Home | History | Annotate | Download | only in TableGen
      1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits subtarget enumerations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTarget.h"
     15 #include "CodeGenSchedule.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/MC/MCInstrItineraries.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/Format.h"
     21 #include "llvm/TableGen/Error.h"
     22 #include "llvm/TableGen/Record.h"
     23 #include "llvm/TableGen/TableGenBackend.h"
     24 #include <algorithm>
     25 #include <map>
     26 #include <string>
     27 #include <vector>
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "subtarget-emitter"
     31 
     32 namespace {
     33 class SubtargetEmitter {
     34   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
     35   // The SchedClassDesc table indexes into a global write resource table, write
     36   // latency table, and read advance table.
     37   struct SchedClassTables {
     38     std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
     39     std::vector<MCWriteProcResEntry> WriteProcResources;
     40     std::vector<MCWriteLatencyEntry> WriteLatencies;
     41     std::vector<std::string> WriterNames;
     42     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
     43 
     44     // Reserve an invalid entry at index 0
     45     SchedClassTables() {
     46       ProcSchedClasses.resize(1);
     47       WriteProcResources.resize(1);
     48       WriteLatencies.resize(1);
     49       WriterNames.push_back("InvalidWrite");
     50       ReadAdvanceEntries.resize(1);
     51     }
     52   };
     53 
     54   struct LessWriteProcResources {
     55     bool operator()(const MCWriteProcResEntry &LHS,
     56                     const MCWriteProcResEntry &RHS) {
     57       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
     58     }
     59   };
     60 
     61   RecordKeeper &Records;
     62   CodeGenSchedModels &SchedModels;
     63   std::string Target;
     64 
     65   void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits);
     66   unsigned FeatureKeyValues(raw_ostream &OS);
     67   unsigned CPUKeyValues(raw_ostream &OS);
     68   void FormItineraryStageString(const std::string &Names,
     69                                 Record *ItinData, std::string &ItinString,
     70                                 unsigned &NStages);
     71   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
     72                                        unsigned &NOperandCycles);
     73   void FormItineraryBypassString(const std::string &Names,
     74                                  Record *ItinData,
     75                                  std::string &ItinString, unsigned NOperandCycles);
     76   void EmitStageAndOperandCycleData(raw_ostream &OS,
     77                                     std::vector<std::vector<InstrItinerary> >
     78                                       &ProcItinLists);
     79   void EmitItineraries(raw_ostream &OS,
     80                        std::vector<std::vector<InstrItinerary> >
     81                          &ProcItinLists);
     82   void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
     83                          char Separator);
     84   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
     85                               raw_ostream &OS);
     86   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
     87                              const CodeGenProcModel &ProcModel);
     88   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
     89                           const CodeGenProcModel &ProcModel);
     90   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
     91                            const CodeGenProcModel &ProcModel);
     92   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
     93                            SchedClassTables &SchedTables);
     94   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
     95   void EmitProcessorModels(raw_ostream &OS);
     96   void EmitProcessorLookup(raw_ostream &OS);
     97   void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
     98   void EmitSchedModel(raw_ostream &OS);
     99   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
    100                              unsigned NumProcs);
    101 
    102 public:
    103   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
    104     Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
    105 
    106   void run(raw_ostream &o);
    107 
    108 };
    109 } // End anonymous namespace
    110 
    111 //
    112 // Enumeration - Emit the specified class as an enumeration.
    113 //
    114 void SubtargetEmitter::Enumeration(raw_ostream &OS,
    115                                    const char *ClassName,
    116                                    bool isBits) {
    117   // Get all records of class and sort
    118   std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
    119   std::sort(DefList.begin(), DefList.end(), LessRecord());
    120 
    121   unsigned N = DefList.size();
    122   if (N == 0)
    123     return;
    124   if (N > 64) {
    125     errs() << "Too many (> 64) subtarget features!\n";
    126     exit(1);
    127   }
    128 
    129   OS << "namespace " << Target << " {\n";
    130 
    131   // Open enumeration. Use a 64-bit underlying type.
    132   OS << "enum : uint64_t {\n";
    133 
    134   // For each record
    135   for (unsigned i = 0; i < N;) {
    136     // Next record
    137     Record *Def = DefList[i];
    138 
    139     // Get and emit name
    140     OS << "  " << Def->getName();
    141 
    142     // If bit flags then emit expression (1 << i)
    143     if (isBits)  OS << " = " << " 1ULL << " << i;
    144 
    145     // Depending on 'if more in the list' emit comma
    146     if (++i < N) OS << ",";
    147 
    148     OS << "\n";
    149   }
    150 
    151   // Close enumeration
    152   OS << "};\n";
    153 
    154   OS << "}\n";
    155 }
    156 
    157 //
    158 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
    159 // command line.
    160 //
    161 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
    162   // Gather and sort all the features
    163   std::vector<Record*> FeatureList =
    164                            Records.getAllDerivedDefinitions("SubtargetFeature");
    165 
    166   if (FeatureList.empty())
    167     return 0;
    168 
    169   std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
    170 
    171   // Begin feature table
    172   OS << "// Sorted (by key) array of values for CPU features.\n"
    173      << "extern const llvm::SubtargetFeatureKV " << Target
    174      << "FeatureKV[] = {\n";
    175 
    176   // For each feature
    177   unsigned NumFeatures = 0;
    178   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
    179     // Next feature
    180     Record *Feature = FeatureList[i];
    181 
    182     const std::string &Name = Feature->getName();
    183     const std::string &CommandLineName = Feature->getValueAsString("Name");
    184     const std::string &Desc = Feature->getValueAsString("Desc");
    185 
    186     if (CommandLineName.empty()) continue;
    187 
    188     // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in }
    189     OS << "  { "
    190        << "\"" << CommandLineName << "\", "
    191        << "\"" << Desc << "\", "
    192        << Target << "::" << Name << ", ";
    193 
    194     const std::vector<Record*> &ImpliesList =
    195       Feature->getValueAsListOfDefs("Implies");
    196 
    197     if (ImpliesList.empty()) {
    198       OS << "0ULL";
    199     } else {
    200       for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
    201         OS << Target << "::" << ImpliesList[j]->getName();
    202         if (++j < M) OS << " | ";
    203       }
    204     }
    205 
    206     OS << " }";
    207     ++NumFeatures;
    208 
    209     // Depending on 'if more in the list' emit comma
    210     if ((i + 1) < N) OS << ",";
    211 
    212     OS << "\n";
    213   }
    214 
    215   // End feature table
    216   OS << "};\n";
    217 
    218   return NumFeatures;
    219 }
    220 
    221 //
    222 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
    223 // line.
