Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "heap.h"
     18 
     19 #define ATRACE_TAG ATRACE_TAG_DALVIK
     20 #include <cutils/trace.h>
     21 
     22 #include <limits>
     23 #include <memory>
     24 #include <unwind.h>  // For GC verification.
     25 #include <vector>
     26 
     27 #include "art_field-inl.h"
     28 #include "base/allocator.h"
     29 #include "base/dumpable.h"
     30 #include "base/histogram-inl.h"
     31 #include "base/stl_util.h"
     32 #include "base/time_utils.h"
     33 #include "common_throws.h"
     34 #include "cutils/sched_policy.h"
     35 #include "debugger.h"
     36 #include "dex_file-inl.h"
     37 #include "gc/accounting/atomic_stack.h"
     38 #include "gc/accounting/card_table-inl.h"
     39 #include "gc/accounting/heap_bitmap-inl.h"
     40 #include "gc/accounting/mod_union_table.h"
     41 #include "gc/accounting/mod_union_table-inl.h"
     42 #include "gc/accounting/remembered_set.h"
     43 #include "gc/accounting/space_bitmap-inl.h"
     44 #include "gc/collector/concurrent_copying.h"
     45 #include "gc/collector/mark_compact.h"
     46 #include "gc/collector/mark_sweep-inl.h"
     47 #include "gc/collector/partial_mark_sweep.h"
     48 #include "gc/collector/semi_space.h"
     49 #include "gc/collector/sticky_mark_sweep.h"
     50 #include "gc/reference_processor.h"
     51 #include "gc/space/bump_pointer_space.h"
     52 #include "gc/space/dlmalloc_space-inl.h"
     53 #include "gc/space/image_space.h"
     54 #include "gc/space/large_object_space.h"
     55 #include "gc/space/region_space.h"
     56 #include "gc/space/rosalloc_space-inl.h"
     57 #include "gc/space/space-inl.h"
     58 #include "gc/space/zygote_space.h"
     59 #include "gc/task_processor.h"
     60 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     61 #include "heap-inl.h"
     62 #include "image.h"
     63 #include "intern_table.h"
     64 #include "mirror/class-inl.h"
     65 #include "mirror/object.h"
     66 #include "mirror/object-inl.h"
     67 #include "mirror/object_array-inl.h"
     68 #include "mirror/reference-inl.h"
     69 #include "os.h"
     70 #include "reflection.h"
     71 #include "runtime.h"
     72 #include "ScopedLocalRef.h"
     73 #include "scoped_thread_state_change.h"
     74 #include "handle_scope-inl.h"
     75 #include "thread_list.h"
     76 #include "well_known_classes.h"
     77 
     78 namespace art {
     79 
     80 namespace gc {
     81 
     82 static constexpr size_t kCollectorTransitionStressIterations = 0;
     83 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
     84 // Minimum amount of remaining bytes before a concurrent GC is triggered.
     85 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
     86 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
     87 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
     88 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
     89 // threads (lower pauses, use less memory bandwidth).
     90 static constexpr double kStickyGcThroughputAdjustment = 1.0;
     91 // Whether or not we compact the zygote in PreZygoteFork.
     92 static constexpr bool kCompactZygote = kMovingCollector;
     93 // How many reserve entries are at the end of the allocation stack, these are only needed if the
     94 // allocation stack overflows.
     95 static constexpr size_t kAllocationStackReserveSize = 1024;
     96 // Default mark stack size in bytes.
     97 static const size_t kDefaultMarkStackSize = 64 * KB;
     98 // Define space name.
     99 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
    100 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
    101 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
    102 static const char* kNonMovingSpaceName = "non moving space";
    103 static const char* kZygoteSpaceName = "zygote space";
    104 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
    105 static constexpr bool kGCALotMode = false;
    106 // GC alot mode uses a small allocation stack to stress test a lot of GC.
    107 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
    108     sizeof(mirror::HeapReference<mirror::Object>);
    109 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
    110 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
    111     sizeof(mirror::HeapReference<mirror::Object>);
    112 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
    113     sizeof(mirror::HeapReference<mirror::Object>);
    114 // System.runFinalization can deadlock with native allocations, to deal with this, we have a
    115 // timeout on how long we wait for finalizers to run. b/21544853
    116 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
    117 
    118 Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
    119            double target_utilization, double foreground_heap_growth_multiplier,
    120            size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
    121            const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
    122            CollectorType background_collector_type,
    123            space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
    124            size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
    125            size_t long_pause_log_threshold, size_t long_gc_log_threshold,
    126            bool ignore_max_footprint, bool use_tlab,
    127            bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
    128            bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
    129            bool verify_post_gc_rosalloc, bool gc_stress_mode,
    130            bool use_homogeneous_space_compaction_for_oom,
    131            uint64_t min_interval_homogeneous_space_compaction_by_oom)
    132     : non_moving_space_(nullptr),
    133       rosalloc_space_(nullptr),
    134       dlmalloc_space_(nullptr),
    135       main_space_(nullptr),
    136       collector_type_(kCollectorTypeNone),
    137       foreground_collector_type_(foreground_collector_type),
    138       background_collector_type_(background_collector_type),
    139       desired_collector_type_(foreground_collector_type_),
    140       pending_task_lock_(nullptr),
    141       parallel_gc_threads_(parallel_gc_threads),
    142       conc_gc_threads_(conc_gc_threads),
    143       low_memory_mode_(low_memory_mode),
    144       long_pause_log_threshold_(long_pause_log_threshold),
    145       long_gc_log_threshold_(long_gc_log_threshold),
    146       ignore_max_footprint_(ignore_max_footprint),
    147       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
    148       zygote_space_(nullptr),
    149       large_object_threshold_(large_object_threshold),
    150       collector_type_running_(kCollectorTypeNone),
    151       last_gc_type_(collector::kGcTypeNone),
    152       next_gc_type_(collector::kGcTypePartial),
    153       capacity_(capacity),
    154       growth_limit_(growth_limit),
    155       max_allowed_footprint_(initial_size),
    156       native_footprint_gc_watermark_(initial_size),
    157       native_need_to_run_finalization_(false),
    158       // Initially assume we perceive jank in case the process state is never updated.
    159       process_state_(kProcessStateJankPerceptible),
    160       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
    161       total_bytes_freed_ever_(0),
    162       total_objects_freed_ever_(0),
    163       num_bytes_allocated_(0),
    164       native_bytes_allocated_(0),
    165       num_bytes_freed_revoke_(0),
    166       verify_missing_card_marks_(false),
    167       verify_system_weaks_(false),
    168       verify_pre_gc_heap_(verify_pre_gc_heap),
    169       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
    170       verify_post_gc_heap_(verify_post_gc_heap),
    171       verify_mod_union_table_(false),
    172       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
    173       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
    174       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
    175       gc_stress_mode_(gc_stress_mode),
    176       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
    177        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
    178        * verification is enabled, we limit the size of allocation stacks to speed up their
    179        * searching.
    180        */
    181       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
    182           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
    183           kDefaultAllocationStackSize),
    184       current_allocator_(kAllocatorTypeDlMalloc),
    185       current_non_moving_allocator_(kAllocatorTypeNonMoving),
    186       bump_pointer_space_(nullptr),
    187       temp_space_(nullptr),
    188       region_space_(nullptr),
    189       min_free_(min_free),
    190       max_free_(max_free),
    191       target_utilization_(target_utilization),
    192       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
    193       total_wait_time_(0),
    194       total_allocation_time_(0),
    195       verify_object_mode_(kVerifyObjectModeDisabled),
    196       disable_moving_gc_count_(0),
    197       running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
    198       use_tlab_(use_tlab),
    199       main_space_backup_(nullptr),
    200       min_interval_homogeneous_space_compaction_by_oom_(
    201           min_interval_homogeneous_space_compaction_by_oom),
    202       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
    203       pending_collector_transition_(nullptr),
    204       pending_heap_trim_(nullptr),
    205       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
    206       running_collection_is_blocking_(false),
    207       blocking_gc_count_(0U),
    208       blocking_gc_time_(0U),
    209       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
    210           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
    211       gc_count_last_window_(0U),
    212       blocking_gc_count_last_window_(0U),
    213       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
    214       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
    215                                         kGcCountRateMaxBucketCount),
    216       backtrace_lock_(nullptr),
    217       seen_backtrace_count_(0u),
    218       unique_backtrace_count_(0u) {
    219   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    220     LOG(INFO) << "Heap() entering";
    221   }
    222   Runtime* const runtime = Runtime::Current();
    223   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
    224   // entrypoints.
    225   const bool is_zygote = runtime->IsZygote();
    226   if (!is_zygote) {
    227     // Background compaction is currently not supported for command line runs.
    228     if (background_collector_type_ != foreground_collector_type_) {
    229       VLOG(heap) << "Disabling background compaction for non zygote";
    230       background_collector_type_ = foreground_collector_type_;
    231     }
    232   }
    233   ChangeCollector(desired_collector_type_);
    234   live_bitmap_.reset(new accounting::HeapBitmap(this));
    235   mark_bitmap_.reset(new accounting::HeapBitmap(this));
    236   // Requested begin for the alloc space, to follow the mapped image and oat files
    237   uint8_t* requested_alloc_space_begin = nullptr;
    238   if (foreground_collector_type_ == kCollectorTypeCC) {
    239     // Need to use a low address so that we can allocate a contiguous
    240     // 2 * Xmx space when there's no image (dex2oat for target).
    241     CHECK_GE(300 * MB, non_moving_space_capacity);
    242     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
    243   }
    244   if (!image_file_name.empty()) {
    245     ATRACE_BEGIN("ImageSpace::Create");
    246     std::string error_msg;
    247     auto* image_space = space::ImageSpace::Create(image_file_name.c_str(), image_instruction_set,
    248                                                   &error_msg);
    249     ATRACE_END();
    250     if (image_space != nullptr) {
    251       AddSpace(image_space);
    252       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    253       // isn't going to get in the middle
    254       uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
    255       CHECK_GT(oat_file_end_addr, image_space->End());
    256       requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
    257     } else {
    258       LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
    259                    << "Attempting to fall back to imageless running. Error was: " << error_msg;
    260     }
    261   }
    262   /*
    263   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    264                                      +-  nonmoving space (non_moving_space_capacity)+-
    265                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    266                                      +-????????????????????????????????????????????+-
    267                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    268                                      +-main alloc space / bump space 1 (capacity_) +-
    269                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    270                                      +-????????????????????????????????????????????+-
    271                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    272                                      +-main alloc space2 / bump space 2 (capacity_)+-
    273                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    274   */
    275   // We don't have hspace compaction enabled with GSS or CC.
    276   if (foreground_collector_type_ == kCollectorTypeGSS ||
    277       foreground_collector_type_ == kCollectorTypeCC) {
    278     use_homogeneous_space_compaction_for_oom_ = false;
    279   }
    280   bool support_homogeneous_space_compaction =
    281       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
    282       use_homogeneous_space_compaction_for_oom_;
    283   // We may use the same space the main space for the non moving space if we don't need to compact
    284   // from the main space.
    285   // This is not the case if we support homogeneous compaction or have a moving background
    286   // collector type.
    287   bool separate_non_moving_space = is_zygote ||
    288       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
    289       IsMovingGc(background_collector_type_);
    290   if (foreground_collector_type == kCollectorTypeGSS) {
    291     separate_non_moving_space = false;
    292   }
    293   std::unique_ptr<MemMap> main_mem_map_1;
    294   std::unique_ptr<MemMap> main_mem_map_2;
    295   uint8_t* request_begin = requested_alloc_space_begin;
    296   if (request_begin != nullptr && separate_non_moving_space) {
    297     request_begin += non_moving_space_capacity;
    298   }
    299   std::string error_str;
    300   std::unique_ptr<MemMap> non_moving_space_mem_map;
    301   ATRACE_BEGIN("Create heap maps");
    302   if (separate_non_moving_space) {
    303     // If we are the zygote, the non moving space becomes the zygote space when we run
    304     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
    305     // rename the mem map later.
    306     const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
    307     // Reserve the non moving mem map before the other two since it needs to be at a specific
    308     // address.
    309     non_moving_space_mem_map.reset(
    310         MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
    311                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
    312                              &error_str));
    313     CHECK(non_moving_space_mem_map != nullptr) << error_str;
    314     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    315     request_begin = reinterpret_cast<uint8_t*>(300 * MB);
    316   }
    317   // Attempt to create 2 mem maps at or after the requested begin.
    318   if (foreground_collector_type_ != kCollectorTypeCC) {
    319     if (separate_non_moving_space) {
    320       main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin,
    321                                                         capacity_, &error_str));
    322     } else {
    323       // If no separate non-moving space, the main space must come
    324       // right after the image space to avoid a gap.
    325       main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
    326                                                 PROT_READ | PROT_WRITE, true, false,
    327                                                 &error_str));
    328     }
    329     CHECK(main_mem_map_1.get() != nullptr) << error_str;
    330   }
    331   if (support_homogeneous_space_compaction ||
    332       background_collector_type_ == kCollectorTypeSS ||
    333       foreground_collector_type_ == kCollectorTypeSS) {
    334     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
    335                                                       capacity_, &error_str));
    336     CHECK(main_mem_map_2.get() != nullptr) << error_str;
    337   }
    338   ATRACE_END();
    339   ATRACE_BEGIN("Create spaces");
    340   // Create the non moving space first so that bitmaps don't take up the address range.
    341   if (separate_non_moving_space) {
    342     // Non moving space is always dlmalloc since we currently don't have support for multiple
    343     // active rosalloc spaces.
    344     const size_t size = non_moving_space_mem_map->Size();
    345     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
    346         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
    347         initial_size, size, size, false);
    348     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    349     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
    350         << requested_alloc_space_begin;
    351     AddSpace(non_moving_space_);
    352   }
    353   // Create other spaces based on whether or not we have a moving GC.
    354   if (foreground_collector_type_ == kCollectorTypeCC) {
    355     region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
    356     AddSpace(region_space_);
    357   } else if (IsMovingGc(foreground_collector_type_) &&
    358       foreground_collector_type_ != kCollectorTypeGSS) {
    359     // Create bump pointer spaces.
    360     // We only to create the bump pointer if the foreground collector is a compacting GC.
    361     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    362     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
    363                                                                     main_mem_map_1.release());
    364     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    365     AddSpace(bump_pointer_space_);
    366     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
    367                                                             main_mem_map_2.release());
    368     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    369     AddSpace(temp_space_);
    370     CHECK(separate_non_moving_space);
    371   } else {
    372     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
    373     CHECK(main_space_ != nullptr);
    374     AddSpace(main_space_);
    375     if (!separate_non_moving_space) {
    376       non_moving_space_ = main_space_;
    377       CHECK(!non_moving_space_->CanMoveObjects());
    378     }
    379     if (foreground_collector_type_ == kCollectorTypeGSS) {
    380       CHECK_EQ(foreground_collector_type_, background_collector_type_);
    381       // Create bump pointer spaces instead of a backup space.
    382       main_mem_map_2.release();
    383       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
    384                                                             kGSSBumpPointerSpaceCapacity, nullptr);
    385       CHECK(bump_pointer_space_ != nullptr);
    386       AddSpace(bump_pointer_space_);
    387       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
    388                                                     kGSSBumpPointerSpaceCapacity, nullptr);
    389       CHECK(temp_space_ != nullptr);
    390       AddSpace(temp_space_);
    391     } else if (main_mem_map_2.get() != nullptr) {
    392       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
    393       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
    394                                                            growth_limit_, capacity_, name, true));
    395       CHECK(main_space_backup_.get() != nullptr);
    396       // Add the space so its accounted for in the heap_begin and heap_end.
    397       AddSpace(main_space_backup_.get());
    398     }
    399   }
    400   CHECK(non_moving_space_ != nullptr);
    401   CHECK(!non_moving_space_->CanMoveObjects());
    402   // Allocate the large object space.
    403   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
    404     large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
    405                                                        capacity_);
    406     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    407   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
    408     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
    409     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    410   } else {
    411     // Disable the large object space by making the cutoff excessively large.
    412     large_object_threshold_ = std::numeric_limits<size_t>::max();
    413     large_object_space_ = nullptr;
    414   }
    415   if (large_object_space_ != nullptr) {
    416     AddSpace(large_object_space_);
    417   }
    418   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
    419   CHECK(!continuous_spaces_.empty());
    420   // Relies on the spaces being sorted.
    421   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
    422   uint8_t* heap_end = continuous_spaces_.back()->Limit();
    423   size_t heap_capacity = heap_end - heap_begin;
    424   // Remove the main backup space since it slows down the GC to have unused extra spaces.
    425   // TODO: Avoid needing to do this.
