \
    556                 numPhysicalOperands,        \
    557                 operandMapping,             \
    558                 class##EncodingFromString);
    559 
    560   // operandIndex should always be < numOperands
    561   unsigned operandIndex = 0;
    562   // physicalOperandIndex should always be < numPhysicalOperands
    563   unsigned physicalOperandIndex = 0;
    564 
    565   // Given the set of prefix bits, how many additional operands does the
    566   // instruction have?
    567   unsigned additionalOperands = 0;
    568   if (HasVEX_4V || HasVEX_4VOp3)
    569     ++additionalOperands;
    570   if (HasEVEX_K)
    571     ++additionalOperands;
    572 
    573   switch (Form) {
    574   default: llvm_unreachable("Unhandled form");
    575   case X86Local::RawFrmSrc:
    576     HANDLE_OPERAND(relocation);
    577     return;
    578   case X86Local::RawFrmDst:
    579     HANDLE_OPERAND(relocation);
    580     return;
    581   case X86Local::RawFrmDstSrc:
    582     HANDLE_OPERAND(relocation);
    583     HANDLE_OPERAND(relocation);
    584     return;
    585   case X86Local::RawFrm:
    586     // Operand 1 (optional) is an address or immediate.
    587     // Operand 2 (optional) is an immediate.
    588     assert(numPhysicalOperands <= 2 &&
    589            "Unexpected number of operands for RawFrm");
    590     HANDLE_OPTIONAL(relocation)
    591     HANDLE_OPTIONAL(immediate)
    592     break;
    593   case X86Local::RawFrmMemOffs:
    594     // Operand 1 is an address.
    595     HANDLE_OPERAND(relocation);
    596     break;
    597   case X86Local::AddRegFrm:
    598     // Operand 1 is added to the opcode.
    599     // Operand 2 (optional) is an address.
    600     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    601            "Unexpected number of operands for AddRegFrm");
    602     HANDLE_OPERAND(opcodeModifier)
    603     HANDLE_OPTIONAL(relocation)
    604     break;
    605   case X86Local::MRMDestReg:
    606     // Operand 1 is a register operand in the R/M field.
    607     // - In AVX512 there may be a mask operand here -
    608     // Operand 2 is a register operand in the Reg/Opcode field.
    609     // - In AVX, there is a register operand in the VEX.vvvv field here -
    610     // Operand 3 (optional) is an immediate.
    611     assert(numPhysicalOperands >= 2 + additionalOperands &&
    612            numPhysicalOperands <= 3 + additionalOperands &&
    613            "Unexpected number of operands for MRMDestRegFrm");
    614 
    615     HANDLE_OPERAND(rmRegister)
    616     if (HasEVEX_K)
    617       HANDLE_OPERAND(writemaskRegister)
    618 
    619     if (HasVEX_4V)
    620       // FIXME: In AVX, the register below becomes the one encoded
    621       // in ModRMVEX and the one above the one in the VEX.VVVV field
    622       HANDLE_OPERAND(vvvvRegister)
    623 
    624     HANDLE_OPERAND(roRegister)
    625     HANDLE_OPTIONAL(immediate)
    626     break;
    627   case X86Local::MRMDestMem:
    628     // Operand 1 is a memory operand (possibly SIB-extended)
    629     // Operand 2 is a register operand in the Reg/Opcode field.
    630     // - In AVX, there is a register operand in the VEX.vvvv field here -
    631     // Operand 3 (optional) is an immediate.
    632     assert(numPhysicalOperands >= 2 + additionalOperands &&
    633            numPhysicalOperands <= 3 + additionalOperands &&
    634            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    635 
    636     HANDLE_OPERAND(memory)
    637 
    638     if (HasEVEX_K)
    639       HANDLE_OPERAND(writemaskRegister)
    640 
    641     if (HasVEX_4V)
    642       // FIXME: In AVX, the register below becomes the one encoded
    643       // in ModRMVEX and the one above the one in the VEX.VVVV field
    644       HANDLE_OPERAND(vvvvRegister)
    645 
    646     HANDLE_OPERAND(roRegister)
    647     HANDLE_OPTIONAL(immediate)
    648     break;
    649   case X86Local::MRMSrcReg:
    650     // Operand 1 is a register operand in the Reg/Opcode field.
    651     // Operand 2 is a register operand in the R/M field.
    652     // - In AVX, there is a register operand in the VEX.vvvv field here -
    653     // Operand 3 (optional) is an immediate.
    654     // Operand 4 (optional) is an immediate.