    224 //
    225 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
    226   // Gather and sort processor information
    227   std::vector<Record*> ProcessorList =
    228                           Records.getAllDerivedDefinitions("Processor");
    229   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
    230 
    231   // Begin processor table
    232   OS << "// Sorted (by key) array of values for CPU subtype.\n"
    233      << "extern const llvm::SubtargetFeatureKV " << Target
    234      << "SubTypeKV[] = {\n";
    235 
    236   // For each processor
    237   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
    238     // Next processor
    239     Record *Processor = ProcessorList[i];
    240 
    241     const std::string &Name = Processor->getValueAsString("Name");
    242     const std::vector<Record*> &FeatureList =
    243       Processor->getValueAsListOfDefs("Features");
    244 
    245     // Emit as { "cpu", "description", f1 | f2 | ... fn },
    246     OS << "  { "
    247        << "\"" << Name << "\", "
    248        << "\"Select the " << Name << " processor\", ";
    249 
    250     if (FeatureList.empty()) {
    251       OS << "0ULL";
    252     } else {
    253       for (unsigned j = 0, M = FeatureList.size(); j < M;) {
    254         OS << Target << "::" << FeatureList[j]->getName();
    255         if (++j < M) OS << " | ";
    256       }
    257     }
    258 
    259     // The "0" is for the "implies" section of this data structure.
    260     OS << ", 0ULL }";
    261 
    262     // Depending on 'if more in the list' emit comma
    263     if (++i < N) OS << ",";
    264 
    265     OS << "\n";
    266   }
    267 
    268   // End processor table
    269   OS << "};\n";
    270 
    271   return ProcessorList.size();
    272 }
    273 
    274 //
    275 // FormItineraryStageString - Compose a string containing the stage
    276 // data initialization for the specified itinerary.  N is the number
    277 // of stages.
    278 //
    279 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
    280                                                 Record *ItinData,
    281                                                 std::string &ItinString,
    282                                                 unsigned &NStages) {
    283   // Get states list
    284   const std::vector<Record*> &StageList =
    285     ItinData->getValueAsListOfDefs("Stages");
    286 
    287   // For each stage
    288   unsigned N = NStages = StageList.size();
    289   for (unsigned i = 0; i < N;) {
    290     // Next stage
    291     const Record *Stage = StageList[i];
    292 
    293     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
    294     int Cycles = Stage->getValueAsInt("Cycles");
    295     ItinString += "  { " + itostr(Cycles) + ", ";
    296 
    297     // Get unit list
    298     const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
    299 
    300     // For each unit
    301     for (unsigned j = 0, M = UnitList.size(); j < M;) {
    302       // Add name and bitwise or
    303       ItinString += Name + "FU::" + UnitList[j]->getName();
    304       if (++j < M) ItinString += " | ";
    305     }
    306 
    307     int TimeInc = Stage->getValueAsInt("TimeInc");
    308     ItinString += ", " + itostr(TimeInc);
    309 
    310     int Kind = Stage->getValueAsInt("Kind");
    311     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
    312 
    313     // Close off stage
    314     ItinString += " }";
    315     if (++i < N) ItinString += ", ";
    316   }
    317 }
    318 
    319 //
    320 // FormItineraryOperandCycleString - Compose a string containing the
    321 // operand cycle initialization for the specified itinerary.  N is the
    322 // number of operands that has cycles specified.
    323 //
    324 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
    325                          std::string &ItinString, unsigned &NOperandCycles) {
    326   // Get operand cycle list
    327   const std::vector<int64_t> &OperandCycleList =
    328     ItinData->getValueAsListOfInts("OperandCycles");
    329 
    330   // For each operand cycle
    331   unsigned N = NOperandCycles = OperandCycleList.size();
    332   for (unsigned i = 0; i < N;) {
    333     // Next operand cycle
    334     const int OCycle = OperandCycleList[i];
    335 
    336     ItinString += "  " + itostr(OCycle);
    337     if (++i < N) ItinString += ", ";
    338   }
    339 }
    340 
    341 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
    342                                                  Record *ItinData,
    343                                                  std::string &ItinString,
    344                                                  unsigned NOperandCycles) {
    345   const std::vector<Record*> &BypassList =
    346     ItinData->getValueAsListOfDefs("Bypasses");
    347   unsigned N = BypassList.size();
    348   unsigned i = 0;
    349   for (; i < N;) {
    350     ItinString += Name + "Bypass::" + BypassList[i]->getName();
    351     if (++i < NOperandCycles) ItinString += ", ";
    352   }
    353   for (; i < NOperandCycles;) {
    354     ItinString += " 0";
    355     if (++i < NOperandCycles) ItinString += ", ";
    356   }
    357 }
    358 
    359 //
    360 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
    361 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
    362 // by CodeGenSchedClass::Index.
    363 //
    364 void SubtargetEmitter::
    365 EmitStageAndOperandCycleData(raw_ostream &OS,
    366                              std::vector<std::vector<InstrItinerary> >
    367                                &ProcItinLists) {
    368 
    369   // Multiple processor models may share an itinerary record. Emit it once.
    370   SmallPtrSet<Record*, 8> ItinsDefSet;
    371 
    372   // Emit functional units for all the itineraries.
    373   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
    374          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
    375 
    376     if (!ItinsDefSet.insert(PI->ItinsDef).second)
    377       continue;
    378 
    379     std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
    380     if (FUs.empty())
    381       continue;
    382 
    383     const std::string &Name = PI->ItinsDef->getName();
    384     OS << "\n// Functional units for \"" << Name << "\"\n"
    385        << "namespace " << Name << "FU {\n";
    386 
    387     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
    388       OS << "  const unsigned " << FUs[j]->getName()
    389          << " = 1 << " << j << ";\n";
    390 
    391     OS << "}\n";
    392 
    393     std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
    394     if (!BPs.empty()) {
    395       OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
    396          << "\"\n" << "namespace " << Name << "Bypass {\n";
    397 
    398       OS << "  const unsigned NoBypass = 0;\n";
    399       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
    400         OS << "  const unsigned " << BPs[j]->getName()
    401            << " = 1 << " << j << ";\n";
    402 
    403       OS << "}\n";
    404     }
    405   }
    406 
    407   // Begin stages table
    408   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
    409                            "Stages[] = {\n";
    410   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
    411 
    412   // Begin operand cycle table
    413   std::string OperandCycleTable = "extern const unsigned " + Target +
    414     "OperandCycles[] = {\n";
    415   OperandCycleTable += "  0, // No itinerary\n";
    416 
    417   // Begin pipeline bypass table
    418   std::string BypassTable = "extern const unsigned " + Target +
    419     "ForwardingPaths[] = {\n";
    420   BypassTable += " 0, // No itinerary\n";
    421 
    422   // For each Itinerary across all processors, add a unique entry to the stages,
    423   // operand cycles, and pipepine bypess tables. Then add the new Itinerary
    424   // object with computed offsets to the ProcItinLists result.