    426   if (main_space_backup_.get() != nullptr) {
    427     RemoveSpace(main_space_backup_.get());
    428   }
    429   ATRACE_END();
    430   // Allocate the card table.
    431   ATRACE_BEGIN("Create card table");
    432   card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
    433   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
    434   ATRACE_END();
    435   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
    436     rb_table_.reset(new accounting::ReadBarrierTable());
    437     DCHECK(rb_table_->IsAllCleared());
    438   }
    439   if (GetImageSpace() != nullptr) {
    440     // Don't add the image mod union table if we are running without an image, this can crash if
    441     // we use the CardCache implementation.
    442     accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
    443         "Image mod-union table", this, GetImageSpace());
    444     CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    445     AddModUnionTable(mod_union_table);
    446   }
    447   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    448     accounting::RememberedSet* non_moving_space_rem_set =
    449         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    450     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    451     AddRememberedSet(non_moving_space_rem_set);
    452   }
    453   // TODO: Count objects in the image space here?
    454   num_bytes_allocated_.StoreRelaxed(0);
    455   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
    456                                                     kDefaultMarkStackSize));
    457   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
    458   allocation_stack_.reset(accounting::ObjectStack::Create(
    459       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
    460   live_stack_.reset(accounting::ObjectStack::Create(
    461       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
    462   // It's still too early to take a lock because there are no threads yet, but we can create locks
    463   // now. We don't create it earlier to make it clear that you can't use locks during heap
    464   // initialization.
    465   gc_complete_lock_ = new Mutex("GC complete lock");
    466   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
    467                                                 *gc_complete_lock_));
    468   task_processor_.reset(new TaskProcessor());
    469   pending_task_lock_ = new Mutex("Pending task lock");
    470   if (ignore_max_footprint_) {
    471     SetIdealFootprint(std::numeric_limits<size_t>::max());
    472     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    473   }
    474   CHECK_NE(max_allowed_footprint_, 0U);
    475   // Create our garbage collectors.
    476   for (size_t i = 0; i < 2; ++i) {
    477     const bool concurrent = i != 0;
    478     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
    479         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
    480       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    481       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    482       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    483     }
    484   }
    485   if (kMovingCollector) {
    486     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
    487         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
    488         use_homogeneous_space_compaction_for_oom_) {
    489       // TODO: Clean this up.
    490       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
    491       semi_space_collector_ = new collector::SemiSpace(this, generational,
    492                                                        generational ? "generational" : "");
    493       garbage_collectors_.push_back(semi_space_collector_);
    494     }
    495     if (MayUseCollector(kCollectorTypeCC)) {
    496       concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
    497       garbage_collectors_.push_back(concurrent_copying_collector_);
    498     }
    499     if (MayUseCollector(kCollectorTypeMC)) {
    500       mark_compact_collector_ = new collector::MarkCompact(this);
    501       garbage_collectors_.push_back(mark_compact_collector_);
    502     }
    503   }
    504   if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
    505       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
    506     // Check that there's no gap between the image space and the non moving space so that the
    507     // immune region won't break (eg. due to a large object allocated in the gap). This is only
    508     // required when we're the zygote or using GSS.
    509     bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
    510                                       non_moving_space_->GetMemMap());
    511     if (!no_gap) {
    512       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
    513       MemMap::DumpMaps(LOG(ERROR), true);
    514       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
    515     }
    516   }
    517   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
    518   if (gc_stress_mode_) {
    519     backtrace_lock_ = new Mutex("GC complete lock");
    520   }
    521   if (running_on_valgrind_ || gc_stress_mode_) {
    522     instrumentation->InstrumentQuickAllocEntryPoints();
    523   }
    524   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    525     LOG(INFO) << "Heap() exiting";
    526   }
    527 }
    528 
    529 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
    530                                            size_t capacity, std::string* out_error_str) {
    531   while (true) {
    532     MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
    533                                        PROT_READ | PROT_WRITE, true, false, out_error_str);
    534     if (map != nullptr || request_begin == nullptr) {
    535       return map;
    536     }
    537     // Retry a  second time with no specified request begin.
    538     request_begin = nullptr;
    539   }
    540 }
    541 
    542 bool Heap::MayUseCollector(CollectorType type) const {
    543   return foreground_collector_type_ == type || background_collector_type_ == type;
    544 }
    545 
    546 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
    547                                                       size_t growth_limit, size_t capacity,
    548                                                       const char* name, bool can_move_objects) {
    549   space::MallocSpace* malloc_space = nullptr;
    550   if (kUseRosAlloc) {
    551     // Create rosalloc space.
    552     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    553                                                           initial_size, growth_limit, capacity,
    554                                                           low_memory_mode_, can_move_objects);
    555   } else {
    556     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    557                                                           initial_size, growth_limit, capacity,
    558                                                           can_move_objects);
    559   }
    560   if (collector::SemiSpace::kUseRememberedSet) {
    561     accounting::RememberedSet* rem_set  =
    562         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    563     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    564     AddRememberedSet(rem_set);
    565   }
    566   CHECK(malloc_space != nullptr) << "Failed to create " << name;
    567   malloc_space->SetFootprintLimit(malloc_space->Capacity());
    568   return malloc_space;
    569 }
    570 
    571 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
    572                                  size_t capacity) {
    573   // Is background compaction is enabled?
    574   bool can_move_objects = IsMovingGc(background_collector_type_) !=
    575       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
    576   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
    577   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
    578   // from the main space to the zygote space. If background compaction is enabled, always pass in
    579   // that we can move objets.
    580   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    581     // After the zygote we want this to be false if we don't have background compaction enabled so
    582     // that getting primitive array elements is faster.
    583     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    584     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
    585   }
    586   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    587     RemoveRememberedSet(main_space_);
    588   }
    589   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
    590   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
    591                                             can_move_objects);
    592   SetSpaceAsDefault(main_space_);
    593   VLOG(heap) << "Created main space " << main_space_;
    594 }
    595 
    596 void Heap::ChangeAllocator(AllocatorType allocator) {
    597   if (current_allocator_ != allocator) {
    598     // These two allocators are only used internally and don't have any entrypoints.
    599     CHECK_NE(allocator, kAllocatorTypeLOS);
    600     CHECK_NE(allocator, kAllocatorTypeNonMoving);
    601     current_allocator_ = allocator;
    602     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    603     SetQuickAllocEntryPointsAllocator(current_allocator_);
    604     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
    605   }
    606 }
    607 
    608 void Heap::DisableMovingGc() {
    609   if (IsMovingGc(foreground_collector_type_)) {
    610     foreground_collector_type_ = kCollectorTypeCMS;
    611   }
    612   if (IsMovingGc(background_collector_type_)) {
    613     background_collector_type_ = foreground_collector_type_;
    614   }
    615   TransitionCollector(foreground_collector_type_);
    616   ThreadList* tl = Runtime::Current()->GetThreadList();
    617   Thread* self = Thread::Current();
    618   ScopedThreadStateChange tsc(self, kSuspended);
    619   tl->SuspendAll(__FUNCTION__);
    620   // Something may have caused the transition to fail.
    621   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    622     CHECK(main_space_ != nullptr);
    623     // The allocation stack may have non movable objects in it. We need to flush it since the GC
    624     // can't only handle marking allocation stack objects of one non moving space and one main
    625     // space.
    626     {
    627       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    628       FlushAllocStack();
    629     }
    630     main_space_->DisableMovingObjects();
    631     non_moving_space_ = main_space_;
    632     CHECK(!non_moving_space_->CanMoveObjects());
    633   }
    634   tl->ResumeAll();
    635 }
    636 
    637 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
    638   if (!IsValidContinuousSpaceObjectAddress(klass)) {
    639     return StringPrintf("<non heap address klass %p>", klass);
    640   }
    641   mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
    642   if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
    643     std::string result("[");
    644     result += SafeGetClassDescriptor(component_type);
    645     return result;
    646   } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
    647     return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
    648   } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
    649     return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
    650   } else {
    651     mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
    652     if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
    653       return StringPrintf("<non heap address dex_cache %p>", dex_cache);
    654     }
    655     const DexFile* dex_file = dex_cache->GetDexFile();
    656     uint16_t class_def_idx = klass->GetDexClassDefIndex();
    657     if (class_def_idx == DexFile::kDexNoIndex16) {
    658       return "<class def not found>";
    659     }
    660     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    661     const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
    662     return dex_file->GetTypeDescriptor(type_id);
    663   }
    664 }
    665 
    666 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
    667   if (obj == nullptr) {
    668     return "null";
    669   }
    670   mirror::Class* klass = obj->GetClass<kVerifyNone>();
    671   if (klass == nullptr) {
    672     return "(class=null)";
    673   }
    674   std::string result(SafeGetClassDescriptor(klass));
    675   if (obj->IsClass()) {
    676     result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
    677   }
    678   return result;
    679 }
    680 
    681 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
    682   if (obj == nullptr) {
    683     stream << "(obj=null)";
    684     return;
    685   }
    686   if (IsAligned<kObjectAlignment>(obj)) {
    687     space::Space* space = nullptr;
    688     // Don't use find space since it only finds spaces which actually contain objects instead of
    689     // spaces which may contain objects (e.g. cleared bump pointer spaces).
    690     for (const auto& cur_space : continuous_spaces_) {
    691       if (cur_space->HasAddress(obj)) {
    692         space = cur_space;
    693         break;
    694       }
    695     }
    696     // Unprotect all the spaces.
    697     for (const auto& con_space : continuous_spaces_) {
    698       mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
    699     }
    700     stream << "Object " << obj;
    701     if (space != nullptr) {
    702       stream << " in space " << *space;
    703     }
    704     mirror::Class* klass = obj->GetClass<kVerifyNone>();
    705     stream << "\nclass=" << klass;
    706     if (klass != nullptr) {
    707       stream << " type= " << SafePrettyTypeOf(obj);
    708     }
    709     // Re-protect the address we faulted on.
    710     mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
    711   }
    712 }
    713 
    714 bool Heap::IsCompilingBoot() const {
    715   if (!Runtime::Current()->IsAotCompiler()) {
    716     return false;
    717   }
    718   for (const auto& space : continuous_spaces_) {
    719     if (space->IsImageSpace() || space->IsZygoteSpace()) {
    720       return false;
    721     }
    722   }
    723   return true;
    724 }
    725 
    726 bool Heap::HasImageSpace() const {
    727   for (const auto& space : continuous_spaces_) {
    728     if (space->IsImageSpace()) {
    729       return true;
    730     }
    731   }
    732   return false;
    733 }
    734 
    735 void Heap::IncrementDisableMovingGC(Thread* self) {
    736   // Need to do this holding the lock to prevent races where the GC is about to run / running when
    737   // we attempt to disable it.
    738   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    739   MutexLock mu(self, *gc_complete_lock_);
    740   ++disable_moving_gc_count_;
    741   if (IsMovingGc(collector_type_running_)) {
    742     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
    743   }
    744 }
    745 
    746 void Heap::DecrementDisableMovingGC(Thread* self) {
    747   MutexLock mu(self, *gc_complete_lock_);
    748   CHECK_GT(disable_moving_gc_count_, 0U);
    749   --disable_moving_gc_count_;
    750 }
    751 
    752 void Heap::UpdateProcessState(ProcessState process_state) {
    753   if (process_state_ != process_state) {
    754     process_state_ = process_state;
    755     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
    756       // Start at index 1 to avoid "is always false" warning.
    757       // Have iteration 1 always transition the collector.
    758       TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
    759                           ? foreground_collector_type_ : background_collector_type_);
    760       usleep(kCollectorTransitionStressWait);
    761     }
    762     if (process_state_ == kProcessStateJankPerceptible) {
    763       // Transition back to foreground right away to prevent jank.
    764       RequestCollectorTransition(foreground_collector_type_, 0);
    765     } else {
    766       // Don't delay for debug builds since we may want to stress test the GC.
    767       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
    768       // special handling which does a homogenous space compaction once but then doesn't transition
    769       // the collector.
    770       RequestCollectorTransition(background_collector_type_,
    771                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
    772     }
    773   }
    774 }
    775 
    776 void Heap::CreateThreadPool() {
    777   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
    778   if (num_threads != 0) {
    779     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
    780   }
    781 }
    782 
    783 // Visit objects when threads aren't suspended. If concurrent moving
    784 // GC, disable moving GC and suspend threads and then visit objects.
    785 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
    786   Thread* self = Thread::Current();
    787   Locks::mutator_lock_->AssertSharedHeld(self);
    788   DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
    789   if (IsGcConcurrentAndMoving()) {
    790     // Concurrent moving GC. Just suspending threads isn't sufficient
    791     // because a collection isn't one big pause and we could suspend
    792     // threads in the middle (between phases) of a concurrent moving
    793     // collection where it's not easily known which objects are alive
    794     // (both the region space and the non-moving space) or which
    795     // copies of objects to visit, and the to-space invariant could be
    796     // easily broken. Visit objects while GC isn't running by using
    797     // IncrementDisableMovingGC() and threads are suspended.
    798     IncrementDisableMovingGC(self);
    799     self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
    800     ThreadList* tl = Runtime::Current()->GetThreadList();
    801     tl->SuspendAll(__FUNCTION__);
    802     VisitObjectsInternalRegionSpace(callback, arg);
    803     VisitObjectsInternal(callback, arg);
    804     tl->ResumeAll();
    805     self->TransitionFromSuspendedToRunnable();
    806     DecrementDisableMovingGC(self);
    807   } else {
    808     // GCs can move objects, so don't allow this.
    809     ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
    810     DCHECK(region_space_ == nullptr);
    811     VisitObjectsInternal(callback, arg);
    812   }
    813 }
    814 
    815 // Visit objects when threads are already suspended.
    816 void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
    817   Thread* self = Thread::Current();
    818   Locks::mutator_lock_->AssertExclusiveHeld(self);
    819   VisitObjectsInternalRegionSpace(callback, arg);
    820   VisitObjectsInternal(callback, arg);
    821 }
    822 
    823 // Visit objects in the region spaces.
    824 void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
    825   Thread* self = Thread::Current();
    826   Locks::mutator_lock_->AssertExclusiveHeld(self);
    827   if (region_space_ != nullptr) {
    828     DCHECK(IsGcConcurrentAndMoving());
    829     if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
    830       // Exclude the pre-zygote fork time where the semi-space collector
    831       // calls VerifyHeapReferences() as part of the zygote compaction
    832       // which then would call here without the moving GC disabled,
    833       // which is fine.
    834       DCHECK(IsMovingGCDisabled(self));
    835     }
    836     region_space_->Walk(callback, arg);
    837   }
    838 }
    839 
    840 // Visit objects in the other spaces.
    841 void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
    842   if (bump_pointer_space_ != nullptr) {
    843     // Visit objects in bump pointer space.
    844     bump_pointer_space_->Walk(callback, arg);
    845   }
    846   // TODO: Switch to standard begin and end to use ranged a based loop.
    847   for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
    848     mirror::Object* const obj = it->AsMirrorPtr();
    849     if (obj != nullptr && obj->GetClass() != nullptr) {
    850       // Avoid the race condition caused by the object not yet being written into the allocation
    851       // stack or the class not yet being written in the object. Or, if
    852       // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
    853       callback(obj, arg);
    854     }
    855   }
    856   {
    857     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    858     GetLiveBitmap()->Walk(callback, arg);
    859   }
    860 }
    861 
    862 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
    863   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
    864   space::ContinuousSpace* space2 = non_moving_space_;
    865   // TODO: Generalize this to n bitmaps?
    866   CHECK(space1 != nullptr);
    867   CHECK(space2 != nullptr);
    868   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
    869                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
    870                  stack);
    871 }
    872 
    873 void Heap::DeleteThreadPool() {
    874   thread_pool_.reset(nullptr);
    875 }
    876 
    877 void Heap::AddSpace(space::Space* space) {
    878   CHECK(space != nullptr);
    879   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    880   if (space->IsContinuousSpace()) {
    881     DCHECK(!space->IsDiscontinuousSpace());
    882     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    883     // Continuous spaces don't necessarily have bitmaps.
    884     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    885     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    886     if (live_bitmap != nullptr) {
    887       CHECK(mark_bitmap != nullptr);
    888       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
    889       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
    890     }
    891     continuous_spaces_.push_back(continuous_space);
    892     // Ensure that spaces remain sorted in increasing order of start address.