    655 
    656     assert(numPhysicalOperands >= 2 + additionalOperands &&
    657            numPhysicalOperands <= 4 + additionalOperands &&
    658            "Unexpected number of operands for MRMSrcRegFrm");
    659 
    660     HANDLE_OPERAND(roRegister)
    661 
    662     if (HasEVEX_K)
    663       HANDLE_OPERAND(writemaskRegister)
    664 
    665     if (HasVEX_4V)
    666       // FIXME: In AVX, the register below becomes the one encoded
    667       // in ModRMVEX and the one above the one in the VEX.VVVV field
    668       HANDLE_OPERAND(vvvvRegister)
    669 
    670     if (HasMemOp4Prefix)
    671       HANDLE_OPERAND(immediate)
    672 
    673     HANDLE_OPERAND(rmRegister)
    674 
    675     if (HasVEX_4VOp3)
    676       HANDLE_OPERAND(vvvvRegister)
    677 
    678     if (!HasMemOp4Prefix)
    679       HANDLE_OPTIONAL(immediate)
    680     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    681     HANDLE_OPTIONAL(immediate)
    682     break;
    683   case X86Local::MRMSrcMem:
    684     // Operand 1 is a register operand in the Reg/Opcode field.
    685     // Operand 2 is a memory operand (possibly SIB-extended)
    686     // - In AVX, there is a register operand in the VEX.vvvv field here -
    687     // Operand 3 (optional) is an immediate.
    688 
    689     assert(numPhysicalOperands >= 2 + additionalOperands &&
    690            numPhysicalOperands <= 4 + additionalOperands &&
    691            "Unexpected number of operands for MRMSrcMemFrm");
    692 
    693     HANDLE_OPERAND(roRegister)
    694 
    695     if (HasEVEX_K)
    696       HANDLE_OPERAND(writemaskRegister)
    697 
    698     if (HasVEX_4V)
    699       // FIXME: In AVX, the register below becomes the one encoded
    700       // in ModRMVEX and the one above the one in the VEX.VVVV field
    701       HANDLE_OPERAND(vvvvRegister)
    702 
    703     if (HasMemOp4Prefix)
    704       HANDLE_OPERAND(immediate)
    705 
    706     HANDLE_OPERAND(memory)
    707 
    708     if (HasVEX_4VOp3)
    709       HANDLE_OPERAND(vvvvRegister)
    710 
    711     if (!HasMemOp4Prefix)
    712       HANDLE_OPTIONAL(immediate)
    713     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    714     break;
    715   case X86Local::MRMXr:
    716   case X86Local::MRM0r:
    717   case X86Local::MRM1r:
    718   case X86Local::MRM2r:
    719   case X86Local::MRM3r:
    720   case X86Local::MRM4r:
    721   case X86Local::MRM5r:
    722   case X86Local::MRM6r:
    723   case X86Local::MRM7r:
    724     // Operand 1 is a register operand in the R/M field.
    725     // Operand 2 (optional) is an immediate or relocation.
    726     // Operand 3 (optional) is an immediate.
    727     assert(numPhysicalOperands >= 0 + additionalOperands &&
    728            numPhysicalOperands <= 3 + additionalOperands &&
    729            "Unexpected number of operands for MRMnr");
    730 
    731     if (HasVEX_4V)
    732       HANDLE_OPERAND(vvvvRegister)
    733 
    734     if (HasEVEX_K)
    735       HANDLE_OPERAND(writemaskRegister)
    736     HANDLE_OPTIONAL(rmRegister)
    737     HANDLE_OPTIONAL(relocation)
    738     HANDLE_OPTIONAL(immediate)
    739     break;
    740   case X86Local::MRMXm:
    741   case X86Local::MRM0m:
    742   case X86Local::MRM1m:
    743   case X86Local::MRM2m:
    744   case X86Local::MRM3m:
    745   case X86Local::MRM4m:
    746   case X86Local::MRM5m:
    747   case X86Local::MRM6m:
    748   case X86Local::MRM7m:
    749     // Operand 1 is a memory operand (possibly SIB-extended)
    750     // Operand 2 (optional) is an immediate or relocation.