    425   unsigned StageCount = 1, OperandCycleCount = 1;
    426   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
    427   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
    428          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
    429     const CodeGenProcModel &ProcModel = *PI;
    430 
    431     // Add process itinerary to the list.
    432     ProcItinLists.resize(ProcItinLists.size()+1);
    433 
    434     // If this processor defines no itineraries, then leave the itinerary list
    435     // empty.
    436     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
    437     if (!ProcModel.hasItineraries())
    438       continue;
    439 
    440     const std::string &Name = ProcModel.ItinsDef->getName();
    441 
    442     ItinList.resize(SchedModels.numInstrSchedClasses());
    443     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
    444 
    445     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
    446          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
    447 
    448       // Next itinerary data
    449       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
    450 
    451       // Get string and stage count
    452       std::string ItinStageString;
    453       unsigned NStages = 0;
    454       if (ItinData)
    455         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
    456 
    457       // Get string and operand cycle count
    458       std::string ItinOperandCycleString;
    459       unsigned NOperandCycles = 0;
    460       std::string ItinBypassString;
    461       if (ItinData) {
    462         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
    463                                         NOperandCycles);
    464 
    465         FormItineraryBypassString(Name, ItinData, ItinBypassString,
    466                                   NOperandCycles);
    467       }
    468 
    469       // Check to see if stage already exists and create if it doesn't
    470       unsigned FindStage = 0;
    471       if (NStages > 0) {
    472         FindStage = ItinStageMap[ItinStageString];
    473         if (FindStage == 0) {
    474           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
    475           StageTable += ItinStageString + ", // " + itostr(StageCount);
    476           if (NStages > 1)
    477             StageTable += "-" + itostr(StageCount + NStages - 1);
    478           StageTable += "\n";
    479           // Record Itin class number.
    480           ItinStageMap[ItinStageString] = FindStage = StageCount;
    481           StageCount += NStages;
    482         }
    483       }
    484 
    485       // Check to see if operand cycle already exists and create if it doesn't
    486       unsigned FindOperandCycle = 0;
    487       if (NOperandCycles > 0) {
    488         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
    489         FindOperandCycle = ItinOperandMap[ItinOperandString];
    490         if (FindOperandCycle == 0) {
    491           // Emit as  cycle, // index
    492           OperandCycleTable += ItinOperandCycleString + ", // ";
    493           std::string OperandIdxComment = itostr(OperandCycleCount);
    494           if (NOperandCycles > 1)
    495             OperandIdxComment += "-"
    496               + itostr(OperandCycleCount + NOperandCycles - 1);
    497           OperandCycleTable += OperandIdxComment + "\n";
    498           // Record Itin class number.
    499           ItinOperandMap[ItinOperandCycleString] =
    500             FindOperandCycle = OperandCycleCount;
    501           // Emit as bypass, // index
    502           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
    503           OperandCycleCount += NOperandCycles;
    504         }
    505       }
    506 
    507       // Set up itinerary as location and location + stage count
    508       int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
    509       InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
    510                                     FindOperandCycle,
    511                                     FindOperandCycle + NOperandCycles};
    512 
    513       // Inject - empty slots will be 0, 0
    514       ItinList[SchedClassIdx] = Intinerary;
    515     }
    516   }
    517 
    518   // Closing stage
    519   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
    520   StageTable += "};\n";
    521 
    522   // Closing operand cycles
    523   OperandCycleTable += "  0 // End operand cycles\n";
    524   OperandCycleTable += "};\n";
    525 
    526   BypassTable += " 0 // End bypass tables\n";
    527   BypassTable += "};\n";
    528 
    529   // Emit tables.
    530   OS << StageTable;
    531   OS << OperandCycleTable;
    532   OS << BypassTable;
    533 }
    534 
    535 //
    536 // EmitProcessorData - Generate data for processor itineraries that were
    537 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
    538 // Itineraries for each processor. The Itinerary lists are indexed on
    539 // CodeGenSchedClass::Index.
    540 //
    541 void SubtargetEmitter::
    542 EmitItineraries(raw_ostream &OS,
    543                 std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
    544 
    545   // Multiple processor models may share an itinerary record. Emit it once.
    546   SmallPtrSet<Record*, 8> ItinsDefSet;
    547 
    548   // For each processor's machine model
    549   std::vector<std::vector<InstrItinerary> >::iterator
    550       ProcItinListsIter = ProcItinLists.begin();
    551   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
    552          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
    553 
    554     Record *ItinsDef = PI->ItinsDef;
    555     if (!ItinsDefSet.insert(ItinsDef).second)
    556       continue;
    557 
    558     // Get processor itinerary name
    559     const std::string &Name = ItinsDef->getName();
    560 
    561     // Get the itinerary list for the processor.
    562     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
    563     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
    564 
    565     // Empty itineraries aren't referenced anywhere in the tablegen output
    566     // so don't emit them.
    567     if (ItinList.empty())
    568       continue;
    569 
    570     OS << "\n";
    571     OS << "static const llvm::InstrItinerary ";
    572 
    573     // Begin processor itinerary table
    574     OS << Name << "[] = {\n";
    575 
    576     // For each itinerary class in CodeGenSchedClass::Index order.
    577     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
    578       InstrItinerary &Intinerary = ItinList[j];
    579 
    580       // Emit Itinerary in the form of
    581       // { firstStage, lastStage, firstCycle, lastCycle } // index
    582       OS << "  { " <<
    583         Intinerary.NumMicroOps << ", " <<
    584         Intinerary.FirstStage << ", " <<
    585         Intinerary.LastStage << ", " <<
    586         Intinerary.FirstOperandCycle << ", " <<
    587         Intinerary.LastOperandCycle << " }" <<
    588         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
    589     }
    590     // End processor itinerary table
    591     OS << "  { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
    592     OS << "};\n";
    593   }
    594 }
    595 
    596 // Emit either the value defined in the TableGen Record, or the default
    597 // value defined in the C++ header. The Record is null if the processor does not
    598 // define a model.