    893     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
    894               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
    895       return a->Begin() < b->Begin();
    896     });
    897   } else {
    898     CHECK(space->IsDiscontinuousSpace());
    899     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    900     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    901     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    902     discontinuous_spaces_.push_back(discontinuous_space);
    903   }
    904   if (space->IsAllocSpace()) {
    905     alloc_spaces_.push_back(space->AsAllocSpace());
    906   }
    907 }
    908 
    909 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
    910   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    911   if (continuous_space->IsDlMallocSpace()) {
    912     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
    913   } else if (continuous_space->IsRosAllocSpace()) {
    914     rosalloc_space_ = continuous_space->AsRosAllocSpace();
    915   }
    916 }
    917 
    918 void Heap::RemoveSpace(space::Space* space) {
    919   DCHECK(space != nullptr);
    920   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    921   if (space->IsContinuousSpace()) {
    922     DCHECK(!space->IsDiscontinuousSpace());
    923     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    924     // Continuous spaces don't necessarily have bitmaps.
    925     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    926     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    927     if (live_bitmap != nullptr) {
    928       DCHECK(mark_bitmap != nullptr);
    929       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
    930       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
    931     }
    932     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
    933     DCHECK(it != continuous_spaces_.end());
    934     continuous_spaces_.erase(it);
    935   } else {
    936     DCHECK(space->IsDiscontinuousSpace());
    937     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    938     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    939     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    940     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
    941                         discontinuous_space);
    942     DCHECK(it != discontinuous_spaces_.end());
    943     discontinuous_spaces_.erase(it);
    944   }
    945   if (space->IsAllocSpace()) {
    946     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
    947     DCHECK(it != alloc_spaces_.end());
    948     alloc_spaces_.erase(it);
    949   }
    950 }
    951 
    952 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
    953   // Dump cumulative timings.
    954   os << "Dumping cumulative Gc timings\n";
    955   uint64_t total_duration = 0;
    956   // Dump cumulative loggers for each GC type.
    957   uint64_t total_paused_time = 0;
    958   for (auto& collector : garbage_collectors_) {
    959     total_duration += collector->GetCumulativeTimings().GetTotalNs();
    960     total_paused_time += collector->GetTotalPausedTimeNs();
    961     collector->DumpPerformanceInfo(os);
    962   }
    963   uint64_t allocation_time =
    964       static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
    965   if (total_duration != 0) {
    966     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
    967     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
    968     os << "Mean GC size throughput: "
    969        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
    970     os << "Mean GC object throughput: "
    971        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
    972   }
    973   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
    974   os << "Total number of allocations " << total_objects_allocated << "\n";
    975   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
    976   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
    977   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
    978   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
    979   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
    980   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
    981   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
    982   if (kMeasureAllocationTime) {
    983     os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
    984     os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
    985        << "\n";
    986   }
    987   if (HasZygoteSpace()) {
    988     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
    989   }
    990   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
    991   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
    992   os << "Total GC count: " << GetGcCount() << "\n";
    993   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
    994   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
    995   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
    996 
    997   {
    998     MutexLock mu(Thread::Current(), *gc_complete_lock_);
    999     if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1000       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1001       gc_count_rate_histogram_.DumpBins(os);
   1002       os << "\n";
   1003     }
   1004     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1005       os << "Histogram of blocking GC count per "
   1006          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1007       blocking_gc_count_rate_histogram_.DumpBins(os);
   1008       os << "\n";
   1009     }
   1010   }
   1011 
   1012   BaseMutex::DumpAll(os);
   1013 }
   1014 
   1015 void Heap::ResetGcPerformanceInfo() {
   1016   for (auto& collector : garbage_collectors_) {
   1017     collector->ResetMeasurements();
   1018   }
   1019   total_allocation_time_.StoreRelaxed(0);
   1020   total_bytes_freed_ever_ = 0;
   1021   total_objects_freed_ever_ = 0;
   1022   total_wait_time_ = 0;
   1023   blocking_gc_count_ = 0;
   1024   blocking_gc_time_ = 0;
   1025   gc_count_last_window_ = 0;
   1026   blocking_gc_count_last_window_ = 0;
   1027   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
   1028       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   1029   {
   1030     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1031     gc_count_rate_histogram_.Reset();
   1032     blocking_gc_count_rate_histogram_.Reset();
   1033   }
   1034 }
   1035 
   1036 uint64_t Heap::GetGcCount() const {
   1037   uint64_t gc_count = 0U;
   1038   for (auto& collector : garbage_collectors_) {
   1039     gc_count += collector->GetCumulativeTimings().GetIterations();
   1040   }
   1041   return gc_count;
   1042 }
   1043 
   1044 uint64_t Heap::GetGcTime() const {
   1045   uint64_t gc_time = 0U;
   1046   for (auto& collector : garbage_collectors_) {
   1047     gc_time += collector->GetCumulativeTimings().GetTotalNs();
   1048   }
   1049   return gc_time;
   1050 }
   1051 
   1052 uint64_t Heap::GetBlockingGcCount() const {
   1053   return blocking_gc_count_;
   1054 }
   1055 
   1056 uint64_t Heap::GetBlockingGcTime() const {
   1057   return blocking_gc_time_;
   1058 }
   1059 
   1060 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
   1061   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1062   if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1063     gc_count_rate_histogram_.DumpBins(os);
   1064   }
   1065 }
   1066 
   1067 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
   1068   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1069   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1070     blocking_gc_count_rate_histogram_.DumpBins(os);
   1071   }
   1072 }
   1073 
   1074 Heap::~Heap() {
   1075   VLOG(heap) << "Starting ~Heap()";
   1076   STLDeleteElements(&garbage_collectors_);
   1077   // If we don't reset then the mark stack complains in its destructor.
   1078   allocation_stack_->Reset();
   1079   live_stack_->Reset();
   1080   STLDeleteValues(&mod_union_tables_);
   1081   STLDeleteValues(&remembered_sets_);
   1082   STLDeleteElements(&continuous_spaces_);
   1083   STLDeleteElements(&discontinuous_spaces_);
   1084   delete gc_complete_lock_;
   1085   delete pending_task_lock_;
   1086   delete backtrace_lock_;
   1087   if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
   1088     LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
   1089         << " total=" << seen_backtrace_count_.LoadRelaxed() +
   1090             unique_backtrace_count_.LoadRelaxed();
   1091   }
   1092   VLOG(heap) << "Finished ~Heap()";
   1093 }
   1094 
   1095 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
   1096                                                             bool fail_ok) const {
   1097   for (const auto& space : continuous_spaces_) {
   1098     if (space->Contains(obj)) {
   1099       return space;
   1100     }
   1101   }
   1102   if (!fail_ok) {
   1103     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
   1104   }
   1105   return nullptr;
   1106 }
   1107 
   1108 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
   1109                                                                   bool fail_ok) const {
   1110   for (const auto& space : discontinuous_spaces_) {
   1111     if (space->Contains(obj)) {
   1112       return space;
   1113     }
   1114   }
   1115   if (!fail_ok) {
   1116     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
   1117   }
   1118   return nullptr;
   1119 }
   1120 
   1121 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
   1122   space::Space* result = FindContinuousSpaceFromObject(obj, true);
   1123   if (result != nullptr) {
   1124     return result;
   1125   }
   1126   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
   1127 }
   1128 
   1129 space::ImageSpace* Heap::GetImageSpace() const {
   1130   for (const auto& space : continuous_spaces_) {
   1131     if (space->IsImageSpace()) {
   1132       return space->AsImageSpace();
   1133     }
   1134   }
   1135   return nullptr;
   1136 }
   1137 
   1138 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
   1139   std::ostringstream oss;
   1140   size_t total_bytes_free = GetFreeMemory();
   1141   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
   1142       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
   1143   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
   1144   if (total_bytes_free >= byte_count) {
   1145     space::AllocSpace* space = nullptr;
   1146     if (allocator_type == kAllocatorTypeNonMoving) {
   1147       space = non_moving_space_;
   1148     } else if (allocator_type == kAllocatorTypeRosAlloc ||
   1149                allocator_type == kAllocatorTypeDlMalloc) {
   1150       space = main_space_;
   1151     } else if (allocator_type == kAllocatorTypeBumpPointer ||
   1152                allocator_type == kAllocatorTypeTLAB) {
   1153       space = bump_pointer_space_;
   1154     } else if (allocator_type == kAllocatorTypeRegion ||
   1155                allocator_type == kAllocatorTypeRegionTLAB) {
   1156       space = region_space_;
   1157     }
   1158     if (space != nullptr) {
   1159       space->LogFragmentationAllocFailure(oss, byte_count);
   1160     }
   1161   }
   1162   self->ThrowOutOfMemoryError(oss.str().c_str());
   1163 }
   1164 
   1165 void Heap::DoPendingCollectorTransition() {
   1166   CollectorType desired_collector_type = desired_collector_type_;
   1167   // Launch homogeneous space compaction if it is desired.
   1168   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
   1169     if (!CareAboutPauseTimes()) {
   1170       PerformHomogeneousSpaceCompact();
   1171     } else {
   1172       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
   1173     }
   1174   } else {
   1175     TransitionCollector(desired_collector_type);
   1176   }
   1177 }
   1178 
   1179 void Heap::Trim(Thread* self) {
   1180   if (!CareAboutPauseTimes()) {
   1181     ATRACE_BEGIN("Deflating monitors");
   1182     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
   1183     // about pauses.
   1184     Runtime* runtime = Runtime::Current();
   1185     runtime->GetThreadList()->SuspendAll(__FUNCTION__);
   1186     uint64_t start_time = NanoTime();
   1187     size_t count = runtime->GetMonitorList()->DeflateMonitors();
   1188     VLOG(heap) << "Deflating " << count << " monitors took "
   1189         << PrettyDuration(NanoTime() - start_time);
   1190     runtime->GetThreadList()->ResumeAll();
   1191     ATRACE_END();
   1192   }
   1193   TrimIndirectReferenceTables(self);
   1194   TrimSpaces(self);
   1195 }
   1196 
   1197 class TrimIndirectReferenceTableClosure : public Closure {
   1198  public:
   1199   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
   1200   }
   1201   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1202     ATRACE_BEGIN("Trimming reference table");
   1203     thread->GetJniEnv()->locals.Trim();
   1204     ATRACE_END();
   1205     // If thread is a running mutator, then act on behalf of the trim thread.
   1206     // See the code in ThreadList::RunCheckpoint.
   1207     if (thread->GetState() == kRunnable) {
   1208       barrier_->Pass(Thread::Current());
   1209     }
   1210   }
   1211 
   1212  private:
   1213   Barrier* const barrier_;
   1214 };
   1215 
   1216 void Heap::TrimIndirectReferenceTables(Thread* self) {
   1217   ScopedObjectAccess soa(self);
   1218   ATRACE_BEGIN(__FUNCTION__);
   1219   JavaVMExt* vm = soa.Vm();
   1220   // Trim globals indirect reference table.
   1221   vm->TrimGlobals();
   1222   // Trim locals indirect reference tables.
   1223   Barrier barrier(0);
   1224   TrimIndirectReferenceTableClosure closure(&barrier);
   1225   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1226   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
   1227   if (barrier_count != 0) {
   1228     barrier.Increment(self, barrier_count);
   1229   }
   1230   ATRACE_END();
   1231 }
   1232 
   1233 void Heap::TrimSpaces(Thread* self) {
   1234   {
   1235     // Need to do this before acquiring the locks since we don't want to get suspended while
   1236     // holding any locks.
   1237     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1238     // Pretend we are doing a GC to prevent background compaction from deleting the space we are
   1239     // trimming.
   1240     MutexLock mu(self, *gc_complete_lock_);
   1241     // Ensure there is only one GC at a time.
   1242     WaitForGcToCompleteLocked(kGcCauseTrim, self);
   1243     collector_type_running_ = kCollectorTypeHeapTrim;
   1244   }
   1245   ATRACE_BEGIN(__FUNCTION__);
   1246   const uint64_t start_ns = NanoTime();
   1247   // Trim the managed spaces.
   1248   uint64_t total_alloc_space_allocated = 0;
   1249   uint64_t total_alloc_space_size = 0;
   1250   uint64_t managed_reclaimed = 0;
   1251   for (const auto& space : continuous_spaces_) {
   1252     if (space->IsMallocSpace()) {
   1253       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   1254       if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
   1255         // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
   1256         // for a long period of time.
   1257         managed_reclaimed += malloc_space->Trim();
   1258       }
   1259       total_alloc_space_size += malloc_space->Size();
   1260     }
   1261   }
   1262   total_alloc_space_allocated = GetBytesAllocated();
   1263   if (large_object_space_ != nullptr) {
   1264     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
   1265   }
   1266   if (bump_pointer_space_ != nullptr) {
   1267     total_alloc_space_allocated -= bump_pointer_space_->Size();
   1268   }
   1269   if (region_space_ != nullptr) {
   1270     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
   1271   }
   1272   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
   1273       static_cast<float>(total_alloc_space_size);
   1274   uint64_t gc_heap_end_ns = NanoTime();
   1275   // We never move things in the native heap, so we can finish the GC at this point.
   1276   FinishGC(self, collector::kGcTypeNone);
   1277   size_t native_reclaimed = 0;
   1278 
   1279 #ifdef HAVE_ANDROID_OS
   1280   // Only trim the native heap if we don't care about pauses.
   1281   if (!CareAboutPauseTimes()) {
   1282 #if defined(USE_DLMALLOC)
   1283     // Trim the native heap.
   1284     dlmalloc_trim(0);
   1285     dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
   1286 #elif defined(USE_JEMALLOC)
   1287     // Jemalloc does it's own internal trimming.
   1288 #else
   1289     UNIMPLEMENTED(WARNING) << "Add trimming support";
   1290 #endif
   1291   }
   1292 #endif  // HAVE_ANDROID_OS
   1293   uint64_t end_ns = NanoTime();
   1294   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
   1295       << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
   1296       << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
   1297       << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
   1298       << "%.";
   1299   ATRACE_END();
   1300 }
   1301 
   1302 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
   1303   // Note: we deliberately don't take the lock here, and mustn't test anything that would require
   1304   // taking the lock.
   1305   if (obj == nullptr) {
   1306     return true;
   1307   }
   1308   return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
   1309 }
   1310 
   1311 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
   1312   return FindContinuousSpaceFromObject(obj, true) != nullptr;
   1313 }
   1314 
   1315 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
   1316   if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
   1317     return false;
   1318   }
   1319   for (const auto& space : continuous_spaces_) {
   1320     if (space->HasAddress(obj)) {
   1321       return true;
   1322     }
   1323   }
   1324   return false;
   1325 }
   1326 
   1327 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
   1328                               bool search_live_stack, bool sorted) {
   1329   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
   1330     return false;
   1331   }
   1332   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
   1333     mirror::Class* klass = obj->GetClass<kVerifyNone>();
   1334     if (obj == klass) {
   1335       // This case happens for java.lang.Class.
   1336       return true;
   1337     }
   1338     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
   1339   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
   1340     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
   1341     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
   1342     return temp_space_->Contains(obj);
   1343   }
   1344   if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
   1345     return true;
   1346   }
   1347   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
   1348   space::DiscontinuousSpace* d_space = nullptr;
   1349   if (c_space != nullptr) {
   1350     if (c_space->GetLiveBitmap()->Test(obj)) {
   1351       return true;
   1352     }
   1353   } else {
   1354     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1355     if (d_space != nullptr) {
   1356       if (d_space->GetLiveBitmap()->Test(obj)) {
   1357         return true;
   1358       }
   1359     }
   1360   }
   1361   // This is covering the allocation/live stack swapping that is done without mutators suspended.
   1362   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
   1363     if (i > 0) {
   1364       NanoSleep(MsToNs(10));
   1365     }
   1366     if (search_allocation_stack) {
   1367       if (sorted) {
   1368         if (allocation_stack_->ContainsSorted(obj)) {
   1369           return true;
   1370         }
   1371       } else if (allocation_stack_->Contains(obj)) {
   1372         return true;
   1373       }
   1374     }
   1375 
   1376     if (search_live_stack) {
   1377       if (sorted) {
   1378         if (live_stack_->ContainsSorted(obj)) {
   1379           return true;
   1380         }
   1381       } else if (live_stack_->Contains(obj)) {
   1382         return true;
   1383       }
   1384     }
   1385   }
   1386   // We need to check the bitmaps again since there is a race where we mark something as live and
   1387   // then clear the stack containing it.