    751     assert(numPhysicalOperands >= 1 + additionalOperands &&
    752            numPhysicalOperands <= 2 + additionalOperands &&
    753            "Unexpected number of operands for MRMnm");
    754 
    755     if (HasVEX_4V)
    756       HANDLE_OPERAND(vvvvRegister)
    757     if (HasEVEX_K)
    758       HANDLE_OPERAND(writemaskRegister)
    759     HANDLE_OPERAND(memory)
    760     HANDLE_OPTIONAL(relocation)
    761     break;
    762   case X86Local::RawFrmImm8:
    763     // operand 1 is a 16-bit immediate
    764     // operand 2 is an 8-bit immediate
    765     assert(numPhysicalOperands == 2 &&
    766            "Unexpected number of operands for X86Local::RawFrmImm8");
    767     HANDLE_OPERAND(immediate)
    768     HANDLE_OPERAND(immediate)
    769     break;
    770   case X86Local::RawFrmImm16:
    771     // operand 1 is a 16-bit immediate
    772     // operand 2 is a 16-bit immediate
    773     HANDLE_OPERAND(immediate)
    774     HANDLE_OPERAND(immediate)
    775     break;
    776   case X86Local::MRM_F8:
    777     if (Opcode == 0xc6) {
    778       assert(numPhysicalOperands == 1 &&
    779              "Unexpected number of operands for X86Local::MRM_F8");
    780       HANDLE_OPERAND(immediate)
    781     } else if (Opcode == 0xc7) {
    782       assert(numPhysicalOperands == 1 &&
    783              "Unexpected number of operands for X86Local::MRM_F8");
    784       HANDLE_OPERAND(relocation)
    785     }
    786     break;
    787   case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
    788   case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
    789   case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
    790   case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
    791   case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
    792   case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
    793   case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
    794   case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
    795   case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
    796   case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
    797   case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
    798   case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
    799   case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1:
    800   case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4:
    801   case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7:
    802   case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB:
    803   case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE:
    804   case X86Local::MRM_FF:
    805     // Ignored.
    806     break;
    807   }
    808 
    809   #undef HANDLE_OPERAND
    810   #undef HANDLE_OPTIONAL
    811 }
    812 
    813 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    814   // Special cases where the LLVM tables are not complete
    815 
    816 #define MAP(from, to)                     \
    817   case X86Local::MRM_##from:
    818 
    819   OpcodeType    opcodeType  = (OpcodeType)-1;
    820 
    821   ModRMFilter*  filter      = nullptr;
    822   uint8_t       opcodeToSet = 0;
    823 
    824   switch (OpMap) {
    825   default: llvm_unreachable("Invalid map!");
    826   case X86Local::OB:
    827   case X86Local::TB:
    828   case X86Local::T8:
    829   case X86Local::TA:
    830   case X86Local::XOP8:
    831   case X86Local::XOP9:
    832   case X86Local::XOPA:
    833     switch (OpMap) {
    834     default: llvm_unreachable("Unexpected map!");
    835     case X86Local::OB:   opcodeType = ONEBYTE;      break;
    836     case X86Local::TB:   opcodeType = TWOBYTE;      break;
    837     case X86Local::T8:   opcodeType = THREEBYTE_38; break;
    838     case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
    839     case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
    840     case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
    841     case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
    842     }
    843 
    844     switch (Form) {
    845     default:
    846       filter = new DumbFilter();
    847       break;
    848     case X86Local::MRMDestReg: case X86Local::MRMDestMem:
    849     case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
    850     case X86Local::MRMXr:      case X86Local::MRMXm:
    851       filter = new ModFilter(isRegFormat(Form));
    852       break;
    853     case X86Local::MRM0r:      case X86Local::MRM1r:
    854     case X86Local::MRM2r:      case X86Local::MRM3r:
    855     case X86Local::MRM4r:      case X86Local::MRM5r:
    856     case X86Local::MRM6r:      case X86Local::MRM7r:
    857       filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    858       break;
    859     case X86Local::MRM0m:      case X86Local::MRM1m:
    860     case X86Local::MRM2m:      case X86Local::MRM3m:
    861     case X86Local::MRM4m:      case X86Local::MRM5m:
    862     case X86Local::MRM6m:      case X86Local::MRM7m:
    863       filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    864       break;
    865     MRM_MAPPING
    866       filter = new ExactFilter(0xC0 + Form - X86Local::MRM_C0);   \
    867       break;
    868     } // switch (Form)
    869 
    870     opcodeToSet = Opcode;
    871     break;
    872   } // switch (OpMap)
    873 
    874   unsigned AddressSize = 0;
    875   switch (AdSize) {
    876   case X86Local::AdSize16: AddressSize = 16; break;
    877   case X86Local::AdSize32: AddressSize = 32; break;
    878   case X86Local::AdSize64: AddressSize = 64; break;
    879   }
    880 
    881   assert(opcodeType != (OpcodeType)-1 &&
    882          "Opcode type not set");
    883   assert(filter && "Filter not set");
    884 
    885   if (Form == X86Local::AddRegFrm) {
    886     assert(((opcodeToSet & 7) == 0) &&
    887            "ADDREG_FRM opcode not aligned");
    888 
    889     uint8_t currentOpcode;
    890 
    891     for (currentOpcode = opcodeToSet;
    892          currentOpcode < opcodeToSet + 8;
    893          ++currentOpcode)
    894       tables.setTableFields(opcodeType,
    895                             insnContext(),
    896                             currentOpcode,
    897                             *filter,
    898                             UID, Is32Bit, IgnoresVEX_L, AddressSize);
    899   } else {
    900     tables.setTableFields(opcodeType,
    901                           insnContext(),
    902                           opcodeToSet,
    903                           *filter,
    904                           UID, Is32Bit, IgnoresVEX_L, AddressSize);
    905   }
    906 
    907   delete filter;
    908 
    909 #undef MAP
    910 }
    911 
    912 #define TYPE(str, type) if (s == str) return type;
    913 OperandType RecognizableInstr::typeFromString(const std::string &s,
    914                                               bool hasREX_WPrefix,
    915                                               uint8_t OpSize) {
    916   if(hasREX_WPrefix) {
    917     // For instructions with a REX_W prefix, a declared 32-bit register encoding
    918     // is special.
    919     TYPE("GR32",              TYPE_R32)
    920   }
    921   if(OpSize == X86Local::OpSize16) {
    922     // For OpSize16 instructions, a declared 16-bit register or
    923     // immediate encoding is special.
    924     TYPE("GR16",              TYPE_Rv)
    925     TYPE("i16imm",            TYPE_IMMv)
    926   } else if(OpSize == X86Local::OpSize32) {
    927     // For OpSize32 instructions, a declared 32-bit register or
    928     // immediate encoding is special.
    929     TYPE("GR32",              TYPE_Rv)
    930   }
    931   TYPE("i16mem",              TYPE_Mv)
    932   TYPE("i16imm",              TYPE_IMM16)
    933   TYPE("i16i8imm",            TYPE_IMMv)
    934   TYPE("GR16",                TYPE_R16)
    935   TYPE("i32mem",              TYPE_Mv)
    936   TYPE("i32imm",              TYPE_IMMv)
    937   TYPE("i32i8imm",            TYPE_IMM32)
    938   TYPE("GR32",                TYPE_R32)
    939   TYPE("GR32orGR64",          TYPE_R32)
    940   TYPE("i64mem",              TYPE_Mv)
    941   TYPE("i64i32imm",           TYPE_IMM64)
    942   TYPE("i64i8imm",            TYPE_IMM64)
    943   TYPE("GR64",                TYPE_R64)
    944   TYPE("i8mem",               TYPE_M8)
    945   TYPE("i8imm",               TYPE_IMM8)
    946   TYPE("u8imm",               TYPE_UIMM8)
    947   TYPE("i32u8imm",            TYPE_UIMM8)
    948   TYPE("GR8",                 TYPE_R8)
    949   TYPE("VR128",               TYPE_XMM128)
    950   TYPE("VR128X",              TYPE_XMM128)
    951   TYPE("f128mem",             TYPE_M128)
    952   TYPE("f256mem",             TYPE_M256)
    953   TYPE("f512mem",             TYPE_M512)
    954   TYPE("FR64",                TYPE_XMM64)
    955   TYPE("FR64X",               TYPE_XMM64)
    956   TYPE("f64mem",              TYPE_M64FP)