    599 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
    600                                          const char *Name, char Separator) {
    601   OS << "  ";
    602   int V = R ? R->getValueAsInt(Name) : -1;
    603   if (V >= 0)
    604     OS << V << Separator << " // " << Name;
    605   else
    606     OS << "MCSchedModel::Default" << Name << Separator;
    607   OS << '\n';
    608 }
    609 
    610 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
    611                                               raw_ostream &OS) {
    612   char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
    613 
    614   OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
    615   OS << "static const llvm::MCProcResourceDesc "
    616      << ProcModel.ModelName << "ProcResources" << "[] = {\n"
    617      << "  {DBGFIELD(\"InvalidUnit\")     0, 0, 0}" << Sep << "\n";
    618 
    619   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
    620     Record *PRDef = ProcModel.ProcResourceDefs[i];
    621 
    622     Record *SuperDef = nullptr;
    623     unsigned SuperIdx = 0;
    624     unsigned NumUnits = 0;
    625     int BufferSize = PRDef->getValueAsInt("BufferSize");
    626     if (PRDef->isSubClassOf("ProcResGroup")) {
    627       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
    628       for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
    629            RUI != RUE; ++RUI) {
    630         NumUnits += (*RUI)->getValueAsInt("NumUnits");
    631       }
    632     }
    633     else {
    634       // Find the SuperIdx
    635       if (PRDef->getValueInit("Super")->isComplete()) {
    636         SuperDef = SchedModels.findProcResUnits(
    637           PRDef->getValueAsDef("Super"), ProcModel);
    638         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
    639       }
    640       NumUnits = PRDef->getValueAsInt("NumUnits");
    641     }
    642     // Emit the ProcResourceDesc
    643     if (i+1 == e)
    644       Sep = ' ';
    645     OS << "  {DBGFIELD(\"" << PRDef->getName() << "\") ";
    646     if (PRDef->getName().size() < 15)
    647       OS.indent(15 - PRDef->getName().size());
    648     OS << NumUnits << ", " << SuperIdx << ", "
    649        << BufferSize << "}" << Sep << " // #" << i+1;
    650     if (SuperDef)
    651       OS << ", Super=" << SuperDef->getName();
    652     OS << "\n";
    653   }
    654   OS << "};\n";
    655 }
    656 
    657 // Find the WriteRes Record that defines processor resources for this
    658 // SchedWrite.
    659 Record *SubtargetEmitter::FindWriteResources(
    660   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
    661 
    662   // Check if the SchedWrite is already subtarget-specific and directly
    663   // specifies a set of processor resources.
    664   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
    665     return SchedWrite.TheDef;
    666 
    667   Record *AliasDef = nullptr;
    668   for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
    669        AI != AE; ++AI) {
    670     const CodeGenSchedRW &AliasRW =
    671       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
    672     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
    673       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
    674       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
    675         continue;
    676     }
    677     if (AliasDef)
    678       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
    679                     "defined for processor " + ProcModel.ModelName +
    680                     " Ensure only one SchedAlias exists per RW.");
    681     AliasDef = AliasRW.TheDef;
    682   }
    683   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
    684     return AliasDef;
    685 
    686   // Check this processor's list of write resources.
    687   Record *ResDef = nullptr;
    688   for (RecIter WRI = ProcModel.WriteResDefs.begin(),
    689          WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
    690     if (!(*WRI)->isSubClassOf("WriteRes"))
    691       continue;
    692     if (AliasDef == (*WRI)->getValueAsDef("WriteType")
    693         || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
    694       if (ResDef) {
    695         PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
    696                       "SchedWrite and its alias on processor " +
    697                       ProcModel.ModelName);
    698       }
    699       ResDef = *WRI;
    700     }
    701   }
    702   // TODO: If ProcModel has a base model (previous generation processor),
    703   // then call FindWriteResources recursively with that model here.
    704   if (!ResDef) {
    705     PrintFatalError(ProcModel.ModelDef->getLoc(),
    706                   std::string("Processor does not define resources for ")
    707                   + SchedWrite.TheDef->getName());
    708   }
    709   return ResDef;
    710 }
    711 
    712 /// Find the ReadAdvance record for the given SchedRead on this processor or
    713 /// return NULL.
    714 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
    715                                           const CodeGenProcModel &ProcModel) {
    716   // Check for SchedReads that directly specify a ReadAdvance.
    717   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
    718     return SchedRead.TheDef;
    719 
    720   // Check this processor's list of aliases for SchedRead.
    721   Record *AliasDef = nullptr;
    722   for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
    723        AI != AE; ++AI) {
    724     const CodeGenSchedRW &AliasRW =
    725       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
    726     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
    727       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
    728       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
    729         continue;
    730     }
    731     if (AliasDef)
    732       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
    733                     "defined for processor " + ProcModel.ModelName +
    734                     " Ensure only one SchedAlias exists per RW.");
    735     AliasDef = AliasRW.TheDef;
    736   }
    737   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
    738     return AliasDef;
    739 
    740   // Check this processor's ReadAdvanceList.
    741   Record *ResDef = nullptr;
    742   for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
    743          RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
    744     if (!(*RAI)->isSubClassOf("ReadAdvance"))
    745       continue;
    746     if (AliasDef == (*RAI)->getValueAsDef("ReadType")
    747         || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
    748       if (ResDef) {
    749         PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
    750                       "SchedRead and its alias on processor " +
    751                       ProcModel.ModelName);
    752       }
    753       ResDef = *RAI;
    754     }
    755   }
    756   // TODO: If ProcModel has a base model (previous generation processor),
    757   // then call FindReadAdvance recursively with that model here.
    758   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
    759     PrintFatalError(ProcModel.ModelDef->getLoc(),
    760                   std::string("Processor does not define resources for ")
    761                   + SchedRead.TheDef->getName());
    762   }
    763   return ResDef;
    764 }
    765 
    766 // Expand an explicit list of processor resources into a full list of implied
    767 // resource groups and super resources that cover them.
    768 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
    769                                            std::vector<int64_t> &Cycles,
    770                                            const CodeGenProcModel &PM) {
    771   // Default to 1 resource cycle.
    772   Cycles.resize(PRVec.size(), 1);
    773   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
    774     Record *PRDef = PRVec[i];
    775     RecVec SubResources;
    776     if (PRDef->isSubClassOf("ProcResGroup"))
    777       SubResources = PRDef->getValueAsListOfDefs("Resources");
    778     else {
    779       SubResources.push_back(PRDef);
    780       PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
    781       for (Record *SubDef = PRDef;
    782            SubDef->getValueInit("Super")->isComplete();) {
    783         if (SubDef->isSubClassOf("ProcResGroup")) {
    784           // Disallow this for simplicitly.
    785           PrintFatalError(SubDef->getLoc(), "Processor resource group "
    786                           " cannot be a super resources.");
    787         }
    788         Record *SuperDef =
    789           SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
    790         PRVec.push_back(SuperDef);
    791         Cycles.push_back(Cycles[i]);
    792         SubDef = SuperDef;
    793       }
    794     }
    795     for (RecIter PRI = PM.ProcResourceDefs.begin(),
    796            PRE = PM.ProcResourceDefs.end();
    797          PRI != PRE; ++PRI) {
    798       if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup"))
    799         continue;
    800       RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
    801       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
    802       for( ; SubI != SubE; ++SubI) {
    803         if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
    804             == SuperResources.end()) {
    805           break;
    806         }
    807       }
    808       if (SubI == SubE) {
    809         PRVec.push_back(*PRI);
    810         Cycles.push_back(Cycles[i]);
    811       }
    812     }
    813   }
    814 }
    815 
    816 // Generate the SchedClass table for this processor and update global
    817 // tables. Must be called for each processor in order.