   1388   if (c_space != nullptr) {
   1389     if (c_space->GetLiveBitmap()->Test(obj)) {
   1390       return true;
   1391     }
   1392   } else {
   1393     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1394     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
   1395       return true;
   1396     }
   1397   }
   1398   return false;
   1399 }
   1400 
   1401 std::string Heap::DumpSpaces() const {
   1402   std::ostringstream oss;
   1403   DumpSpaces(oss);
   1404   return oss.str();
   1405 }
   1406 
   1407 void Heap::DumpSpaces(std::ostream& stream) const {
   1408   for (const auto& space : continuous_spaces_) {
   1409     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1410     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1411     stream << space << " " << *space << "\n";
   1412     if (live_bitmap != nullptr) {
   1413       stream << live_bitmap << " " << *live_bitmap << "\n";
   1414     }
   1415     if (mark_bitmap != nullptr) {
   1416       stream << mark_bitmap << " " << *mark_bitmap << "\n";
   1417     }
   1418   }
   1419   for (const auto& space : discontinuous_spaces_) {
   1420     stream << space << " " << *space << "\n";
   1421   }
   1422 }
   1423 
   1424 void Heap::VerifyObjectBody(mirror::Object* obj) {
   1425   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
   1426     return;
   1427   }
   1428 
   1429   // Ignore early dawn of the universe verifications.
   1430   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
   1431     return;
   1432   }
   1433   CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
   1434   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
   1435   CHECK(c != nullptr) << "Null class in object " << obj;
   1436   CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
   1437   CHECK(VerifyClassClass(c));
   1438 
   1439   if (verify_object_mode_ > kVerifyObjectModeFast) {
   1440     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
   1441     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
   1442   }
   1443 }
   1444 
   1445 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
   1446   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
   1447 }
   1448 
   1449 void Heap::VerifyHeap() {
   1450   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1451   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
   1452 }
   1453 
   1454 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
   1455   // Use signed comparison since freed bytes can be negative when background compaction foreground
   1456   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
   1457   // free list backed space typically increasing memory footprint due to padding and binning.
   1458   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
   1459   // Note: This relies on 2s complement for handling negative freed_bytes.
   1460   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
   1461   if (Runtime::Current()->HasStatsEnabled()) {
   1462     RuntimeStats* thread_stats = Thread::Current()->GetStats();
   1463     thread_stats->freed_objects += freed_objects;
   1464     thread_stats->freed_bytes += freed_bytes;
   1465     // TODO: Do this concurrently.
   1466     RuntimeStats* global_stats = Runtime::Current()->GetStats();
   1467     global_stats->freed_objects += freed_objects;
   1468     global_stats->freed_bytes += freed_bytes;
   1469   }
   1470 }
   1471 
   1472 void Heap::RecordFreeRevoke() {
   1473   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
   1474   // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
   1475   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
   1476   // all the way to zero exactly as the remainder will be subtracted at the next GC.
   1477   size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
   1478   CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1479            bytes_freed) << "num_bytes_freed_revoke_ underflow";
   1480   CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1481            bytes_freed) << "num_bytes_allocated_ underflow";
   1482   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
   1483 }
   1484 
   1485 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
   1486   for (const auto& space : continuous_spaces_) {
   1487     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
   1488       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
   1489         return space->AsContinuousSpace()->AsRosAllocSpace();
   1490       }
   1491     }
   1492   }
   1493   return nullptr;
   1494 }
   1495 
   1496 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
   1497                                              size_t alloc_size, size_t* bytes_allocated,
   1498                                              size_t* usable_size,
   1499                                              size_t* bytes_tl_bulk_allocated,
   1500                                              mirror::Class** klass) {
   1501   bool was_default_allocator = allocator == GetCurrentAllocator();
   1502   // Make sure there is no pending exception since we may need to throw an OOME.
   1503   self->AssertNoPendingException();
   1504   DCHECK(klass != nullptr);
   1505   StackHandleScope<1> hs(self);
   1506   HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
   1507   klass = nullptr;  // Invalidate for safety.
   1508   // The allocation failed. If the GC is running, block until it completes, and then retry the
   1509   // allocation.
   1510   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
   1511   if (last_gc != collector::kGcTypeNone) {
   1512     // If we were the default allocator but the allocator changed while we were suspended,
   1513     // abort the allocation.
   1514     if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1515       return nullptr;
   1516     }
   1517     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
   1518     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1519                                                      usable_size, bytes_tl_bulk_allocated);
   1520     if (ptr != nullptr) {
   1521       return ptr;
   1522     }
   1523   }
   1524 
   1525   collector::GcType tried_type = next_gc_type_;
   1526   const bool gc_ran =
   1527       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1528   if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1529     return nullptr;
   1530   }
   1531   if (gc_ran) {
   1532     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1533                                                      usable_size, bytes_tl_bulk_allocated);
   1534     if (ptr != nullptr) {
   1535       return ptr;
   1536     }
   1537   }
   1538 
   1539   // Loop through our different Gc types and try to Gc until we get enough free memory.
   1540   for (collector::GcType gc_type : gc_plan_) {
   1541     if (gc_type == tried_type) {
   1542       continue;
   1543     }
   1544     // Attempt to run the collector, if we succeed, re-try the allocation.
   1545     const bool plan_gc_ran =
   1546         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1547     if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1548       return nullptr;
   1549     }
   1550     if (plan_gc_ran) {
   1551       // Did we free sufficient memory for the allocation to succeed?
   1552       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1553                                                        usable_size, bytes_tl_bulk_allocated);
   1554       if (ptr != nullptr) {
   1555         return ptr;
   1556       }
   1557     }
   1558   }
   1559   // Allocations have failed after GCs;  this is an exceptional state.
   1560   // Try harder, growing the heap if necessary.
   1561   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1562                                                   usable_size, bytes_tl_bulk_allocated);
   1563   if (ptr != nullptr) {
   1564     return ptr;
   1565   }
   1566   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
   1567   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
   1568   // VM spec requires that all SoftReferences have been collected and cleared before throwing
   1569   // OOME.
   1570   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
   1571            << " allocation";
   1572   // TODO: Run finalization, but this may cause more allocations to occur.
   1573   // We don't need a WaitForGcToComplete here either.
   1574   DCHECK(!gc_plan_.empty());
   1575   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
   1576   if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1577     return nullptr;
   1578   }
   1579   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
   1580                                   bytes_tl_bulk_allocated);
   1581   if (ptr == nullptr) {
   1582     const uint64_t current_time = NanoTime();
   1583     switch (allocator) {
   1584       case kAllocatorTypeRosAlloc:
   1585         // Fall-through.
   1586       case kAllocatorTypeDlMalloc: {
   1587         if (use_homogeneous_space_compaction_for_oom_ &&
   1588             current_time - last_time_homogeneous_space_compaction_by_oom_ >
   1589             min_interval_homogeneous_space_compaction_by_oom_) {
   1590           last_time_homogeneous_space_compaction_by_oom_ = current_time;
   1591           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
   1592           switch (result) {
   1593             case HomogeneousSpaceCompactResult::kSuccess:
   1594               // If the allocation succeeded, we delayed an oom.
   1595               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1596                                               usable_size, bytes_tl_bulk_allocated);
   1597               if (ptr != nullptr) {
   1598                 count_delayed_oom_++;
   1599               }
   1600               break;
   1601             case HomogeneousSpaceCompactResult::kErrorReject:
   1602               // Reject due to disabled moving GC.
   1603               break;
   1604             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
   1605               // Throw OOM by default.
   1606               break;
   1607             default: {
   1608               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
   1609                   << static_cast<size_t>(result);
   1610               UNREACHABLE();
   1611             }
   1612           }
   1613           // Always print that we ran homogeneous space compation since this can cause jank.
   1614           VLOG(heap) << "Ran heap homogeneous space compaction, "
   1615                     << " requested defragmentation "
   1616                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1617                     << " performed defragmentation "
   1618                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1619                     << " ignored homogeneous space compaction "
   1620                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1621                     << " delayed count = "
   1622                     << count_delayed_oom_.LoadSequentiallyConsistent();
   1623         }
   1624         break;
   1625       }
   1626       case kAllocatorTypeNonMoving: {
   1627         // Try to transition the heap if the allocation failure was due to the space being full.
   1628         if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
   1629           // If we aren't out of memory then the OOM was probably from the non moving space being
   1630           // full. Attempt to disable compaction and turn the main space into a non moving space.
   1631           DisableMovingGc();
   1632           // If we are still a moving GC then something must have caused the transition to fail.
   1633           if (IsMovingGc(collector_type_)) {
   1634             MutexLock mu(self, *gc_complete_lock_);
   1635             // If we couldn't disable moving GC, just throw OOME and return null.
   1636             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
   1637                          << disable_moving_gc_count_;
   1638           } else {
   1639             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
   1640             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1641                                             usable_size, bytes_tl_bulk_allocated);
   1642           }
   1643         }
   1644         break;
   1645       }
   1646       default: {
   1647         // Do nothing for others allocators.
   1648       }
   1649     }
   1650   }
   1651   // If the allocation hasn't succeeded by this point, throw an OOM error.
   1652   if (ptr == nullptr) {
   1653     ThrowOutOfMemoryError(self, alloc_size, allocator);
   1654   }
   1655   return ptr;
   1656 }
   1657 
   1658 void Heap::SetTargetHeapUtilization(float target) {
   1659   DCHECK_GT(target, 0.0f);  // asserted in Java code
   1660   DCHECK_LT(target, 1.0f);
   1661   target_utilization_ = target;
   1662 }
   1663 
   1664 size_t Heap::GetObjectsAllocated() const {
   1665   Thread* self = Thread::Current();
   1666   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
   1667   auto* tl = Runtime::Current()->GetThreadList();
   1668   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
   1669   tl->SuspendAll(__FUNCTION__);
   1670   size_t total = 0;
   1671   {
   1672     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1673     for (space::AllocSpace* space : alloc_spaces_) {
   1674       total += space->GetObjectsAllocated();
   1675     }
   1676   }
   1677   tl->ResumeAll();
   1678   return total;
   1679 }
   1680 
   1681 uint64_t Heap::GetObjectsAllocatedEver() const {
   1682   uint64_t total = GetObjectsFreedEver();
   1683   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
   1684   if (Thread::Current() != nullptr) {
   1685     total += GetObjectsAllocated();
   1686   }
   1687   return total;
   1688 }
   1689 
   1690 uint64_t Heap::GetBytesAllocatedEver() const {
   1691   return GetBytesFreedEver() + GetBytesAllocated();
   1692 }
   1693 
   1694 class InstanceCounter {
   1695  public:
   1696   InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
   1697       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1698       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
   1699   }
   1700   static void Callback(mirror::Object* obj, void* arg)
   1701       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1702     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
   1703     mirror::Class* instance_class = obj->GetClass();
   1704     CHECK(instance_class != nullptr);
   1705     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
   1706       if (instance_counter->use_is_assignable_from_) {
   1707         if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
   1708           ++instance_counter->counts_[i];
   1709         }
   1710       } else if (instance_class == instance_counter->classes_[i]) {
   1711         ++instance_counter->counts_[i];
   1712       }
   1713     }
   1714   }
   1715 
   1716  private:
   1717   const std::vector<mirror::Class*>& classes_;
   1718   bool use_is_assignable_from_;
   1719   uint64_t* const counts_;
   1720   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
   1721 };
   1722 
   1723 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
   1724                           uint64_t* counts) {
   1725   InstanceCounter counter(classes, use_is_assignable_from, counts);
   1726   VisitObjects(InstanceCounter::Callback, &counter);
   1727 }
   1728 
   1729 class InstanceCollector {
   1730  public:
   1731   InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
   1732       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1733       : class_(c), max_count_(max_count), instances_(instances) {
   1734   }
   1735   static void Callback(mirror::Object* obj, void* arg)
   1736       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1737     DCHECK(arg != nullptr);
   1738     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
   1739     if (obj->GetClass() == instance_collector->class_) {
   1740       if (instance_collector->max_count_ == 0 ||
   1741           instance_collector->instances_.size() < instance_collector->max_count_) {
   1742         instance_collector->instances_.push_back(obj);
   1743       }
   1744     }
   1745   }
   1746 
   1747  private:
   1748   const mirror::Class* const class_;
   1749   const uint32_t max_count_;
   1750   std::vector<mirror::Object*>& instances_;
   1751   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
   1752 };
   1753 
   1754 void Heap::GetInstances(mirror::Class* c, int32_t max_count,
   1755                         std::vector<mirror::Object*>& instances) {
   1756   InstanceCollector collector(c, max_count, instances);
   1757   VisitObjects(&InstanceCollector::Callback, &collector);
   1758 }
   1759 
   1760 class ReferringObjectsFinder {
   1761  public:
   1762   ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
   1763                          std::vector<mirror::Object*>& referring_objects)
   1764       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1765       : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
   1766   }
   1767 
   1768   static void Callback(mirror::Object* obj, void* arg)
   1769       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1770     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
   1771   }
   1772 
   1773   // For bitmap Visit.
   1774   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   1775   // annotalysis on visitors.
   1776   void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
   1777     o->VisitReferences<true>(*this, VoidFunctor());
   1778   }
   1779 
   1780   // For Object::VisitReferences.
   1781   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
   1782       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1783     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   1784     if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
   1785       referring_objects_.push_back(obj);
   1786     }
   1787   }
   1788 
   1789  private:
   1790   const mirror::Object* const object_;
   1791   const uint32_t max_count_;
   1792   std::vector<mirror::Object*>& referring_objects_;
   1793   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
   1794 };
   1795 
   1796 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
   1797                                std::vector<mirror::Object*>& referring_objects) {
   1798   ReferringObjectsFinder finder(o, max_count, referring_objects);
   1799   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
   1800 }
   1801 
   1802 void Heap::CollectGarbage(bool clear_soft_references) {
   1803   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
   1804   // last GC will not have necessarily been cleared.
   1805   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
   1806 }
   1807 
   1808 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
   1809   Thread* self = Thread::Current();
   1810   // Inc requested homogeneous space compaction.
   1811   count_requested_homogeneous_space_compaction_++;
   1812   // Store performed homogeneous space compaction at a new request arrival.
   1813   ThreadList* tl = Runtime::Current()->GetThreadList();
   1814   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   1815   Locks::mutator_lock_->AssertNotHeld(self);
   1816   {
   1817     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   1818     MutexLock mu(self, *gc_complete_lock_);
   1819     // Ensure there is only one GC at a time.
   1820     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
   1821     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
   1822     // is non zero.
   1823     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
   1824     // exit.
   1825     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
   1826         !main_space_->CanMoveObjects()) {
   1827       return HomogeneousSpaceCompactResult::kErrorReject;
   1828     }
   1829     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
   1830   }
   1831   if (Runtime::Current()->IsShuttingDown(self)) {
   1832     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   1833     // cause objects to get finalized.
   1834     FinishGC(self, collector::kGcTypeNone);
   1835     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
   1836   }
   1837   // Suspend all threads.
   1838   tl->SuspendAll(__FUNCTION__);
   1839   uint64_t start_time = NanoTime();
   1840   // Launch compaction.
   1841   space::MallocSpace* to_space = main_space_backup_.release();
   1842   space::MallocSpace* from_space = main_space_;
   1843   to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   1844   const uint64_t space_size_before_compaction = from_space->Size();
   1845   AddSpace(to_space);
   1846   // Make sure that we will have enough room to copy.
   1847   CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
   1848   collector::GarbageCollector* collector = Compact(to_space, from_space,
   1849                                                    kGcCauseHomogeneousSpaceCompact);
   1850   const uint64_t space_size_after_compaction = to_space->Size();
   1851   main_space_ = to_space;
   1852   main_space_backup_.reset(from_space);
   1853   RemoveSpace(from_space);
   1854   SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
   1855   // Update performed homogeneous space compaction count.
   1856   count_performed_homogeneous_space_compaction_++;
   1857   // Print statics log and resume all threads.
   1858   uint64_t duration = NanoTime() - start_time;
   1859   VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
   1860              << PrettySize(space_size_before_compaction) << " -> "
   1861              << PrettySize(space_size_after_compaction) << " compact-ratio: "
   1862              << std::fixed << static_cast<double>(space_size_after_compaction) /
   1863              static_cast<double>(space_size_before_compaction);
   1864   tl->ResumeAll();
   1865   // Finish GC.
   1866   reference_processor_.EnqueueClearedReferences(self);
   1867   GrowForUtilization(semi_space_collector_);
   1868   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
   1869   FinishGC(self, collector::kGcTypeFull);
   1870   return HomogeneousSpaceCompactResult::kSuccess;
   1871 }
   1872 
   1873 void Heap::TransitionCollector(CollectorType collector_type) {
   1874   if (collector_type == collector_type_) {
   1875     return;
   1876   }
   1877   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
   1878              << " -> " << static_cast<int>(collector_type);
   1879   uint64_t start_time = NanoTime();
   1880   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   1881   Runtime* const runtime = Runtime::Current();
   1882   ThreadList* const tl = runtime->GetThreadList();
   1883   Thread* const self = Thread::Current();
   1884   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   1885   Locks::mutator_lock_->AssertNotHeld(self);
   1886   // Busy wait until we can GC (StartGC can fail if we have a non-zero
   1887   // compacting_gc_disable_count_, this should rarely occurs).