    957   TYPE("sdmem",               TYPE_M64FP)
    958   TYPE("FR32",                TYPE_XMM32)
    959   TYPE("FR32X",               TYPE_XMM32)
    960   TYPE("f32mem",              TYPE_M32FP)
    961   TYPE("ssmem",               TYPE_M32FP)
    962   TYPE("RST",                 TYPE_ST)
    963   TYPE("i128mem",             TYPE_M128)
    964   TYPE("i256mem",             TYPE_M256)
    965   TYPE("i512mem",             TYPE_M512)
    966   TYPE("i64i32imm_pcrel",     TYPE_REL64)
    967   TYPE("i16imm_pcrel",        TYPE_REL16)
    968   TYPE("i32imm_pcrel",        TYPE_REL32)
    969   TYPE("SSECC",               TYPE_IMM3)
    970   TYPE("XOPCC",               TYPE_IMM3)
    971   TYPE("AVXCC",               TYPE_IMM5)
    972   TYPE("AVX512ICC",           TYPE_AVX512ICC)
    973   TYPE("AVX512RC",            TYPE_IMM32)
    974   TYPE("brtarget32",          TYPE_RELv)
    975   TYPE("brtarget16",          TYPE_RELv)
    976   TYPE("brtarget8",           TYPE_REL8)
    977   TYPE("f80mem",              TYPE_M80FP)
    978   TYPE("lea64_32mem",         TYPE_LEA)
    979   TYPE("lea64mem",            TYPE_LEA)
    980   TYPE("VR64",                TYPE_MM64)
    981   TYPE("i64imm",              TYPE_IMMv)
    982   TYPE("anymem",              TYPE_M)
    983   TYPE("opaque32mem",         TYPE_M1616)
    984   TYPE("opaque48mem",         TYPE_M1632)
    985   TYPE("opaque80mem",         TYPE_M1664)
    986   TYPE("opaque512mem",        TYPE_M512)
    987   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
    988   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
    989   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
    990   TYPE("srcidx8",             TYPE_SRCIDX8)
    991   TYPE("srcidx16",            TYPE_SRCIDX16)
    992   TYPE("srcidx32",            TYPE_SRCIDX32)
    993   TYPE("srcidx64",            TYPE_SRCIDX64)
    994   TYPE("dstidx8",             TYPE_DSTIDX8)
    995   TYPE("dstidx16",            TYPE_DSTIDX16)
    996   TYPE("dstidx32",            TYPE_DSTIDX32)
    997   TYPE("dstidx64",            TYPE_DSTIDX64)
    998   TYPE("offset16_8",          TYPE_MOFFS8)
    999   TYPE("offset16_16",         TYPE_MOFFS16)
   1000   TYPE("offset16_32",         TYPE_MOFFS32)
   1001   TYPE("offset32_8",          TYPE_MOFFS8)
   1002   TYPE("offset32_16",         TYPE_MOFFS16)
   1003   TYPE("offset32_32",         TYPE_MOFFS32)
   1004   TYPE("offset32_64",         TYPE_MOFFS64)
   1005   TYPE("offset64_8",          TYPE_MOFFS8)
   1006   TYPE("offset64_16",         TYPE_MOFFS16)
   1007   TYPE("offset64_32",         TYPE_MOFFS32)
   1008   TYPE("offset64_64",         TYPE_MOFFS64)
   1009   TYPE("VR256",               TYPE_XMM256)
   1010   TYPE("VR256X",              TYPE_XMM256)
   1011   TYPE("VR512",               TYPE_XMM512)
   1012   TYPE("VK1",                 TYPE_VK1)
   1013   TYPE("VK1WM",               TYPE_VK1)
   1014   TYPE("VK2",                 TYPE_VK2)
   1015   TYPE("VK2WM",               TYPE_VK2)
   1016   TYPE("VK4",                 TYPE_VK4)
   1017   TYPE("VK4WM",               TYPE_VK4)
   1018   TYPE("VK8",                 TYPE_VK8)
   1019   TYPE("VK8WM",               TYPE_VK8)
   1020   TYPE("VK16",                TYPE_VK16)
   1021   TYPE("VK16WM",              TYPE_VK16)
   1022   TYPE("VK32",                TYPE_VK32)
   1023   TYPE("VK32WM",              TYPE_VK32)
   1024   TYPE("VK64",                TYPE_VK64)
   1025   TYPE("VK64WM",              TYPE_VK64)
   1026   TYPE("GR16_NOAX",           TYPE_Rv)
   1027   TYPE("GR32_NOAX",           TYPE_Rv)
   1028   TYPE("GR64_NOAX",           TYPE_R64)
   1029   TYPE("vx32mem",             TYPE_M32)
   1030   TYPE("vy32mem",             TYPE_M32)
   1031   TYPE("vz32mem",             TYPE_M32)
   1032   TYPE("vx64mem",             TYPE_M64)
   1033   TYPE("vy64mem",             TYPE_M64)
   1034   TYPE("vy64xmem",            TYPE_M64)
   1035   TYPE("vz64mem",             TYPE_M64)
   1036   errs() << "Unhandled type string " << s << "\n";
   1037   llvm_unreachable("Unhandled type string");
   1038 }
   1039 #undef TYPE
   1040 
   1041 #define ENCODING(str, encoding) if (s == str) return encoding;
   1042 OperandEncoding
   1043 RecognizableInstr::immediateEncodingFromString(const std::string &s,
   1044                                                uint8_t OpSize) {
   1045   if(OpSize != X86Local::OpSize16) {
   1046     // For instructions without an OpSize prefix, a declared 16-bit register or
   1047     // immediate encoding is special.