    818 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
    819                                            SchedClassTables &SchedTables) {
    820   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
    821   if (!ProcModel.hasInstrSchedModel())
    822     return;
    823 
    824   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
    825   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
    826          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
    827     DEBUG(SCI->dump(&SchedModels));
    828 
    829     SCTab.resize(SCTab.size() + 1);
    830     MCSchedClassDesc &SCDesc = SCTab.back();
    831     // SCDesc.Name is guarded by NDEBUG
    832     SCDesc.NumMicroOps = 0;
    833     SCDesc.BeginGroup = false;
    834     SCDesc.EndGroup = false;
    835     SCDesc.WriteProcResIdx = 0;
    836     SCDesc.WriteLatencyIdx = 0;
    837     SCDesc.ReadAdvanceIdx = 0;
    838 
    839     // A Variant SchedClass has no resources of its own.
    840     bool HasVariants = false;
    841     for (std::vector<CodeGenSchedTransition>::const_iterator
    842            TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
    843          TI != TE; ++TI) {
    844       if (TI->ProcIndices[0] == 0) {
    845         HasVariants = true;
    846         break;
    847       }
    848       IdxIter PIPos = std::find(TI->ProcIndices.begin(),
    849                                 TI->ProcIndices.end(), ProcModel.Index);
    850       if (PIPos != TI->ProcIndices.end()) {
    851         HasVariants = true;
    852         break;
    853       }
    854     }
    855     if (HasVariants) {
    856       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
    857       continue;
    858     }
    859 
    860     // Determine if the SchedClass is actually reachable on this processor. If
    861     // not don't try to locate the processor resources, it will fail.
    862     // If ProcIndices contains 0, this class applies to all processors.
    863     assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
    864     if (SCI->ProcIndices[0] != 0) {
    865       IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
    866                                 SCI->ProcIndices.end(), ProcModel.Index);
    867       if (PIPos == SCI->ProcIndices.end())
    868         continue;
    869     }
    870     IdxVec Writes = SCI->Writes;
    871     IdxVec Reads = SCI->Reads;
    872     if (!SCI->InstRWs.empty()) {
    873       // This class has a default ReadWrite list which can be overriden by
    874       // InstRW definitions.
    875       Record *RWDef = nullptr;
    876       for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
    877            RWI != RWE; ++RWI) {
    878         Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
    879         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
    880           RWDef = *RWI;
    881           break;
    882         }
    883       }
    884       if (RWDef) {
    885         Writes.clear();
    886         Reads.clear();
    887         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
    888                             Writes, Reads);
    889       }
    890     }
    891     if (Writes.empty()) {
    892       // Check this processor's itinerary class resources.
    893       for (RecIter II = ProcModel.ItinRWDefs.begin(),
    894              IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
    895         RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
    896         if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
    897             != Matched.end()) {
    898           SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
    899                               Writes, Reads);
    900           break;
    901         }
    902       }
    903       if (Writes.empty()) {
    904         DEBUG(dbgs() << ProcModel.ModelName
    905               << " does not have resources for class " << SCI->Name << '\n');
    906       }
    907     }
    908     // Sum resources across all operand writes.
    909     std::vector<MCWriteProcResEntry> WriteProcResources;
    910     std::vector<MCWriteLatencyEntry> WriteLatencies;
    911     std::vector<std::string> WriterNames;
    912     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
    913     for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
    914       IdxVec WriteSeq;
    915       SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
    916                                      ProcModel);
    917 
    918       // For each operand, create a latency entry.
    919       MCWriteLatencyEntry WLEntry;
    920       WLEntry.Cycles = 0;
    921       unsigned WriteID = WriteSeq.back();
    922       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
    923       // If this Write is not referenced by a ReadAdvance, don't distinguish it
    924       // from other WriteLatency entries.
    925       if (!SchedModels.hasReadOfWrite(
    926             SchedModels.getSchedWrite(WriteID).TheDef)) {
    927         WriteID = 0;
    928       }
    929       WLEntry.WriteResourceID = WriteID;
    930 
    931       for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
    932            WSI != WSE; ++WSI) {
    933 
    934         Record *WriteRes =
    935           FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
    936 
    937         // Mark the parent class as invalid for unsupported write types.
    938         if (WriteRes->getValueAsBit("Unsupported")) {
    939           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
    940           break;
    941         }
    942         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
    943         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
    944         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
    945         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
    946 
    947         // Create an entry for each ProcResource listed in WriteRes.
    948         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
    949         std::vector<int64_t> Cycles =
    950           WriteRes->getValueAsListOfInts("ResourceCycles");
    951 
    952         ExpandProcResources(PRVec, Cycles, ProcModel);
    953 
    954         for (unsigned PRIdx = 0, PREnd = PRVec.size();
    955              PRIdx != PREnd; ++PRIdx) {
    956           MCWriteProcResEntry WPREntry;
    957           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
    958           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
    959           WPREntry.Cycles = Cycles[PRIdx];
    960           // If this resource is already used in this sequence, add the current
    961           // entry's cycles so that the same resource appears to be used
    962           // serially, rather than multiple parallel uses. This is important for
    963           // in-order machine where the resource consumption is a hazard.
    964           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
    965           for( ; WPRIdx != WPREnd; ++WPRIdx) {
    966             if (WriteProcResources[WPRIdx].ProcResourceIdx
    967                 == WPREntry.ProcResourceIdx) {
    968               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
    969               break;
    970             }
    971           }
    972           if (WPRIdx == WPREnd)
    973             WriteProcResources.push_back(WPREntry);
    974         }
    975       }
    976       WriteLatencies.push_back(WLEntry);
    977     }
    978     // Create an entry for each operand Read in this SchedClass.
    979     // Entries must be sorted first by UseIdx then by WriteResourceID.
    980     for (unsigned UseIdx = 0, EndIdx = Reads.size();
    981          UseIdx != EndIdx; ++UseIdx) {
    982       Record *ReadAdvance =
    983         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
    984       if (!ReadAdvance)
    985         continue;
    986 
    987       // Mark the parent class as invalid for unsupported write types.
    988       if (ReadAdvance->getValueAsBit("Unsupported")) {
    989         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
    990         break;
    991       }
    992       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
    993       IdxVec WriteIDs;
    994       if (ValidWrites.empty())
    995         WriteIDs.push_back(0);
    996       else {
    997         for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
    998              VWI != VWE; ++VWI) {
    999           WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
   1000         }
   1001       }
   1002       std::sort(WriteIDs.begin(), WriteIDs.end());
   1003       for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
   1004         MCReadAdvanceEntry RAEntry;
   1005         RAEntry.UseIdx = UseIdx;
   1006         RAEntry.WriteResourceID = *WI;
   1007         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
   1008         ReadAdvanceEntries.push_back(RAEntry);
   1009       }
   1010     }
   1011     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
   1012       WriteProcResources.clear();
   1013       WriteLatencies.clear();
   1014       ReadAdvanceEntries.clear();
   1015     }
   1016     // Add the information for this SchedClass to the global tables using basic
   1017     // compression.