   1888   for (;;) {
   1889     {
   1890       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   1891       MutexLock mu(self, *gc_complete_lock_);
   1892       // Ensure there is only one GC at a time.
   1893       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
   1894       // Currently we only need a heap transition if we switch from a moving collector to a
   1895       // non-moving one, or visa versa.
   1896       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
   1897       // If someone else beat us to it and changed the collector before we could, exit.
   1898       // This is safe to do before the suspend all since we set the collector_type_running_ before
   1899       // we exit the loop. If another thread attempts to do the heap transition before we exit,
   1900       // then it would get blocked on WaitForGcToCompleteLocked.
   1901       if (collector_type == collector_type_) {
   1902         return;
   1903       }
   1904       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
   1905       if (!copying_transition || disable_moving_gc_count_ == 0) {
   1906         // TODO: Not hard code in semi-space collector?
   1907         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
   1908         break;
   1909       }
   1910     }
   1911     usleep(1000);
   1912   }
   1913   if (runtime->IsShuttingDown(self)) {
   1914     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   1915     // cause objects to get finalized.
   1916     FinishGC(self, collector::kGcTypeNone);
   1917     return;
   1918   }
   1919   collector::GarbageCollector* collector = nullptr;
   1920   tl->SuspendAll(__FUNCTION__);
   1921   switch (collector_type) {
   1922     case kCollectorTypeSS: {
   1923       if (!IsMovingGc(collector_type_)) {
   1924         // Create the bump pointer space from the backup space.
   1925         CHECK(main_space_backup_ != nullptr);
   1926         std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
   1927         // We are transitioning from non moving GC -> moving GC, since we copied from the bump
   1928         // pointer space last transition it will be protected.
   1929         CHECK(mem_map != nullptr);
   1930         mem_map->Protect(PROT_READ | PROT_WRITE);
   1931         bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
   1932                                                                         mem_map.release());
   1933         AddSpace(bump_pointer_space_);
   1934         collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
   1935         // Use the now empty main space mem map for the bump pointer temp space.
   1936         mem_map.reset(main_space_->ReleaseMemMap());
   1937         // Unset the pointers just in case.
   1938         if (dlmalloc_space_ == main_space_) {
   1939           dlmalloc_space_ = nullptr;
   1940         } else if (rosalloc_space_ == main_space_) {
   1941           rosalloc_space_ = nullptr;
   1942         }
   1943         // Remove the main space so that we don't try to trim it, this doens't work for debug
   1944         // builds since RosAlloc attempts to read the magic number from a protected page.
   1945         RemoveSpace(main_space_);
   1946         RemoveRememberedSet(main_space_);
   1947         delete main_space_;  // Delete the space since it has been removed.
   1948         main_space_ = nullptr;
   1949         RemoveRememberedSet(main_space_backup_.get());
   1950         main_space_backup_.reset(nullptr);  // Deletes the space.
   1951         temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
   1952                                                                 mem_map.release());
   1953         AddSpace(temp_space_);
   1954       }
   1955       break;
   1956     }
   1957     case kCollectorTypeMS:
   1958       // Fall through.
   1959     case kCollectorTypeCMS: {
   1960       if (IsMovingGc(collector_type_)) {
   1961         CHECK(temp_space_ != nullptr);
   1962         std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
   1963         RemoveSpace(temp_space_);
   1964         temp_space_ = nullptr;
   1965         mem_map->Protect(PROT_READ | PROT_WRITE);
   1966         CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
   1967                               std::min(mem_map->Size(), growth_limit_), mem_map->Size());
   1968         mem_map.release();
   1969         // Compact to the main space from the bump pointer space, don't need to swap semispaces.
   1970         AddSpace(main_space_);
   1971         collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
   1972         mem_map.reset(bump_pointer_space_->ReleaseMemMap());
   1973         RemoveSpace(bump_pointer_space_);
   1974         bump_pointer_space_ = nullptr;
   1975         const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
   1976         // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
   1977         if (kIsDebugBuild && kUseRosAlloc) {
   1978           mem_map->Protect(PROT_READ | PROT_WRITE);
   1979         }
   1980         main_space_backup_.reset(CreateMallocSpaceFromMemMap(
   1981             mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
   1982             mem_map->Size(), name, true));
   1983         if (kIsDebugBuild && kUseRosAlloc) {
   1984           mem_map->Protect(PROT_NONE);
   1985         }
   1986         mem_map.release();
   1987       }
   1988       break;
   1989     }
   1990     default: {
   1991       LOG(FATAL) << "Attempted to transition to invalid collector type "
   1992                  << static_cast<size_t>(collector_type);
   1993       break;
   1994     }
   1995   }
   1996   ChangeCollector(collector_type);
   1997   tl->ResumeAll();
   1998   // Can't call into java code with all threads suspended.
   1999   reference_processor_.EnqueueClearedReferences(self);
   2000   uint64_t duration = NanoTime() - start_time;
   2001   GrowForUtilization(semi_space_collector_);
   2002   DCHECK(collector != nullptr);
   2003   LogGC(kGcCauseCollectorTransition, collector);
   2004   FinishGC(self, collector::kGcTypeFull);
   2005   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   2006   int32_t delta_allocated = before_allocated - after_allocated;
   2007   std::string saved_str;
   2008   if (delta_allocated >= 0) {
   2009     saved_str = " saved at least " + PrettySize(delta_allocated);
   2010   } else {
   2011     saved_str = " expanded " + PrettySize(-delta_allocated);
   2012   }
   2013   VLOG(heap) << "Heap transition to " << process_state_ << " took "
   2014       << PrettyDuration(duration) << saved_str;
   2015 }
   2016 
   2017 void Heap::ChangeCollector(CollectorType collector_type) {
   2018   // TODO: Only do this with all mutators suspended to avoid races.
   2019   if (collector_type != collector_type_) {
   2020     if (collector_type == kCollectorTypeMC) {
   2021       // Don't allow mark compact unless support is compiled in.
   2022       CHECK(kMarkCompactSupport);
   2023     }
   2024     collector_type_ = collector_type;
   2025     gc_plan_.clear();
   2026     switch (collector_type_) {
   2027       case kCollectorTypeCC: {
   2028         gc_plan_.push_back(collector::kGcTypeFull);
   2029         if (use_tlab_) {
   2030           ChangeAllocator(kAllocatorTypeRegionTLAB);
   2031         } else {
   2032           ChangeAllocator(kAllocatorTypeRegion);
   2033         }
   2034         break;
   2035       }
   2036       case kCollectorTypeMC:  // Fall-through.
   2037       case kCollectorTypeSS:  // Fall-through.
   2038       case kCollectorTypeGSS: {
   2039         gc_plan_.push_back(collector::kGcTypeFull);
   2040         if (use_tlab_) {
   2041           ChangeAllocator(kAllocatorTypeTLAB);
   2042         } else {
   2043           ChangeAllocator(kAllocatorTypeBumpPointer);
   2044         }
   2045         break;
   2046       }
   2047       case kCollectorTypeMS: {
   2048         gc_plan_.push_back(collector::kGcTypeSticky);
   2049         gc_plan_.push_back(collector::kGcTypePartial);
   2050         gc_plan_.push_back(collector::kGcTypeFull);
   2051         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2052         break;
   2053       }
   2054       case kCollectorTypeCMS: {
   2055         gc_plan_.push_back(collector::kGcTypeSticky);
   2056         gc_plan_.push_back(collector::kGcTypePartial);
   2057         gc_plan_.push_back(collector::kGcTypeFull);
   2058         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2059         break;
   2060       }
   2061       default: {
   2062         UNIMPLEMENTED(FATAL);
   2063         UNREACHABLE();
   2064       }
   2065     }
   2066     if (IsGcConcurrent()) {
   2067       concurrent_start_bytes_ =
   2068           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
   2069     } else {
   2070       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2071     }
   2072   }
   2073 }
   2074 
   2075 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
   2076 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
   2077  public:
   2078   explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
   2079       bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
   2080   }
   2081 
   2082   void BuildBins(space::ContinuousSpace* space) {
   2083     bin_live_bitmap_ = space->GetLiveBitmap();
   2084     bin_mark_bitmap_ = space->GetMarkBitmap();
   2085     BinContext context;
   2086     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
   2087     context.collector_ = this;
   2088     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2089     // Note: This requires traversing the space in increasing order of object addresses.
   2090     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
   2091     // Add the last bin which spans after the last object to the end of the space.
   2092     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
   2093   }
   2094 
   2095  private:
   2096   struct BinContext {
   2097     uintptr_t prev_;  // The end of the previous object.
   2098     ZygoteCompactingCollector* collector_;
   2099   };
   2100   // Maps from bin sizes to locations.
   2101   std::multimap<size_t, uintptr_t> bins_;
   2102   // Live bitmap of the space which contains the bins.
   2103   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
   2104   // Mark bitmap of the space which contains the bins.
   2105   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
   2106 
   2107   static void Callback(mirror::Object* obj, void* arg)
   2108       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2109     DCHECK(arg != nullptr);
   2110     BinContext* context = reinterpret_cast<BinContext*>(arg);
   2111     ZygoteCompactingCollector* collector = context->collector_;
   2112     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
   2113     size_t bin_size = object_addr - context->prev_;
   2114     // Add the bin consisting of the end of the previous object to the start of the current object.
   2115     collector->AddBin(bin_size, context->prev_);
   2116     context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
   2117   }
   2118 
   2119   void AddBin(size_t size, uintptr_t position) {
   2120     if (size != 0) {
   2121       bins_.insert(std::make_pair(size, position));
   2122     }
   2123   }
   2124 
   2125   virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
   2126     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
   2127     // allocator.
   2128     UNUSED(space);
   2129     return false;
   2130   }
   2131 
   2132   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
   2133       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
   2134     size_t obj_size = obj->SizeOf();
   2135     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
   2136     mirror::Object* forward_address;
   2137     // Find the smallest bin which we can move obj in.
   2138     auto it = bins_.lower_bound(alloc_size);
   2139     if (it == bins_.end()) {
   2140       // No available space in the bins, place it in the target space instead (grows the zygote
   2141       // space).
   2142       size_t bytes_allocated, dummy;
   2143       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
   2144       if (to_space_live_bitmap_ != nullptr) {
   2145         to_space_live_bitmap_->Set(forward_address);
   2146       } else {
   2147         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
   2148         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
   2149       }
   2150     } else {
   2151       size_t size = it->first;
   2152       uintptr_t pos = it->second;
   2153       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
   2154       forward_address = reinterpret_cast<mirror::Object*>(pos);
   2155       // Set the live and mark bits so that sweeping system weaks works properly.
   2156       bin_live_bitmap_->Set(forward_address);
   2157       bin_mark_bitmap_->Set(forward_address);
   2158       DCHECK_GE(size, alloc_size);
   2159       // Add a new bin with the remaining space.
   2160       AddBin(size - alloc_size, pos + alloc_size);
   2161     }
   2162     // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
   2163     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
   2164     if (kUseBakerOrBrooksReadBarrier) {
   2165       obj->AssertReadBarrierPointer();
   2166       if (kUseBrooksReadBarrier) {
   2167         DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
   2168         forward_address->SetReadBarrierPointer(forward_address);
   2169       }
   2170       forward_address->AssertReadBarrierPointer();
   2171     }
   2172     return forward_address;
   2173   }
   2174 };
   2175 
   2176 void Heap::UnBindBitmaps() {
   2177   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
   2178   for (const auto& space : GetContinuousSpaces()) {
   2179     if (space->IsContinuousMemMapAllocSpace()) {
   2180       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   2181       if (alloc_space->HasBoundBitmaps()) {
   2182         alloc_space->UnBindBitmaps();
   2183       }
   2184     }
   2185   }
   2186 }
   2187 
   2188 void Heap::PreZygoteFork() {
   2189   if (!HasZygoteSpace()) {
   2190     // We still want to GC in case there is some unreachable non moving objects that could cause a
   2191     // suboptimal bin packing when we compact the zygote space.
   2192     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
   2193   }
   2194   Thread* self = Thread::Current();
   2195   MutexLock mu(self, zygote_creation_lock_);
   2196   // Try to see if we have any Zygote spaces.
   2197   if (HasZygoteSpace()) {
   2198     return;
   2199   }
   2200   Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
   2201   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
   2202   VLOG(heap) << "Starting PreZygoteFork";
   2203   // Trim the pages at the end of the non moving space.
   2204   non_moving_space_->Trim();
   2205   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
   2206   // there.
   2207   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2208   const bool same_space = non_moving_space_ == main_space_;
   2209   if (kCompactZygote) {
   2210     // Temporarily disable rosalloc verification because the zygote
   2211     // compaction will mess up the rosalloc internal metadata.
   2212     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
   2213     ZygoteCompactingCollector zygote_collector(this);
   2214     zygote_collector.BuildBins(non_moving_space_);
   2215     // Create a new bump pointer space which we will compact into.
   2216     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
   2217                                          non_moving_space_->Limit());
   2218     // Compact the bump pointer space to a new zygote bump pointer space.
   2219     bool reset_main_space = false;
   2220     if (IsMovingGc(collector_type_)) {
   2221       if (collector_type_ == kCollectorTypeCC) {
   2222         zygote_collector.SetFromSpace(region_space_);
   2223       } else {
   2224         zygote_collector.SetFromSpace(bump_pointer_space_);
   2225       }
   2226     } else {
   2227       CHECK(main_space_ != nullptr);
   2228       CHECK_NE(main_space_, non_moving_space_)
   2229           << "Does not make sense to compact within the same space";
   2230       // Copy from the main space.
   2231       zygote_collector.SetFromSpace(main_space_);
   2232       reset_main_space = true;
   2233     }
   2234     zygote_collector.SetToSpace(&target_space);
   2235     zygote_collector.SetSwapSemiSpaces(false);
   2236     zygote_collector.Run(kGcCauseCollectorTransition, false);
   2237     if (reset_main_space) {
   2238       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2239       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
   2240       MemMap* mem_map = main_space_->ReleaseMemMap();
   2241       RemoveSpace(main_space_);
   2242       space::Space* old_main_space = main_space_;
   2243       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
   2244                             mem_map->Size());
   2245       delete old_main_space;
   2246       AddSpace(main_space_);
   2247     } else {
   2248       if (collector_type_ == kCollectorTypeCC) {
   2249         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2250       } else {
   2251         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2252       }
   2253     }
   2254     if (temp_space_ != nullptr) {
   2255       CHECK(temp_space_->IsEmpty());
   2256     }
   2257     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2258     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2259     // Update the end and write out image.
   2260     non_moving_space_->SetEnd(target_space.End());
   2261     non_moving_space_->SetLimit(target_space.Limit());
   2262     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
   2263   }
   2264   // Change the collector to the post zygote one.
   2265   ChangeCollector(foreground_collector_type_);
   2266   // Save the old space so that we can remove it after we complete creating the zygote space.
   2267   space::MallocSpace* old_alloc_space = non_moving_space_;
   2268   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
   2269   // the remaining available space.
   2270   // Remove the old space before creating the zygote space since creating the zygote space sets
   2271   // the old alloc space's bitmaps to null.
   2272   RemoveSpace(old_alloc_space);
   2273   if (collector::SemiSpace::kUseRememberedSet) {
   2274     // Sanity bound check.
   2275     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
   2276     // Remove the remembered set for the now zygote space (the old
   2277     // non-moving space). Note now that we have compacted objects into
   2278     // the zygote space, the data in the remembered set is no longer
   2279     // needed. The zygote space will instead have a mod-union table
   2280     // from this point on.
   2281     RemoveRememberedSet(old_alloc_space);
   2282   }
   2283   // Remaining space becomes the new non moving space.
   2284   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
   2285                                                      &non_moving_space_);
   2286   CHECK(!non_moving_space_->CanMoveObjects());
   2287   if (same_space) {
   2288     main_space_ = non_moving_space_;
   2289     SetSpaceAsDefault(main_space_);
   2290   }
   2291   delete old_alloc_space;
   2292   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
   2293   AddSpace(zygote_space_);
   2294   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
   2295   AddSpace(non_moving_space_);
   2296   // Create the zygote space mod union table.
   2297   accounting::ModUnionTable* mod_union_table =
   2298       new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
   2299                                              zygote_space_);
   2300   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
   2301   // Set all the cards in the mod-union table since we don't know which objects contain references
   2302   // to large objects.
   2303   mod_union_table->SetCards();
   2304   AddModUnionTable(mod_union_table);
   2305   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
   2306   if (collector::SemiSpace::kUseRememberedSet) {
   2307     // Add a new remembered set for the post-zygote non-moving space.