   1048     ENCODING("i16imm",        ENCODING_IW)
   1049   }
   1050   ENCODING("i32i8imm",        ENCODING_IB)
   1051   ENCODING("SSECC",           ENCODING_IB)
   1052   ENCODING("XOPCC",           ENCODING_IB)
   1053   ENCODING("AVXCC",           ENCODING_IB)
   1054   ENCODING("AVX512ICC",       ENCODING_IB)
   1055   ENCODING("AVX512RC",        ENCODING_IB)
   1056   ENCODING("i16imm",          ENCODING_Iv)
   1057   ENCODING("i16i8imm",        ENCODING_IB)
   1058   ENCODING("i32imm",          ENCODING_Iv)
   1059   ENCODING("i64i32imm",       ENCODING_ID)
   1060   ENCODING("i64i8imm",        ENCODING_IB)
   1061   ENCODING("i8imm",           ENCODING_IB)
   1062   ENCODING("u8imm",           ENCODING_IB)
   1063   ENCODING("i32u8imm",        ENCODING_IB)
   1064   // This is not a typo.  Instructions like BLENDVPD put
   1065   // register IDs in 8-bit immediates nowadays.
   1066   ENCODING("FR32",            ENCODING_IB)
   1067   ENCODING("FR64",            ENCODING_IB)
   1068   ENCODING("VR128",           ENCODING_IB)
   1069   ENCODING("VR256",           ENCODING_IB)
   1070   ENCODING("FR32X",           ENCODING_IB)
   1071   ENCODING("FR64X",           ENCODING_IB)
   1072   ENCODING("VR128X",          ENCODING_IB)
   1073   ENCODING("VR256X",          ENCODING_IB)
   1074   ENCODING("VR512",           ENCODING_IB)
   1075   errs() << "Unhandled immediate encoding " << s << "\n";
   1076   llvm_unreachable("Unhandled immediate encoding");
   1077 }
   1078 
   1079 OperandEncoding
   1080 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
   1081                                                 uint8_t OpSize) {
   1082   ENCODING("RST",             ENCODING_FP)
   1083   ENCODING("GR16",            ENCODING_RM)
   1084   ENCODING("GR32",            ENCODING_RM)
   1085   ENCODING("GR32orGR64",      ENCODING_RM)
   1086   ENCODING("GR64",            ENCODING_RM)
   1087   ENCODING("GR8",             ENCODING_RM)
   1088   ENCODING("VR128",           ENCODING_RM)
   1089   ENCODING("VR128X",          ENCODING_RM)
   1090   ENCODING("FR64",            ENCODING_RM)
   1091   ENCODING("FR32",            ENCODING_RM)
   1092   ENCODING("FR64X",           ENCODING_RM)
   1093   ENCODING("FR32X",           ENCODING_RM)
   1094   ENCODING("VR64",            ENCODING_RM)
   1095   ENCODING("VR256",           ENCODING_RM)
   1096   ENCODING("VR256X",          ENCODING_RM)
   1097   ENCODING("VR512",           ENCODING_RM)
   1098   ENCODING("VK1",             ENCODING_RM)
   1099   ENCODING("VK8",             ENCODING_RM)
   1100   ENCODING("VK16",            ENCODING_RM)
   1101   ENCODING("VK32",            ENCODING_RM)
   1102   ENCODING("VK64",            ENCODING_RM)
   1103   errs() << "Unhandled R/M register encoding " << s << "\n";
   1104   llvm_unreachable("Unhandled R/M register encoding");
   1105 }
   1106 
   1107 OperandEncoding
   1108 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
   1109                                                 uint8_t OpSize) {
   1110   ENCODING("GR16",            ENCODING_REG)
   1111   ENCODING("GR32",            ENCODING_REG)
   1112   ENCODING("GR32orGR64",      ENCODING_REG)
   1113   ENCODING("GR64",            ENCODING_REG)
   1114   ENCODING("GR8",             ENCODING_REG)
   1115   ENCODING("VR128",           ENCODING_REG)
   1116   ENCODING("FR64",            ENCODING_REG)
   1117   ENCODING("FR32",            ENCODING_REG)
   1118   ENCODING("VR64",            ENCODING_REG)
   1119   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1120   ENCODING("DEBUG_REG",       ENCODING_REG)
   1121   ENCODING("CONTROL_REG",     ENCODING_REG)
   1122   ENCODING("VR256",           ENCODING_REG)
   1123   ENCODING("VR256X",          ENCODING_REG)
   1124   ENCODING("VR128X",          ENCODING_REG)