   1018     //
   1019     // WritePrecRes entries are sorted by ProcResIdx.
   1020     std::sort(WriteProcResources.begin(), WriteProcResources.end(),
   1021               LessWriteProcResources());
   1022 
   1023     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
   1024     std::vector<MCWriteProcResEntry>::iterator WPRPos =
   1025       std::search(SchedTables.WriteProcResources.begin(),
   1026                   SchedTables.WriteProcResources.end(),
   1027                   WriteProcResources.begin(), WriteProcResources.end());
   1028     if (WPRPos != SchedTables.WriteProcResources.end())
   1029       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
   1030     else {
   1031       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
   1032       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
   1033                                             WriteProcResources.end());
   1034     }
   1035     // Latency entries must remain in operand order.
   1036     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
   1037     std::vector<MCWriteLatencyEntry>::iterator WLPos =
   1038       std::search(SchedTables.WriteLatencies.begin(),
   1039                   SchedTables.WriteLatencies.end(),
   1040                   WriteLatencies.begin(), WriteLatencies.end());
   1041     if (WLPos != SchedTables.WriteLatencies.end()) {
   1042       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
   1043       SCDesc.WriteLatencyIdx = idx;
   1044       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
   1045         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
   1046             std::string::npos) {
   1047           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
   1048         }
   1049     }
   1050     else {
   1051       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
   1052       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
   1053                                         WriteLatencies.begin(),
   1054                                         WriteLatencies.end());
   1055       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
   1056                                      WriterNames.begin(), WriterNames.end());
   1057     }
   1058     // ReadAdvanceEntries must remain in operand order.
   1059     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
   1060     std::vector<MCReadAdvanceEntry>::iterator RAPos =
   1061       std::search(SchedTables.ReadAdvanceEntries.begin(),
   1062                   SchedTables.ReadAdvanceEntries.end(),
   1063                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
   1064     if (RAPos != SchedTables.ReadAdvanceEntries.end())
   1065       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
   1066     else {
   1067       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
   1068       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
   1069                                             ReadAdvanceEntries.end());
   1070     }
   1071   }
   1072 }
   1073 
   1074 // Emit SchedClass tables for all processors and associated global tables.
   1075 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
   1076                                             raw_ostream &OS) {
   1077   // Emit global WriteProcResTable.
   1078   OS << "\n// {ProcResourceIdx, Cycles}\n"
   1079      << "extern const llvm::MCWriteProcResEntry "
   1080      << Target << "WriteProcResTable[] = {\n"
   1081      << "  { 0,  0}, // Invalid\n";
   1082   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
   1083        WPRIdx != WPREnd; ++WPRIdx) {
   1084     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
   1085     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
   1086        << format("%2d", WPREntry.Cycles) << "}";
   1087     if (WPRIdx + 1 < WPREnd)
   1088       OS << ',';
   1089     OS << " // #" << WPRIdx << '\n';
   1090   }
   1091   OS << "}; // " << Target << "WriteProcResTable\n";
   1092 
   1093   // Emit global WriteLatencyTable.
   1094   OS << "\n// {Cycles, WriteResourceID}\n"
   1095      << "extern const llvm::MCWriteLatencyEntry "
   1096      << Target << "WriteLatencyTable[] = {\n"
   1097      << "  { 0,  0}, // Invalid\n";
   1098   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
   1099        WLIdx != WLEnd; ++WLIdx) {
   1100     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
   1101     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
   1102        << format("%2d", WLEntry.WriteResourceID) << "}";
   1103     if (WLIdx + 1 < WLEnd)
   1104       OS << ',';
   1105     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
   1106   }
   1107   OS << "}; // " << Target << "WriteLatencyTable\n";
   1108 
   1109   // Emit global ReadAdvanceTable.
   1110   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
   1111      << "extern const llvm::MCReadAdvanceEntry "
   1112      << Target << "ReadAdvanceTable[] = {\n"
   1113      << "  {0,  0,  0}, // Invalid\n";
   1114   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
   1115        RAIdx != RAEnd; ++RAIdx) {
   1116     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
   1117     OS << "  {" << RAEntry.UseIdx << ", "
   1118        << format("%2d", RAEntry.WriteResourceID) << ", "
   1119        << format("%2d", RAEntry.Cycles) << "}";
   1120     if (RAIdx + 1 < RAEnd)
   1121       OS << ',';
   1122     OS << " // #" << RAIdx << '\n';
   1123   }
   1124   OS << "}; // " << Target << "ReadAdvanceTable\n";
   1125 
   1126   // Emit a SchedClass table for each processor.
   1127   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
   1128          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
   1129     if (!PI->hasInstrSchedModel())
   1130       continue;
   1131 
   1132     std::vector<MCSchedClassDesc> &SCTab =
   1133       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
   1134 
   1135     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
   1136        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
   1137     OS << "static const llvm::MCSchedClassDesc "
   1138        << PI->ModelName << "SchedClasses[] = {\n";
   1139 
   1140     // The first class is always invalid. We no way to distinguish it except by
   1141     // name and position.
   1142     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
   1143            && "invalid class not first");
   1144     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
   1145        << MCSchedClassDesc::InvalidNumMicroOps
   1146        << ", 0, 0,  0, 0,  0, 0,  0, 0},\n";
   1147 
   1148     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
   1149       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
   1150       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
   1151       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
   1152       if (SchedClass.Name.size() < 18)
   1153         OS.indent(18 - SchedClass.Name.size());
   1154       OS << MCDesc.NumMicroOps
   1155          << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
   1156          << ", " << format("%2d", MCDesc.WriteProcResIdx)
   1157          << ", " << MCDesc.NumWriteProcResEntries
   1158          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
   1159          << ", " << MCDesc.NumWriteLatencyEntries
   1160          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
   1161          << ", " << MCDesc.NumReadAdvanceEntries << "}";
   1162       if (SCIdx + 1 < SCEnd)
   1163         OS << ',';
   1164       OS << " // #" << SCIdx << '\n';
   1165     }
   1166     OS << "}; // " << PI->ModelName << "SchedClasses\n";
   1167   }
   1168 }
   1169 
   1170 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
   1171   // For each processor model.
   1172   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
   1173          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
   1174     // Emit processor resource table.