   2308     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
   2309         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
   2310                                       non_moving_space_);
   2311     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
   2312         << "Failed to create post-zygote non-moving space remembered set";
   2313     AddRememberedSet(post_zygote_non_moving_space_rem_set);
   2314   }
   2315 }
   2316 
   2317 void Heap::FlushAllocStack() {
   2318   MarkAllocStackAsLive(allocation_stack_.get());
   2319   allocation_stack_->Reset();
   2320 }
   2321 
   2322 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
   2323                           accounting::ContinuousSpaceBitmap* bitmap2,
   2324                           accounting::LargeObjectBitmap* large_objects,
   2325                           accounting::ObjectStack* stack) {
   2326   DCHECK(bitmap1 != nullptr);
   2327   DCHECK(bitmap2 != nullptr);
   2328   const auto* limit = stack->End();
   2329   for (auto* it = stack->Begin(); it != limit; ++it) {
   2330     const mirror::Object* obj = it->AsMirrorPtr();
   2331     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
   2332       if (bitmap1->HasAddress(obj)) {
   2333         bitmap1->Set(obj);
   2334       } else if (bitmap2->HasAddress(obj)) {
   2335         bitmap2->Set(obj);
   2336       } else {
   2337         DCHECK(large_objects != nullptr);
   2338         large_objects->Set(obj);
   2339       }
   2340     }
   2341   }
   2342 }
   2343 
   2344 void Heap::SwapSemiSpaces() {
   2345   CHECK(bump_pointer_space_ != nullptr);
   2346   CHECK(temp_space_ != nullptr);
   2347   std::swap(bump_pointer_space_, temp_space_);
   2348 }
   2349 
   2350 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
   2351                                            space::ContinuousMemMapAllocSpace* source_space,
   2352                                            GcCause gc_cause) {
   2353   CHECK(kMovingCollector);
   2354   if (target_space != source_space) {
   2355     // Don't swap spaces since this isn't a typical semi space collection.
   2356     semi_space_collector_->SetSwapSemiSpaces(false);
   2357     semi_space_collector_->SetFromSpace(source_space);
   2358     semi_space_collector_->SetToSpace(target_space);
   2359     semi_space_collector_->Run(gc_cause, false);
   2360     return semi_space_collector_;
   2361   } else {
   2362     CHECK(target_space->IsBumpPointerSpace())
   2363         << "In-place compaction is only supported for bump pointer spaces";
   2364     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
   2365     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
   2366     return mark_compact_collector_;
   2367   }
   2368 }
   2369 
   2370 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
   2371                                                bool clear_soft_references) {
   2372   Thread* self = Thread::Current();
   2373   Runtime* runtime = Runtime::Current();
   2374   // If the heap can't run the GC, silently fail and return that no GC was run.
   2375   switch (gc_type) {
   2376     case collector::kGcTypePartial: {
   2377       if (!HasZygoteSpace()) {
   2378         return collector::kGcTypeNone;
   2379       }
   2380       break;
   2381     }
   2382     default: {
   2383       // Other GC types don't have any special cases which makes them not runnable. The main case
   2384       // here is full GC.
   2385     }
   2386   }
   2387   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2388   Locks::mutator_lock_->AssertNotHeld(self);
   2389   if (self->IsHandlingStackOverflow()) {
   2390     // If we are throwing a stack overflow error we probably don't have enough remaining stack
   2391     // space to run the GC.
   2392     return collector::kGcTypeNone;
   2393   }
   2394   bool compacting_gc;
   2395   {
   2396     gc_complete_lock_->AssertNotHeld(self);
   2397     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2398     MutexLock mu(self, *gc_complete_lock_);
   2399     // Ensure there is only one GC at a time.
   2400     WaitForGcToCompleteLocked(gc_cause, self);
   2401     compacting_gc = IsMovingGc(collector_type_);
   2402     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
   2403     if (compacting_gc && disable_moving_gc_count_ != 0) {
   2404       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
   2405       return collector::kGcTypeNone;
   2406     }
   2407     collector_type_running_ = collector_type_;
   2408   }
   2409   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
   2410     ++runtime->GetStats()->gc_for_alloc_count;
   2411     ++self->GetStats()->gc_for_alloc_count;
   2412   }
   2413   const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
   2414   // Approximate heap size.
   2415   ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
   2416 
   2417   DCHECK_LT(gc_type, collector::kGcTypeMax);
   2418   DCHECK_NE(gc_type, collector::kGcTypeNone);
   2419 
   2420   collector::GarbageCollector* collector = nullptr;
   2421   // TODO: Clean this up.
   2422   if (compacting_gc) {
   2423     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
   2424            current_allocator_ == kAllocatorTypeTLAB ||
   2425            current_allocator_ == kAllocatorTypeRegion ||
   2426            current_allocator_ == kAllocatorTypeRegionTLAB);
   2427     switch (collector_type_) {
   2428       case kCollectorTypeSS:
   2429         // Fall-through.
   2430       case kCollectorTypeGSS:
   2431         semi_space_collector_->SetFromSpace(bump_pointer_space_);
   2432         semi_space_collector_->SetToSpace(temp_space_);
   2433         semi_space_collector_->SetSwapSemiSpaces(true);
   2434         collector = semi_space_collector_;
   2435         break;
   2436       case kCollectorTypeCC:
   2437         concurrent_copying_collector_->SetRegionSpace(region_space_);
   2438         collector = concurrent_copying_collector_;
   2439         break;
   2440       case kCollectorTypeMC:
   2441         mark_compact_collector_->SetSpace(bump_pointer_space_);
   2442         collector = mark_compact_collector_;
   2443         break;
   2444       default:
   2445         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
   2446     }
   2447     if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
   2448       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2449       CHECK(temp_space_->IsEmpty());
   2450     }
   2451     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
   2452   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
   2453       current_allocator_ == kAllocatorTypeDlMalloc) {
   2454     collector = FindCollectorByGcType(gc_type);
   2455   } else {
   2456     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
   2457   }
   2458   if (IsGcConcurrent()) {
   2459     // Disable concurrent GC check so that we don't have spammy JNI requests.
   2460     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
   2461     // calculated in the same thread so that there aren't any races that can cause it to become
   2462     // permanantly disabled. b/17942071
   2463     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2464   }
   2465   CHECK(collector != nullptr)
   2466       << "Could not find garbage collector with collector_type="
   2467       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
   2468   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
   2469   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2470   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2471   RequestTrim(self);
   2472   // Enqueue cleared references.
   2473   reference_processor_.EnqueueClearedReferences(self);
   2474   // Grow the heap so that we know when to perform the next GC.
   2475   GrowForUtilization(collector, bytes_allocated_before_gc);
   2476   LogGC(gc_cause, collector);
   2477   FinishGC(self, gc_type);
   2478   // Inform DDMS that a GC completed.
   2479   Dbg::GcDidFinish();
   2480   return gc_type;
   2481 }
   2482 
   2483 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
   2484   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
   2485   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
   2486   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
   2487   // (mutator time blocked >= long_pause_log_threshold_).
   2488   bool log_gc = gc_cause == kGcCauseExplicit;
   2489   if (!log_gc && CareAboutPauseTimes()) {
   2490     // GC for alloc pauses the allocating thread, so consider it as a pause.
   2491     log_gc = duration > long_gc_log_threshold_ ||
   2492         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
   2493     for (uint64_t pause : pause_times) {
   2494       log_gc = log_gc || pause >= long_pause_log_threshold_;
   2495     }
   2496   }
   2497   if (log_gc) {
   2498     const size_t percent_free = GetPercentFree();
   2499     const size_t current_heap_size = GetBytesAllocated();
   2500     const size_t total_memory = GetTotalMemory();
   2501     std::ostringstream pause_string;
   2502     for (size_t i = 0; i < pause_times.size(); ++i) {
   2503       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
   2504                    << ((i != pause_times.size() - 1) ? "," : "");
   2505     }
   2506     LOG(INFO) << gc_cause << " " << collector->GetName()
   2507               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
   2508               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
   2509               << current_gc_iteration_.GetFreedLargeObjects() << "("
   2510               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
   2511               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
   2512               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
   2513               << " total " << PrettyDuration((duration / 1000) * 1000);
   2514     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
   2515   }
   2516 }
   2517 
   2518 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
   2519   MutexLock mu(self, *gc_complete_lock_);
   2520   collector_type_running_ = kCollectorTypeNone;
   2521   if (gc_type != collector::kGcTypeNone) {
   2522     last_gc_type_ = gc_type;
   2523 
   2524     // Update stats.
   2525     ++gc_count_last_window_;
   2526     if (running_collection_is_blocking_) {
   2527       // If the currently running collection was a blocking one,
   2528       // increment the counters and reset the flag.
   2529       ++blocking_gc_count_;
   2530       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
   2531       ++blocking_gc_count_last_window_;
   2532     }
   2533     // Update the gc count rate histograms if due.
   2534     UpdateGcCountRateHistograms();
   2535   }
   2536   // Reset.
   2537   running_collection_is_blocking_ = false;
   2538   // Wake anyone who may have been waiting for the GC to complete.
   2539   gc_complete_cond_->Broadcast(self);
   2540 }
   2541 
   2542 void Heap::UpdateGcCountRateHistograms() {
   2543   // Invariant: if the time since the last update includes more than
   2544   // one windows, all the GC runs (if > 0) must have happened in first
   2545   // window because otherwise the update must have already taken place
   2546   // at an earlier GC run. So, we report the non-first windows with
   2547   // zero counts to the histograms.
   2548   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2549   uint64_t now = NanoTime();
   2550   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
   2551   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
   2552   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
   2553   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
   2554     // Record the first window.
   2555     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
   2556     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
   2557         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
   2558     // Record the other windows (with zero counts).
   2559     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
   2560       gc_count_rate_histogram_.AddValue(0);
   2561       blocking_gc_count_rate_histogram_.AddValue(0);
   2562     }
   2563     // Update the last update time and reset the counters.
   2564     last_update_time_gc_count_rate_histograms_ =
   2565         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   2566     gc_count_last_window_ = 1;  // Include the current run.
   2567     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
   2568   }
   2569   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2570 }
   2571 
   2572 class RootMatchesObjectVisitor : public SingleRootVisitor {
   2573  public:
   2574   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
   2575 
   2576   void VisitRoot(mirror::Object* root, const RootInfo& info)
   2577       OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2578     if (root == obj_) {
   2579       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
   2580     }
   2581   }
   2582 
   2583  private:
   2584   const mirror::Object* const obj_;
   2585 };
   2586 
   2587 
   2588 class ScanVisitor {
   2589  public:
   2590   void operator()(const mirror::Object* obj) const {
   2591     LOG(ERROR) << "Would have rescanned object " << obj;
   2592   }
   2593 };
   2594 
   2595 // Verify a reference from an object.
   2596 class VerifyReferenceVisitor : public SingleRootVisitor {
   2597  public:
   2598   explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2599       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
   2600       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   2601 
   2602   size_t GetFailureCount() const {
   2603     return fail_count_->LoadSequentiallyConsistent();
   2604   }
   2605 
   2606   void operator()(mirror::Class* klass, mirror::Reference* ref) const
   2607       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2608     UNUSED(klass);
   2609     if (verify_referent_) {
   2610       VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
   2611     }
   2612   }
   2613 
   2614   void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
   2615       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2616     VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
   2617   }
   2618 
   2619   bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
   2620     return heap_->IsLiveObjectLocked(obj, true, false, true);
   2621   }
   2622 
   2623   void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
   2624       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2625     if (root == nullptr) {
   2626       LOG(ERROR) << "Root is null with info " << root_info.GetType();
   2627     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
   2628       LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
   2629           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
   2630     }
   2631   }
   2632 
   2633  private:
   2634   // TODO: Fix the no thread safety analysis.
   2635   // Returns false on failure.
   2636   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
   2637       NO_THREAD_SAFETY_ANALYSIS {
   2638     if (ref == nullptr || IsLive(ref)) {
   2639       // Verify that the reference is live.
   2640       return true;
   2641     }
   2642     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
   2643       // Print message on only on first failure to prevent spam.
   2644       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
   2645     }
   2646     if (obj != nullptr) {
   2647       // Only do this part for non roots.
   2648       accounting::CardTable* card_table = heap_->GetCardTable();
   2649       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
   2650       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2651       uint8_t* card_addr = card_table->CardFromAddr(obj);
   2652       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
   2653                  << offset << "\n card value = " << static_cast<int>(*card_addr);
   2654       if (heap_->IsValidObjectAddress(obj->GetClass())) {
   2655         LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
   2656       } else {
   2657         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
   2658       }
   2659 
   2660       // Attempt to find the class inside of the recently freed objects.
   2661       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
   2662       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
   2663         space::MallocSpace* space = ref_space->AsMallocSpace();
   2664         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
   2665         if (ref_class != nullptr) {
   2666           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
   2667                      << PrettyClass(ref_class);
   2668         } else {
   2669           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
   2670         }
   2671       }
   2672 
   2673       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
   2674           ref->GetClass()->IsClass()) {
   2675         LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
   2676       } else {
   2677         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
   2678                    << ") is not a valid heap address";
   2679       }
   2680 
   2681       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
   2682       void* cover_begin = card_table->AddrFromCard(card_addr);
   2683       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
   2684           accounting::CardTable::kCardSize);
   2685       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
   2686           << "-" << cover_end;
   2687       accounting::ContinuousSpaceBitmap* bitmap =
   2688           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
   2689 
   2690       if (bitmap == nullptr) {
   2691         LOG(ERROR) << "Object " << obj << " has no bitmap";
   2692         if (!VerifyClassClass(obj->GetClass())) {
   2693           LOG(ERROR) << "Object " << obj << " failed class verification!";
   2694         }
   2695       } else {
   2696         // Print out how the object is live.
   2697         if (bitmap->Test(obj)) {
   2698           LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2699         }
   2700         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2701           LOG(ERROR) << "Object " << obj << " found in allocation stack";
   2702         }
   2703         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2704           LOG(ERROR) << "Object " << obj << " found in live stack";
   2705         }
   2706         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2707           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
   2708         }
   2709         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2710           LOG(ERROR) << "Ref " << ref << " found in live stack";
   2711         }
   2712         // Attempt to see if the card table missed the reference.
   2713         ScanVisitor scan_visitor;
   2714         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
   2715         card_table->Scan<false>(bitmap, byte_cover_begin,
   2716                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
   2717       }
   2718 
   2719       // Search to see if any of the roots reference our object.
   2720       RootMatchesObjectVisitor visitor1(obj);
   2721       Runtime::Current()->VisitRoots(&visitor1);
   2722       // Search to see if any of the roots reference our reference.
   2723       RootMatchesObjectVisitor visitor2(ref);
   2724       Runtime::Current()->VisitRoots(&visitor2);
   2725     }
   2726     return false;
   2727   }
   2728 
   2729   Heap* const heap_;
   2730   Atomic<size_t>* const fail_count_;
   2731   const bool verify_referent_;
   2732 };
   2733 
   2734 // Verify all references within an object, for use with HeapBitmap::Visit.
   2735 class VerifyObjectVisitor {
   2736  public:
   2737   explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2738       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
   2739   }
   2740 
   2741   void operator()(mirror::Object* obj) const
   2742       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2743     // Note: we are verifying the references in obj but not obj itself, this is because obj must
   2744     // be live or else how did we find it in the live bitmap?
   2745     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   2746     // The class doesn't count as a reference but we should verify it anyways.
   2747     obj->VisitReferences<true>(visitor, visitor);
   2748   }
   2749 
   2750   static void VisitCallback(mirror::Object* obj, void* arg)
   2751       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2752     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
   2753     visitor->operator()(obj);
   2754   }
   2755 
   2756   void VerifyRoots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   2757       LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
   2758     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2759     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   2760     Runtime::Current()->VisitRoots(&visitor);
   2761   }
   2762 
   2763   size_t GetFailureCount() const {
   2764     return fail_count_->LoadSequentiallyConsistent();
   2765   }
   2766 
   2767  private:
   2768   Heap* const heap_;
   2769   Atomic<size_t>* const fail_count_;
   2770   const bool verify_referent_;
   2771 };
   2772 
   2773 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   2774   // Slow path, the allocation stack push back must have already failed.
   2775   DCHECK(!allocation_stack_->AtomicPushBack(*obj));
   2776   do {
   2777     // TODO: Add handle VerifyObject.
   2778     StackHandleScope<1> hs(self);
   2779     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   2780     // Push our object into the reserve region of the allocaiton stack. This is only required due
   2781     // to heap verification requiring that roots are live (either in the live bitmap or in the
   2782     // allocation stack).