   1125   ENCODING("FR64X",           ENCODING_REG)
   1126   ENCODING("FR32X",           ENCODING_REG)
   1127   ENCODING("VR512",           ENCODING_REG)
   1128   ENCODING("VK1",             ENCODING_REG)
   1129   ENCODING("VK2",             ENCODING_REG)
   1130   ENCODING("VK4",             ENCODING_REG)
   1131   ENCODING("VK8",             ENCODING_REG)
   1132   ENCODING("VK16",            ENCODING_REG)
   1133   ENCODING("VK32",            ENCODING_REG)
   1134   ENCODING("VK64",            ENCODING_REG)
   1135   ENCODING("VK1WM",           ENCODING_REG)
   1136   ENCODING("VK8WM",           ENCODING_REG)
   1137   ENCODING("VK16WM",          ENCODING_REG)
   1138   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1139   llvm_unreachable("Unhandled reg/opcode register encoding");
   1140 }
   1141 
   1142 OperandEncoding
   1143 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
   1144                                                   uint8_t OpSize) {
   1145   ENCODING("GR32",            ENCODING_VVVV)
   1146   ENCODING("GR64",            ENCODING_VVVV)
   1147   ENCODING("FR32",            ENCODING_VVVV)
   1148   ENCODING("FR64",            ENCODING_VVVV)
   1149   ENCODING("VR128",           ENCODING_VVVV)
   1150   ENCODING("VR256",           ENCODING_VVVV)
   1151   ENCODING("FR32X",           ENCODING_VVVV)
   1152   ENCODING("FR64X",           ENCODING_VVVV)
   1153   ENCODING("VR128X",          ENCODING_VVVV)
   1154   ENCODING("VR256X",          ENCODING_VVVV)
   1155   ENCODING("VR512",           ENCODING_VVVV)
   1156   ENCODING("VK1",             ENCODING_VVVV)
   1157   ENCODING("VK2",             ENCODING_VVVV)
   1158   ENCODING("VK4",             ENCODING_VVVV)
   1159   ENCODING("VK8",             ENCODING_VVVV)
   1160   ENCODING("VK16",            ENCODING_VVVV)
   1161   ENCODING("VK32",            ENCODING_VVVV)
   1162   ENCODING("VK64",            ENCODING_VVVV)
   1163   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1164   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1165 }
   1166 
   1167 OperandEncoding
   1168 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
   1169                                                        uint8_t OpSize) {
   1170   ENCODING("VK1WM",           ENCODING_WRITEMASK)
   1171   ENCODING("VK2WM",           ENCODING_WRITEMASK)
   1172   ENCODING("VK4WM",           ENCODING_WRITEMASK)
   1173   ENCODING("VK8WM",           ENCODING_WRITEMASK)
   1174   ENCODING("VK16WM",          ENCODING_WRITEMASK)
   1175   ENCODING("VK32WM",          ENCODING_WRITEMASK)
   1176   ENCODING("VK64WM",          ENCODING_WRITEMASK)
   1177   errs() << "Unhandled mask register encoding " << s << "\n";
   1178   llvm_unreachable("Unhandled mask register encoding");
   1179 }
   1180 
   1181 OperandEncoding
   1182 RecognizableInstr::memoryEncodingFromString(const std::string &s,
   1183                                             uint8_t OpSize) {
   1184   ENCODING("i16mem",          ENCODING_RM)
   1185   ENCODING("i32mem",          ENCODING_RM)
   1186   ENCODING("i64mem",          ENCODING_RM)
   1187   ENCODING("i8mem",           ENCODING_RM)
   1188   ENCODING("ssmem",           ENCODING_RM)
   1189   ENCODING("sdmem",           ENCODING_RM)
   1190   ENCODING("f128mem",         ENCODING_RM)
   1191   ENCODING("f256mem",         ENCODING_RM)
   1192   ENCODING("f512mem",         ENCODING_RM)
   1193   ENCODING("f64mem",          ENCODING_RM)
   1194   ENCODING("f32mem",          ENCODING_RM)
   1195   ENCODING("i128mem",         ENCODING_RM)
   1196   ENCODING("i256mem",         ENCODING_RM)
   1197   ENCODING("i512mem",         ENCODING_RM)
   1198   ENCODING("f80mem",          ENCODING_RM)
   1199   ENCODING("lea64_32mem",     ENCODING_RM)
   1200   ENCODING("lea64mem",        ENCODING_RM)