   1175     if (PI->hasInstrSchedModel())
   1176       EmitProcessorResources(*PI, OS);
   1177     else if(!PI->ProcResourceDefs.empty())
   1178       PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
   1179                     "ProcResources without defining WriteRes SchedWriteRes");
   1180 
   1181     // Begin processor itinerary properties
   1182     OS << "\n";
   1183     OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n";
   1184     EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
   1185     EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ',');
   1186     EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ',');
   1187     EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
   1188     EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
   1189     EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
   1190 
   1191     OS << "  " << (bool)(PI->ModelDef ?
   1192                          PI->ModelDef->getValueAsBit("PostRAScheduler") : 0)
   1193        << ", // " << "PostRAScheduler\n";
   1194 
   1195     OS << "  " << (bool)(PI->ModelDef ?
   1196                          PI->ModelDef->getValueAsBit("CompleteModel") : 0)
   1197        << ", // " << "CompleteModel\n";
   1198 
   1199     OS << "  " << PI->Index << ", // Processor ID\n";
   1200     if (PI->hasInstrSchedModel())
   1201       OS << "  " << PI->ModelName << "ProcResources" << ",\n"
   1202          << "  " << PI->ModelName << "SchedClasses" << ",\n"
   1203          << "  " << PI->ProcResourceDefs.size()+1 << ",\n"
   1204          << "  " << (SchedModels.schedClassEnd()
   1205                      - SchedModels.schedClassBegin()) << ",\n";
   1206     else
   1207       OS << "  0, 0, 0, 0, // No instruction-level machine model.\n";
   1208     if (PI->hasItineraries())
   1209       OS << "  " << PI->ItinsDef->getName() << "};\n";
   1210     else
   1211       OS << "  nullptr}; // No Itinerary\n";
   1212   }
   1213 }
   1214 
   1215 //
   1216 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
   1217 //
   1218 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
   1219   // Gather and sort processor information
   1220   std::vector<Record*> ProcessorList =
   1221                           Records.getAllDerivedDefinitions("Processor");
   1222   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
   1223 
   1224   // Begin processor table
   1225   OS << "\n";
   1226   OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
   1227      << "extern const llvm::SubtargetInfoKV "
   1228      << Target << "ProcSchedKV[] = {\n";
   1229 
   1230   // For each processor
   1231   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
   1232     // Next processor
   1233     Record *Processor = ProcessorList[i];
   1234 
   1235     const std::string &Name = Processor->getValueAsString("Name");
   1236     const std::string &ProcModelName =
   1237       SchedModels.getModelForProc(Processor).ModelName;
   1238 
   1239     // Emit as { "cpu", procinit },
   1240     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
   1241 
   1242     // Depending on ''if more in the list'' emit comma
   1243     if (++i < N) OS << ",";
   1244 
   1245     OS << "\n";
   1246   }
   1247 
   1248   // End processor table
   1249   OS << "};\n";
   1250 }
   1251 
   1252 //
   1253 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
   1254 //
   1255 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
   1256   OS << "#ifdef DBGFIELD\n"
   1257      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
   1258      << "#endif\n"
   1259      << "#ifndef NDEBUG\n"
   1260      << "#define DBGFIELD(x) x,\n"
   1261      << "#else\n"
   1262      << "#define DBGFIELD(x)\n"
   1263      << "#endif\n";
   1264 
   1265   if (SchedModels.hasItineraries()) {
   1266     std::vector<std::vector<InstrItinerary> > ProcItinLists;
   1267     // Emit the stage data
   1268     EmitStageAndOperandCycleData(OS, ProcItinLists);
   1269     EmitItineraries(OS, ProcItinLists);
   1270   }
   1271   OS << "\n// ===============================================================\n"
   1272      << "// Data tables for the new per-operand machine model.\n";
   1273 
   1274   SchedClassTables SchedTables;
   1275   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
   1276          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
   1277     GenSchedClassTables(*PI, SchedTables);
   1278   }
   1279   EmitSchedClassTables(SchedTables, OS);
   1280 
   1281   // Emit the processor machine model
   1282   EmitProcessorModels(OS);
   1283   // Emit the processor lookup data
   1284   EmitProcessorLookup(OS);
   1285 
   1286   OS << "#undef DBGFIELD";
   1287 }
   1288 
   1289 void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
   1290                                              raw_ostream &OS) {
   1291   OS << "unsigned " << ClassName
   1292      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
   1293      << " const TargetSchedModel *SchedModel) const {\n";
   1294 
   1295   std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
   1296   std::sort(Prologs.begin(), Prologs.end(), LessRecord());
   1297   for (std::vector<Record*>::const_iterator
   1298          PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
   1299     OS << (*PI)->getValueAsString("Code") << '\n';
   1300   }
   1301   IdxVec VariantClasses;
   1302   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
   1303          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
   1304     if (SCI->Transitions.empty())
   1305       continue;
   1306     VariantClasses.push_back(SCI->Index);
   1307   }
   1308   if (!VariantClasses.empty()) {
   1309     OS << "  switch (SchedClass) {\n";
   1310     for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
   1311          VCI != VCE; ++VCI) {
   1312       const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
   1313       OS << "  case " << *VCI << ": // " << SC.Name << '\n';
   1314       IdxVec ProcIndices;
   1315       for (std::vector<CodeGenSchedTransition>::const_iterator
   1316              TI = SC.Transitions.begin(), TE = SC.Transitions.end();
   1317            TI != TE; ++TI) {
   1318         IdxVec PI;
   1319         std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
   1320                        ProcIndices.begin(), ProcIndices.end(),
   1321                        std::back_inserter(PI));
   1322         ProcIndices.swap(PI);
   1323       }
   1324       for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
   1325            PI != PE; ++PI) {
   1326         OS << "    ";
   1327         if (*PI != 0)
   1328           OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
   1329         OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
   1330            << '\n';
   1331         for (std::vector<CodeGenSchedTransition>::const_iterator
   1332                TI = SC.Transitions.begin(), TE = SC.Transitions.end();
   1333              TI != TE; ++TI) {
   1334           if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
   1335                                       TI->ProcIndices.end(), *PI)) {
   1336               continue;
   1337           }
   1338           OS << "      if (";
   1339           for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
   1340                RI != RE; ++RI) {
   1341             if (RI != TI->PredTerm.begin())
   1342               OS << "\n          && ";
   1343             OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
   1344           }
   1345           OS << ")\n"
   1346              << "        return " << TI->ToClassIdx << "; // "
   1347              << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
   1348         }
   1349         OS << "    }\n";
   1350         if (*PI == 0)
   1351           break;
   1352       }
   1353       if (SC.isInferred())
   1354         OS << "    return " << SC.Index << ";\n";
   1355       OS << "    break;\n";
   1356     }
   1357     OS << "  };\n";
   1358   }
   1359   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
   1360      << "} // " << ClassName << "::resolveSchedClass\n";
   1361 }
   1362 
   1363 //
   1364 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
   1365 // the subtarget features string.