   2783     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   2784     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   2785   } while (!allocation_stack_->AtomicPushBack(*obj));
   2786 }
   2787 
   2788 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   2789   // Slow path, the allocation stack push back must have already failed.
   2790   DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
   2791   StackReference<mirror::Object>* start_address;
   2792   StackReference<mirror::Object>* end_address;
   2793   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
   2794                                             &end_address)) {
   2795     // TODO: Add handle VerifyObject.
   2796     StackHandleScope<1> hs(self);
   2797     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   2798     // Push our object into the reserve region of the allocaiton stack. This is only required due
   2799     // to heap verification requiring that roots are live (either in the live bitmap or in the
   2800     // allocation stack).
   2801     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   2802     // Push into the reserve allocation stack.
   2803     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   2804   }
   2805   self->SetThreadLocalAllocationStack(start_address, end_address);
   2806   // Retry on the new thread-local allocation stack.
   2807   CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
   2808 }
   2809 
   2810 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
   2811 size_t Heap::VerifyHeapReferences(bool verify_referents) {
   2812   Thread* self = Thread::Current();
   2813   Locks::mutator_lock_->AssertExclusiveHeld(self);
   2814   // Lets sort our allocation stacks so that we can efficiently binary search them.
   2815   allocation_stack_->Sort();
   2816   live_stack_->Sort();
   2817   // Since we sorted the allocation stack content, need to revoke all
   2818   // thread-local allocation stacks.
   2819   RevokeAllThreadLocalAllocationStacks(self);
   2820   Atomic<size_t> fail_count_(0);
   2821   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
   2822   // Verify objects in the allocation stack since these will be objects which were:
   2823   // 1. Allocated prior to the GC (pre GC verification).
   2824   // 2. Allocated during the GC (pre sweep GC verification).
   2825   // We don't want to verify the objects in the live stack since they themselves may be
   2826   // pointing to dead objects if they are not reachable.
   2827   VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
   2828   // Verify the roots:
   2829   visitor.VerifyRoots();
   2830   if (visitor.GetFailureCount() > 0) {
   2831     // Dump mod-union tables.
   2832     for (const auto& table_pair : mod_union_tables_) {
   2833       accounting::ModUnionTable* mod_union_table = table_pair.second;
   2834       mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
   2835     }
   2836     // Dump remembered sets.
   2837     for (const auto& table_pair : remembered_sets_) {
   2838       accounting::RememberedSet* remembered_set = table_pair.second;
   2839       remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
   2840     }
   2841     DumpSpaces(LOG(ERROR));
   2842   }
   2843   return visitor.GetFailureCount();
   2844 }
   2845 
   2846 class VerifyReferenceCardVisitor {
   2847  public:
   2848   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
   2849       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
   2850                             Locks::heap_bitmap_lock_)
   2851       : heap_(heap), failed_(failed) {
   2852   }
   2853 
   2854   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   2855   // annotalysis on visitors.
   2856   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
   2857       NO_THREAD_SAFETY_ANALYSIS {
   2858     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   2859     // Filter out class references since changing an object's class does not mark the card as dirty.
   2860     // Also handles large objects, since the only reference they hold is a class reference.
   2861     if (ref != nullptr && !ref->IsClass()) {
   2862       accounting::CardTable* card_table = heap_->GetCardTable();
   2863       // If the object is not dirty and it is referencing something in the live stack other than
   2864       // class, then it must be on a dirty card.
   2865       if (!card_table->AddrIsInCardTable(obj)) {
   2866         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
   2867         *failed_ = true;
   2868       } else if (!card_table->IsDirty(obj)) {
   2869         // TODO: Check mod-union tables.
   2870         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
   2871         // kCardDirty - 1 if it didnt get touched since we aged it.
   2872         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2873         if (live_stack->ContainsSorted(ref)) {
   2874           if (live_stack->ContainsSorted(obj)) {
   2875             LOG(ERROR) << "Object " << obj << " found in live stack";
   2876           }
   2877           if (heap_->GetLiveBitmap()->Test(obj)) {
   2878             LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2879           }
   2880           LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
   2881                     << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
   2882 
   2883           // Print which field of the object is dead.
   2884           if (!obj->IsObjectArray()) {
   2885             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
   2886             CHECK(klass != nullptr);
   2887             auto* fields = is_static ? klass->GetSFields() : klass->GetIFields();
   2888             auto num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
   2889             CHECK_EQ(fields == nullptr, num_fields == 0u);
   2890             for (size_t i = 0; i < num_fields; ++i) {
   2891               ArtField* cur = &fields[i];
   2892               if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
   2893                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
   2894                           << PrettyField(cur);
   2895                 break;
   2896               }
   2897             }
   2898           } else {
   2899             mirror::ObjectArray<mirror::Object>* object_array =
   2900                 obj->AsObjectArray<mirror::Object>();
   2901             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
   2902               if (object_array->Get(i) == ref) {
   2903                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
   2904               }
   2905             }
   2906           }
   2907 
   2908           *failed_ = true;
   2909         }
   2910       }
   2911     }
   2912   }
   2913 
   2914  private:
   2915   Heap* const heap_;
   2916   bool* const failed_;
   2917 };
   2918 
   2919 class VerifyLiveStackReferences {
   2920  public:
   2921   explicit VerifyLiveStackReferences(Heap* heap)
   2922       : heap_(heap),
   2923         failed_(false) {}
   2924 
   2925   void operator()(mirror::Object* obj) const
   2926       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2927     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
   2928     obj->VisitReferences<true>(visitor, VoidFunctor());
   2929   }
   2930 
   2931   bool Failed() const {
   2932     return failed_;
   2933   }
   2934 
   2935  private:
   2936   Heap* const heap_;
   2937   bool failed_;
   2938 };
   2939 
   2940 bool Heap::VerifyMissingCardMarks() {
   2941   Thread* self = Thread::Current();
   2942   Locks::mutator_lock_->AssertExclusiveHeld(self);
   2943   // We need to sort the live stack since we binary search it.
   2944   live_stack_->Sort();
   2945   // Since we sorted the allocation stack content, need to revoke all
   2946   // thread-local allocation stacks.
   2947   RevokeAllThreadLocalAllocationStacks(self);
   2948   VerifyLiveStackReferences visitor(this);
   2949   GetLiveBitmap()->Visit(visitor);
   2950   // We can verify objects in the live stack since none of these should reference dead objects.
   2951   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
   2952     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
   2953       visitor(it->AsMirrorPtr());
   2954     }
   2955   }
   2956   return !visitor.Failed();
   2957 }
   2958 
   2959 void Heap::SwapStacks(Thread* self) {
   2960   UNUSED(self);
   2961   if (kUseThreadLocalAllocationStack) {
   2962     live_stack_->AssertAllZero();
   2963   }
   2964   allocation_stack_.swap(live_stack_);
   2965 }
   2966 
   2967 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
   2968   // This must be called only during the pause.
   2969   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   2970   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   2971   MutexLock mu2(self, *Locks::thread_list_lock_);
   2972   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   2973   for (Thread* t : thread_list) {
   2974     t->RevokeThreadLocalAllocationStack();
   2975   }
   2976 }
   2977 
   2978 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
   2979   if (kIsDebugBuild) {
   2980     if (rosalloc_space_ != nullptr) {
   2981       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
   2982     }
   2983     if (bump_pointer_space_ != nullptr) {
   2984       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
   2985     }
   2986   }
   2987 }
   2988 
   2989 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
   2990   if (kIsDebugBuild) {
   2991     if (bump_pointer_space_ != nullptr) {
   2992       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
   2993     }
   2994   }
   2995 }
   2996 
   2997 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
   2998   auto it = mod_union_tables_.find(space);
   2999   if (it == mod_union_tables_.end()) {
   3000     return nullptr;
   3001   }
   3002   return it->second;
   3003 }
   3004 
   3005 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
   3006   auto it = remembered_sets_.find(space);
   3007   if (it == remembered_sets_.end()) {
   3008     return nullptr;
   3009   }
   3010   return it->second;
   3011 }
   3012 
   3013 void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
   3014                         bool clear_alloc_space_cards) {
   3015   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3016   // Clear cards and keep track of cards cleared in the mod-union table.
   3017   for (const auto& space : continuous_spaces_) {
   3018     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
   3019     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
   3020     if (table != nullptr) {
   3021       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
   3022           "ImageModUnionClearCards";
   3023       TimingLogger::ScopedTiming t2(name, timings);
   3024       table->ClearCards();
   3025     } else if (use_rem_sets && rem_set != nullptr) {
   3026       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
   3027           << static_cast<int>(collector_type_);
   3028       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
   3029       rem_set->ClearCards();
   3030     } else if (process_alloc_space_cards) {
   3031       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
   3032       if (clear_alloc_space_cards) {
   3033         card_table_->ClearCardRange(space->Begin(), space->End());
   3034       } else {
   3035         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
   3036         // cards were dirty before the GC started.
   3037         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
   3038         // -> clean(cleaning thread).
   3039         // The races are we either end up with: Aged card, unaged card. Since we have the
   3040         // checkpoint roots and then we scan / update mod union tables after. We will always
   3041         // scan either card. If we end up with the non aged card, we scan it it in the pause.
   3042         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
   3043                                        VoidFunctor());
   3044       }
   3045     }
   3046   }
   3047 }
   3048 
   3049 static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
   3050 }
   3051 
   3052 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
   3053   Thread* const self = Thread::Current();
   3054   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3055   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3056   if (verify_pre_gc_heap_) {
   3057     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
   3058     size_t failures = VerifyHeapReferences();
   3059     if (failures > 0) {
   3060       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3061           << " failures";
   3062     }
   3063   }
   3064   // Check that all objects which reference things in the live stack are on dirty cards.
   3065   if (verify_missing_card_marks_) {
   3066     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
   3067     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3068     SwapStacks(self);
   3069     // Sort the live stack so that we can quickly binary search it later.
   3070     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
   3071                                     << " missing card mark verification failed\n" << DumpSpaces();
   3072     SwapStacks(self);
   3073   }
   3074   if (verify_mod_union_table_) {
   3075     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
   3076     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
   3077     for (const auto& table_pair : mod_union_tables_) {
   3078       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3079       mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
   3080       mod_union_table->Verify();
   3081     }
   3082   }
   3083 }
   3084 
   3085 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
   3086   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
   3087     collector::GarbageCollector::ScopedPause pause(gc);
   3088     PreGcVerificationPaused(gc);
   3089   }
   3090 }
   3091 
   3092 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
   3093   UNUSED(gc);
   3094   // TODO: Add a new runtime option for this?
   3095   if (verify_pre_gc_rosalloc_) {
   3096     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
   3097   }
   3098 }
   3099 
   3100 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
   3101   Thread* const self = Thread::Current();
   3102   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3103   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3104   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
   3105   // reachable objects.
   3106   if (verify_pre_sweeping_heap_) {
   3107     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
   3108     CHECK_NE(self->GetState(), kRunnable);
   3109     {
   3110       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3111       // Swapping bound bitmaps does nothing.
   3112       gc->SwapBitmaps();
   3113     }
   3114     // Pass in false since concurrent reference processing can mean that the reference referents
   3115     // may point to dead objects at the point which PreSweepingGcVerification is called.
   3116     size_t failures = VerifyHeapReferences(false);
   3117     if (failures > 0) {
   3118       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
   3119           << " failures";
   3120     }
   3121     {
   3122       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3123       gc->SwapBitmaps();
   3124     }
   3125   }
   3126   if (verify_pre_sweeping_rosalloc_) {
   3127     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
   3128   }
   3129 }
   3130 
   3131 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
   3132   // Only pause if we have to do some verification.
   3133   Thread* const self = Thread::Current();
   3134   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
   3135   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3136   if (verify_system_weaks_) {
   3137     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3138     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
   3139     mark_sweep->VerifySystemWeaks();
   3140   }
   3141   if (verify_post_gc_rosalloc_) {
   3142     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
   3143   }
   3144   if (verify_post_gc_heap_) {
   3145     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
   3146     size_t failures = VerifyHeapReferences();
   3147     if (failures > 0) {
   3148       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3149           << " failures";
   3150     }
   3151   }
   3152 }
   3153 
   3154 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
   3155   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
   3156     collector::GarbageCollector::ScopedPause pause(gc);
   3157     PostGcVerificationPaused(gc);
   3158   }
   3159 }
   3160 
   3161 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
   3162   TimingLogger::ScopedTiming t(name, timings);
   3163   for (const auto& space : continuous_spaces_) {
   3164     if (space->IsRosAllocSpace()) {
   3165       VLOG(heap) << name << " : " << space->GetName();
   3166       space->AsRosAllocSpace()->Verify();
   3167     }
   3168   }
   3169 }
   3170 
   3171 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
   3172   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   3173   MutexLock mu(self, *gc_complete_lock_);
   3174   return WaitForGcToCompleteLocked(cause, self);
   3175 }
   3176 
   3177 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
   3178   collector::GcType last_gc_type = collector::kGcTypeNone;
   3179   uint64_t wait_start = NanoTime();
   3180   while (collector_type_running_ != kCollectorTypeNone) {
   3181     if (self != task_processor_->GetRunningThread()) {
   3182       // The current thread is about to wait for a currently running
   3183       // collection to finish. If the waiting thread is not the heap
   3184       // task daemon thread, the currently running collection is
   3185       // considered as a blocking GC.
   3186       running_collection_is_blocking_ = true;
   3187       VLOG(gc) << "Waiting for a blocking GC " << cause;
   3188     }
   3189     ATRACE_BEGIN("GC: Wait For Completion");
   3190     // We must wait, change thread state then sleep on gc_complete_cond_;
   3191     gc_complete_cond_->Wait(self);
   3192     last_gc_type = last_gc_type_;
   3193     ATRACE_END();
   3194   }
   3195   uint64_t wait_time = NanoTime() - wait_start;
   3196   total_wait_time_ += wait_time;
   3197   if (wait_time > long_pause_log_threshold_) {
   3198     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
   3199         << " for cause " << cause;
   3200   }
   3201   if (self != task_processor_->GetRunningThread()) {
   3202     // The current thread is about to run a collection. If the thread
   3203     // is not the heap task daemon thread, it's considered as a
   3204     // blocking GC (i.e., blocking itself).
   3205     running_collection_is_blocking_ = true;
   3206     VLOG(gc) << "Starting a blocking GC " << cause;
   3207   }
   3208   return last_gc_type;
   3209 }
   3210 
   3211 void Heap::DumpForSigQuit(std::ostream& os) {
   3212   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
   3213      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
   3214   DumpGcPerformanceInfo(os);
   3215 }
   3216 
   3217 size_t Heap::GetPercentFree() {
   3218   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
   3219 }
   3220 
   3221 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
   3222   if (max_allowed_footprint > GetMaxMemory()) {
   3223     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
   3224              << PrettySize(GetMaxMemory());
   3225     max_allowed_footprint = GetMaxMemory();
   3226   }
   3227   max_allowed_footprint_ = max_allowed_footprint;
   3228 }
   3229 
   3230 bool Heap::IsMovableObject(const mirror::Object* obj) const {
   3231   if (kMovingCollector) {
   3232     space::Space* space = FindContinuousSpaceFromObject(obj, true);
   3233     if (space != nullptr) {
   3234       // TODO: Check large object?
   3235       return space->CanMoveObjects();
   3236     }
   3237   }
   3238   return false;
   3239 }
   3240 
   3241 void Heap::UpdateMaxNativeFootprint() {
   3242   size_t native_size = native_bytes_allocated_.LoadRelaxed();
   3243   // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
   3244   size_t target_size = native_size / GetTargetHeapUtilization();
   3245   if (target_size > native_size + max_free_) {
   3246     target_size = native_size + max_free_;
   3247   } else if (target_size < native_size + min_free_) {
   3248     target_size = native_size + min_free_;
   3249   }
   3250   native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
   3251 }
   3252 
   3253 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
   3254   for (const auto& collector : garbage_collectors_) {
   3255     if (collector->GetCollectorType() == collector_type_ &&
   3256         collector->GetGcType() == gc_type) {
   3257       return collector;
   3258     }
   3259   }
   3260   return nullptr;
   3261 }
   3262 
   3263 double Heap::HeapGrowthMultiplier() const {
   3264   // If we don't care about pause times we are background, so return 1.0.
   3265   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
   3266     return 1.0;
   3267   }
   3268   return foreground_heap_growth_multiplier_;
   3269 }
   3270 
   3271 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
   3272                               uint64_t bytes_allocated_before_gc) {
   3273   // We know what our utilization is at this moment.