   1201   ENCODING("anymem",          ENCODING_RM)
   1202   ENCODING("opaque32mem",     ENCODING_RM)
   1203   ENCODING("opaque48mem",     ENCODING_RM)
   1204   ENCODING("opaque80mem",     ENCODING_RM)
   1205   ENCODING("opaque512mem",    ENCODING_RM)
   1206   ENCODING("vx32mem",         ENCODING_RM)
   1207   ENCODING("vy32mem",         ENCODING_RM)
   1208   ENCODING("vz32mem",         ENCODING_RM)
   1209   ENCODING("vx64mem",         ENCODING_RM)
   1210   ENCODING("vy64mem",         ENCODING_RM)
   1211   ENCODING("vy64xmem",        ENCODING_RM)
   1212   ENCODING("vz64mem",         ENCODING_RM)
   1213   errs() << "Unhandled memory encoding " << s << "\n";
   1214   llvm_unreachable("Unhandled memory encoding");
   1215 }
   1216 
   1217 OperandEncoding
   1218 RecognizableInstr::relocationEncodingFromString(const std::string &s,
   1219                                                 uint8_t OpSize) {
   1220   if(OpSize != X86Local::OpSize16) {
   1221     // For instructions without an OpSize prefix, a declared 16-bit register or
   1222     // immediate encoding is special.
   1223     ENCODING("i16imm",        ENCODING_IW)
   1224   }
   1225   ENCODING("i16imm",          ENCODING_Iv)
   1226   ENCODING("i16i8imm",        ENCODING_IB)
   1227   ENCODING("i32imm",          ENCODING_Iv)
   1228   ENCODING("i32i8imm",        ENCODING_IB)
   1229   ENCODING("i64i32imm",       ENCODING_ID)
   1230   ENCODING("i64i8imm",        ENCODING_IB)
   1231   ENCODING("i8imm",           ENCODING_IB)
   1232   ENCODING("u8imm",           ENCODING_IB)
   1233   ENCODING("i32u8imm",        ENCODING_IB)
   1234   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1235   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1236   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1237   ENCODING("brtarget32",      ENCODING_Iv)
   1238   ENCODING("brtarget16",      ENCODING_Iv)
   1239   ENCODING("brtarget8",       ENCODING_IB)
   1240   ENCODING("i64imm",          ENCODING_IO)
   1241   ENCODING("offset16_8",      ENCODING_Ia)
   1242   ENCODING("offset16_16",     ENCODING_Ia)
   1243   ENCODING("offset16_32",     ENCODING_Ia)
   1244   ENCODING("offset32_8",      ENCODING_Ia)
   1245   ENCODING("offset32_16",     ENCODING_Ia)
   1246   ENCODING("offset32_32",     ENCODING_Ia)
   1247   ENCODING("offset32_64",     ENCODING_Ia)
   1248   ENCODING("offset64_8",      ENCODING_Ia)
   1249   ENCODING("offset64_16",     ENCODING_Ia)
   1250   ENCODING("offset64_32",     ENCODING_Ia)
   1251   ENCODING("offset64_64",     ENCODING_Ia)
   1252   ENCODING("srcidx8",         ENCODING_SI)
   1253   ENCODING("srcidx16",        ENCODING_SI)
   1254   ENCODING("srcidx32",        ENCODING_SI)
   1255   ENCODING("srcidx64",        ENCODING_SI)
   1256   ENCODING("dstidx8",         ENCODING_DI)
   1257   ENCODING("dstidx16",        ENCODING_DI)
   1258   ENCODING("dstidx32",        ENCODING_DI)
   1259   ENCODING("dstidx64",        ENCODING_DI)
   1260   errs() << "Unhandled relocation encoding " << s << "\n";
   1261   llvm_unreachable("Unhandled relocation encoding");
   1262 }
   1263 
   1264 OperandEncoding
   1265 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
   1266                                                     uint8_t OpSize) {
   1267   ENCODING("GR32",            ENCODING_Rv)
   1268   ENCODING("GR64",            ENCODING_RO)
   1269   ENCODING("GR16",            ENCODING_Rv)
   1270   ENCODING("GR8",             ENCODING_RB)
   1271   ENCODING("GR16_NOAX",       ENCODING_Rv)
   1272   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1273   ENCODING("GR64_NOAX",       ENCODING_RO)
   1274   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1275   llvm_unreachable("Unhandled opcode modifier encoding");
   1276 }
   1277 #undef ENCODING
   1278