   1366 //
   1367 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
   1368                                              unsigned NumFeatures,
   1369                                              unsigned NumProcs) {
   1370   std::vector<Record*> Features =
   1371                        Records.getAllDerivedDefinitions("SubtargetFeature");
   1372   std::sort(Features.begin(), Features.end(), LessRecord());
   1373 
   1374   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
   1375      << "// subtarget options.\n"
   1376      << "void llvm::";
   1377   OS << Target;
   1378   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
   1379      << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
   1380      << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
   1381 
   1382   if (Features.empty()) {
   1383     OS << "}\n";
   1384     return;
   1385   }
   1386 
   1387   OS << "  InitMCProcessorInfo(CPU, FS);\n"
   1388      << "  uint64_t Bits = getFeatureBits();\n";
   1389 
   1390   for (unsigned i = 0; i < Features.size(); i++) {
   1391     // Next record
   1392     Record *R = Features[i];
   1393     const std::string &Instance = R->getName();
   1394     const std::string &Value = R->getValueAsString("Value");
   1395     const std::string &Attribute = R->getValueAsString("Attribute");
   1396 
   1397     if (Value=="true" || Value=="false")
   1398       OS << "  if ((Bits & " << Target << "::"
   1399          << Instance << ") != 0) "
   1400          << Attribute << " = " << Value << ";\n";
   1401     else
   1402       OS << "  if ((Bits & " << Target << "::"
   1403          << Instance << ") != 0 && "
   1404          << Attribute << " < " << Value << ") "
   1405          << Attribute << " = " << Value << ";\n";
   1406   }
   1407 
   1408   OS << "}\n";
   1409 }
   1410 
   1411 //
   1412 // SubtargetEmitter::run - Main subtarget enumeration emitter.
   1413 //
   1414 void SubtargetEmitter::run(raw_ostream &OS) {
   1415   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
   1416 
   1417   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
   1418   OS << "#undef GET_SUBTARGETINFO_ENUM\n";
   1419 
   1420   OS << "namespace llvm {\n";
   1421   Enumeration(OS, "SubtargetFeature", true);
   1422   OS << "} // End llvm namespace \n";
   1423   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
   1424 
   1425   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
   1426   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
   1427 
   1428   OS << "namespace llvm {\n";
   1429 #if 0
   1430   OS << "namespace {\n";
   1431 #endif
   1432   unsigned NumFeatures = FeatureKeyValues(OS);
   1433   OS << "\n";
   1434   unsigned NumProcs = CPUKeyValues(OS);
   1435   OS << "\n";
   1436   EmitSchedModel(OS);
   1437   OS << "\n";
   1438 #if 0
   1439   OS << "}\n";
   1440 #endif
   1441 
   1442   // MCInstrInfo initialization routine.
   1443   OS << "static inline void Init" << Target
   1444      << "MCSubtargetInfo(MCSubtargetInfo *II, "
   1445      << "StringRef TT, StringRef CPU, StringRef FS) {\n";
   1446   OS << "  II->InitMCSubtargetInfo(TT, CPU, FS, ";
   1447   if (NumFeatures)
   1448     OS << Target << "FeatureKV, ";
   1449   else
   1450     OS << "None, ";
   1451   if (NumProcs)
   1452     OS << Target << "SubTypeKV, ";
   1453   else
   1454     OS << "None, ";
   1455   OS << '\n'; OS.indent(22);
   1456   OS << Target << "ProcSchedKV, "
   1457      << Target << "WriteProcResTable, "
   1458      << Target << "WriteLatencyTable, "
   1459      << Target << "ReadAdvanceTable, ";
   1460   if (SchedModels.hasItineraries()) {
   1461     OS << '\n'; OS.indent(22);
   1462     OS << Target << "Stages, "
   1463        << Target << "OperandCycles, "
   1464        << Target << "ForwardingPaths";
   1465   } else
   1466     OS << "0, 0, 0";
   1467   OS << ");\n}\n\n";
   1468 
   1469   OS << "} // End llvm namespace \n";
   1470 
   1471   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
   1472 
   1473   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
   1474   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
   1475 
   1476   OS << "#include \"llvm/Support/Debug.h\"\n";
   1477   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
   1478   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
   1479 
   1480   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
   1481 
   1482   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
   1483   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
   1484   OS << "#undef GET_SUBTARGETINFO_HEADER\n";
   1485 
   1486   std::string ClassName = Target + "GenSubtargetInfo";
   1487   OS << "namespace llvm {\n";
   1488   OS << "class DFAPacketizer;\n";
   1489   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
   1490      << "  explicit " << ClassName << "(StringRef TT, StringRef CPU, "
   1491      << "StringRef FS);\n"
   1492      << "public:\n"
   1493      << "  unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI,"
   1494      << " const TargetSchedModel *SchedModel) const override;\n"
   1495      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
   1496      << " const;\n"
   1497      << "};\n";
   1498   OS << "} // End llvm namespace \n";
   1499 
   1500   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
   1501 
   1502   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
   1503   OS << "#undef GET_SUBTARGETINFO_CTOR\n";
   1504 
   1505   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
   1506   OS << "namespace llvm {\n";
   1507   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
   1508   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
   1509   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
   1510   OS << "extern const llvm::MCWriteProcResEntry "
   1511      << Target << "WriteProcResTable[];\n";
   1512   OS << "extern const llvm::MCWriteLatencyEntry "
   1513      << Target << "WriteLatencyTable[];\n";
   1514   OS << "extern const llvm::MCReadAdvanceEntry "
   1515      << Target << "ReadAdvanceTable[];\n";
   1516 
   1517   if (SchedModels.hasItineraries()) {
   1518     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
   1519     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
   1520     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
   1521   }
   1522 
   1523   OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, "
   1524      << "StringRef FS)\n"
   1525      << "  : TargetSubtargetInfo() {\n"
   1526      << "  InitMCSubtargetInfo(TT, CPU, FS, ";
   1527   if (NumFeatures)
   1528     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
   1529   else
   1530     OS << "None, ";
   1531   if (NumProcs)
   1532     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
   1533   else
   1534     OS << "None, ";
   1535   OS << '\n'; OS.indent(22);
   1536   OS << Target << "ProcSchedKV, "
   1537      << Target << "WriteProcResTable, "
   1538      << Target << "WriteLatencyTable, "
   1539      << Target << "ReadAdvanceTable, ";
   1540   OS << '\n'; OS.indent(22);
   1541   if (SchedModels.hasItineraries()) {
   1542     OS << Target << "Stages, "
   1543        << Target << "OperandCycles, "
   1544        << Target << "ForwardingPaths";
   1545   } else
   1546     OS << "0, 0, 0";
   1547   OS << ");\n}\n\n";
   1548 
   1549   EmitSchedModelHelpers(ClassName, OS);
   1550 
   1551   OS << "} // End llvm namespace \n";
   1552 
   1553   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
   1554 }
   1555 
   1556 namespace llvm {
   1557 
   1558 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
   1559   CodeGenTarget CGTarget(RK);
   1560   SubtargetEmitter(RK, CGTarget).run(OS);
   1561 }
   1562 
   1563 } // End llvm namespace
   1564