   3274   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
   3275   const uint64_t bytes_allocated = GetBytesAllocated();
   3276   uint64_t target_size;
   3277   collector::GcType gc_type = collector_ran->GetGcType();
   3278   const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
   3279   // foreground.
   3280   const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
   3281   const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
   3282   if (gc_type != collector::kGcTypeSticky) {
   3283     // Grow the heap for non sticky GC.
   3284     ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
   3285     CHECK_GE(delta, 0);
   3286     target_size = bytes_allocated + delta * multiplier;
   3287     target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
   3288     target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
   3289     native_need_to_run_finalization_ = true;
   3290     next_gc_type_ = collector::kGcTypeSticky;
   3291   } else {
   3292     collector::GcType non_sticky_gc_type =
   3293         HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   3294     // Find what the next non sticky collector will be.
   3295     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
   3296     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
   3297     // do another sticky collection next.
   3298     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
   3299     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
   3300     // if the sticky GC throughput always remained >= the full/partial throughput.
   3301     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
   3302         non_sticky_collector->GetEstimatedMeanThroughput() &&
   3303         non_sticky_collector->NumberOfIterations() > 0 &&
   3304         bytes_allocated <= max_allowed_footprint_) {
   3305       next_gc_type_ = collector::kGcTypeSticky;
   3306     } else {
   3307       next_gc_type_ = non_sticky_gc_type;
   3308     }
   3309     // If we have freed enough memory, shrink the heap back down.
   3310     if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
   3311       target_size = bytes_allocated + adjusted_max_free;
   3312     } else {
   3313       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
   3314     }
   3315   }
   3316   if (!ignore_max_footprint_) {
   3317     SetIdealFootprint(target_size);
   3318     if (IsGcConcurrent()) {
   3319       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
   3320           current_gc_iteration_.GetFreedLargeObjectBytes() +
   3321           current_gc_iteration_.GetFreedRevokeBytes();
   3322       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
   3323       // how many bytes were allocated during the GC we need to add freed_bytes back on.
   3324       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
   3325       const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
   3326           bytes_allocated_before_gc;
   3327       // Calculate when to perform the next ConcurrentGC.
   3328       // Calculate the estimated GC duration.
   3329       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
   3330       // Estimate how many remaining bytes we will have when we need to start the next GC.
   3331       size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
   3332       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
   3333       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
   3334       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
   3335         // A never going to happen situation that from the estimated allocation rate we will exceed
   3336         // the applications entire footprint with the given estimated allocation rate. Schedule
   3337         // another GC nearly straight away.
   3338         remaining_bytes = kMinConcurrentRemainingBytes;
   3339       }
   3340       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
   3341       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
   3342       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
   3343       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
   3344       // right away.
   3345       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
   3346                                          static_cast<size_t>(bytes_allocated));
   3347     }
   3348   }
   3349 }
   3350 
   3351 void Heap::ClampGrowthLimit() {
   3352   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
   3353   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   3354   capacity_ = growth_limit_;
   3355   for (const auto& space : continuous_spaces_) {
   3356     if (space->IsMallocSpace()) {
   3357       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3358       malloc_space->ClampGrowthLimit();
   3359     }
   3360   }
   3361   // This space isn't added for performance reasons.
   3362   if (main_space_backup_.get() != nullptr) {
   3363     main_space_backup_->ClampGrowthLimit();
   3364   }
   3365 }
   3366 
   3367 void Heap::ClearGrowthLimit() {
   3368   growth_limit_ = capacity_;
   3369   for (const auto& space : continuous_spaces_) {
   3370     if (space->IsMallocSpace()) {
   3371       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3372       malloc_space->ClearGrowthLimit();
   3373       malloc_space->SetFootprintLimit(malloc_space->Capacity());
   3374     }
   3375   }
   3376   // This space isn't added for performance reasons.
   3377   if (main_space_backup_.get() != nullptr) {
   3378     main_space_backup_->ClearGrowthLimit();
   3379     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
   3380   }
   3381 }
   3382 
   3383 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
   3384   ScopedObjectAccess soa(self);
   3385   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
   3386   jvalue args[1];
   3387   args[0].l = arg.get();
   3388   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
   3389   // Restore object in case it gets moved.
   3390   *object = soa.Decode<mirror::Object*>(arg.get());
   3391 }
   3392 
   3393 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
   3394   StackHandleScope<1> hs(self);
   3395   HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3396   RequestConcurrentGC(self, force_full);
   3397 }
   3398 
   3399 class Heap::ConcurrentGCTask : public HeapTask {
   3400  public:
   3401   explicit ConcurrentGCTask(uint64_t target_time, bool force_full)
   3402     : HeapTask(target_time), force_full_(force_full) { }
   3403   virtual void Run(Thread* self) OVERRIDE {
   3404     gc::Heap* heap = Runtime::Current()->GetHeap();
   3405     heap->ConcurrentGC(self, force_full_);
   3406     heap->ClearConcurrentGCRequest();
   3407   }
   3408 
   3409  private:
   3410   const bool force_full_;  // If true, force full (or partial) collection.
   3411 };
   3412 
   3413 static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
   3414   Runtime* runtime = Runtime::Current();
   3415   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
   3416       !self->IsHandlingStackOverflow();
   3417 }
   3418 
   3419 void Heap::ClearConcurrentGCRequest() {
   3420   concurrent_gc_pending_.StoreRelaxed(false);
   3421 }
   3422 
   3423 void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
   3424   if (CanAddHeapTask(self) &&
   3425       concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
   3426     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
   3427                                                         force_full));
   3428   }
   3429 }
   3430 
   3431 void Heap::ConcurrentGC(Thread* self, bool force_full) {
   3432   if (!Runtime::Current()->IsShuttingDown(self)) {
   3433     // Wait for any GCs currently running to finish.
   3434     if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
   3435       // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
   3436       // instead. E.g. can't do partial, so do full instead.
   3437       collector::GcType next_gc_type = next_gc_type_;
   3438       // If forcing full and next gc type is sticky, override with a non-sticky type.
   3439       if (force_full && next_gc_type == collector::kGcTypeSticky) {
   3440         next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   3441       }
   3442       if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
   3443           collector::kGcTypeNone) {
   3444         for (collector::GcType gc_type : gc_plan_) {
   3445           // Attempt to run the collector, if we succeed, we are done.
   3446           if (gc_type > next_gc_type &&
   3447               CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
   3448                   collector::kGcTypeNone) {
   3449             break;
   3450           }
   3451         }
   3452       }
   3453     }
   3454   }
   3455 }
   3456 
   3457 class Heap::CollectorTransitionTask : public HeapTask {
   3458  public:
   3459   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
   3460   virtual void Run(Thread* self) OVERRIDE {
   3461     gc::Heap* heap = Runtime::Current()->GetHeap();
   3462     heap->DoPendingCollectorTransition();
   3463     heap->ClearPendingCollectorTransition(self);
   3464   }
   3465 };
   3466 
   3467 void Heap::ClearPendingCollectorTransition(Thread* self) {
   3468   MutexLock mu(self, *pending_task_lock_);
   3469   pending_collector_transition_ = nullptr;
   3470 }
   3471 
   3472 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
   3473   Thread* self = Thread::Current();
   3474   desired_collector_type_ = desired_collector_type;
   3475   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
   3476     return;
   3477   }
   3478   CollectorTransitionTask* added_task = nullptr;
   3479   const uint64_t target_time = NanoTime() + delta_time;
   3480   {
   3481     MutexLock mu(self, *pending_task_lock_);
   3482     // If we have an existing collector transition, update the targe time to be the new target.
   3483     if (pending_collector_transition_ != nullptr) {
   3484       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
   3485       return;
   3486     }
   3487     added_task = new CollectorTransitionTask(target_time);
   3488     pending_collector_transition_ = added_task;
   3489   }
   3490   task_processor_->AddTask(self, added_task);
   3491 }
   3492 
   3493 class Heap::HeapTrimTask : public HeapTask {
   3494  public:
   3495   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
   3496   virtual void Run(Thread* self) OVERRIDE {
   3497     gc::Heap* heap = Runtime::Current()->GetHeap();
   3498     heap->Trim(self);
   3499     heap->ClearPendingTrim(self);
   3500   }
   3501 };
   3502 
   3503 void Heap::ClearPendingTrim(Thread* self) {
   3504   MutexLock mu(self, *pending_task_lock_);
   3505   pending_heap_trim_ = nullptr;
   3506 }
   3507 
   3508 void Heap::RequestTrim(Thread* self) {
   3509   if (!CanAddHeapTask(self)) {
   3510     return;
   3511   }
   3512   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
   3513   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
   3514   // a space it will hold its lock and can become a cause of jank.
   3515   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
   3516   // forking.
   3517 
   3518   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
   3519   // because that only marks object heads, so a large array looks like lots of empty space. We
   3520   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
   3521   // to utilization (which is probably inversely proportional to how much benefit we can expect).
   3522   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
   3523   // not how much use we're making of those pages.
   3524   HeapTrimTask* added_task = nullptr;
   3525   {
   3526     MutexLock mu(self, *pending_task_lock_);
   3527     if (pending_heap_trim_ != nullptr) {
   3528       // Already have a heap trim request in task processor, ignore this request.
   3529       return;
   3530     }
   3531     added_task = new HeapTrimTask(kHeapTrimWait);
   3532     pending_heap_trim_ = added_task;
   3533   }
   3534   task_processor_->AddTask(self, added_task);
   3535 }
   3536 
   3537 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
   3538   if (rosalloc_space_ != nullptr) {
   3539     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3540     if (freed_bytes_revoke > 0U) {
   3541       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3542       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3543     }
   3544   }
   3545   if (bump_pointer_space_ != nullptr) {
   3546     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
   3547   }
   3548   if (region_space_ != nullptr) {
   3549     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
   3550   }
   3551 }
   3552 
   3553 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
   3554   if (rosalloc_space_ != nullptr) {
   3555     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3556     if (freed_bytes_revoke > 0U) {
   3557       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3558       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3559     }
   3560   }
   3561 }
   3562 
   3563 void Heap::RevokeAllThreadLocalBuffers() {
   3564   if (rosalloc_space_ != nullptr) {
   3565     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
   3566     if (freed_bytes_revoke > 0U) {
   3567       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3568       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3569     }
   3570   }
   3571   if (bump_pointer_space_ != nullptr) {
   3572     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
   3573   }
   3574   if (region_space_ != nullptr) {
   3575     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
   3576   }
   3577 }
   3578 
   3579 bool Heap::IsGCRequestPending() const {
   3580   return concurrent_gc_pending_.LoadRelaxed();
   3581 }
   3582 
   3583 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
   3584   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
   3585                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
   3586                             static_cast<jlong>(timeout));
   3587 }
   3588 
   3589 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
   3590   Thread* self = ThreadForEnv(env);
   3591   if (native_need_to_run_finalization_) {
   3592     RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3593     UpdateMaxNativeFootprint();
   3594     native_need_to_run_finalization_ = false;
   3595   }
   3596   // Total number of native bytes allocated.
   3597   size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
   3598   new_native_bytes_allocated += bytes;
   3599   if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
   3600     collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
   3601         collector::kGcTypeFull;
   3602 
   3603     // The second watermark is higher than the gc watermark. If you hit this it means you are
   3604     // allocating native objects faster than the GC can keep up with.
   3605     if (new_native_bytes_allocated > growth_limit_) {
   3606       if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
   3607         // Just finished a GC, attempt to run finalizers.
   3608         RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3609         CHECK(!env->ExceptionCheck());
   3610         // Native bytes allocated may be updated by finalization, refresh it.
   3611         new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
   3612       }
   3613       // If we still are over the watermark, attempt a GC for alloc and run finalizers.
   3614       if (new_native_bytes_allocated > growth_limit_) {
   3615         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3616         RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3617         native_need_to_run_finalization_ = false;
   3618         CHECK(!env->ExceptionCheck());
   3619       }
   3620       // We have just run finalizers, update the native watermark since it is very likely that
   3621       // finalizers released native managed allocations.
   3622       UpdateMaxNativeFootprint();
   3623     } else if (!IsGCRequestPending()) {
   3624       if (IsGcConcurrent()) {
   3625         RequestConcurrentGC(self, true);  // Request non-sticky type.
   3626       } else {
   3627         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3628       }
   3629     }
   3630   }
   3631 }
   3632 
   3633 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
   3634   size_t expected_size;
   3635   do {
   3636     expected_size = native_bytes_allocated_.LoadRelaxed();
   3637     if (UNLIKELY(bytes > expected_size)) {
   3638       ScopedObjectAccess soa(env);
   3639       env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
   3640                     StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
   3641                                  "registered as allocated", bytes, expected_size).c_str());
   3642       break;
   3643     }
   3644   } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
   3645                                                                expected_size - bytes));
   3646 }
   3647 
   3648 size_t Heap::GetTotalMemory() const {
   3649   return std::max(max_allowed_footprint_, GetBytesAllocated());
   3650 }
   3651 
   3652 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
   3653   DCHECK(mod_union_table != nullptr);
   3654   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
   3655 }
   3656 
   3657 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
   3658   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
   3659         (c->IsVariableSize() || c->GetObjectSize() == byte_count));
   3660   CHECK_GE(byte_count, sizeof(mirror::Object));
   3661 }
   3662 
   3663 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
   3664   CHECK(remembered_set != nullptr);
   3665   space::Space* space = remembered_set->GetSpace();
   3666   CHECK(space != nullptr);
   3667   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
   3668   remembered_sets_.Put(space, remembered_set);
   3669   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
   3670 }
   3671 
   3672 void Heap::RemoveRememberedSet(space::Space* space) {
   3673   CHECK(space != nullptr);
   3674   auto it = remembered_sets_.find(space);
   3675   CHECK(it != remembered_sets_.end());
   3676   delete it->second;
   3677   remembered_sets_.erase(it);
   3678   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
   3679 }
   3680 
   3681 void Heap::ClearMarkedObjects() {
   3682   // Clear all of the spaces' mark bitmaps.
   3683   for (const auto& space : GetContinuousSpaces()) {
   3684     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   3685     if (space->GetLiveBitmap() != mark_bitmap) {
   3686       mark_bitmap->Clear();
   3687     }
   3688   }
   3689   // Clear the marked objects in the discontinous space object sets.
   3690   for (const auto& space : GetDiscontinuousSpaces()) {
   3691     space->GetMarkBitmap()->Clear();
   3692   }
   3693 }
   3694 
   3695 // Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
   3696 class StackCrawlState {
   3697  public:
   3698   StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
   3699       : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
   3700   }
   3701   size_t GetFrameCount() const {
   3702     return frame_count_;
   3703   }
   3704   static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
   3705     auto* const state = reinterpret_cast<StackCrawlState*>(arg);
   3706     const uintptr_t ip = _Unwind_GetIP(context);
   3707     // The first stack frame is get_backtrace itself. Skip it.
   3708     if (ip != 0 && state->skip_count_ > 0) {
   3709       --state->skip_count_;
   3710       return _URC_NO_REASON;
   3711     }
   3712     // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
   3713     state->frames_[state->frame_count_] = ip;
   3714     state->frame_count_++;
   3715     return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
   3716   }
   3717 
   3718  private:
   3719   uintptr_t* const frames_;
   3720   size_t frame_count_;
   3721   const size_t max_depth_;
   3722   size_t skip_count_;
   3723 };
   3724 
   3725 static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
   3726   StackCrawlState state(frames, max_depth, 0u);
   3727   _Unwind_Backtrace(&StackCrawlState::Callback, &state);
   3728   return state.GetFrameCount();
   3729 }
   3730 
   3731 void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
   3732   auto* const runtime = Runtime::Current();
   3733   if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
   3734       !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
   3735     // Check if we should GC.
   3736     bool new_backtrace = false;
   3737     {
   3738       static constexpr size_t kMaxFrames = 16u;
   3739       uintptr_t backtrace[kMaxFrames];
   3740       const size_t frames = get_backtrace(backtrace, kMaxFrames);
   3741       uint64_t hash = 0;
   3742       for (size_t i = 0; i < frames; ++i) {
   3743         hash = hash * 2654435761 + backtrace[i];
   3744         hash += (hash >> 13) ^ (hash << 6);
   3745       }
   3746       MutexLock mu(self, *backtrace_lock_);
   3747       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
   3748       if (new_backtrace) {
   3749         seen_backtraces_.insert(hash);
   3750       }
   3751     }
   3752     if (new_backtrace) {
   3753       StackHandleScope<1> hs(self);
   3754       auto h = hs.NewHandleWrapper(obj);
   3755       CollectGarbage(false);
   3756       unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   3757     } else {
   3758       seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   3759     }
   3760   }
   3761 }
   3762 
   3763 }  // namespace gc
   3764 }  // namespace art
   3765