Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
     16 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
     17 
     18 #include "SystemZ.h"
     19 #include "llvm/CodeGen/MachineBasicBlock.h"
     20 #include "llvm/CodeGen/SelectionDAG.h"
     21 #include "llvm/Target/TargetLowering.h"
     22 
     23 namespace llvm {
     24 namespace SystemZISD {
     25 enum {
     26   FIRST_NUMBER = ISD::BUILTIN_OP_END,
     27 
     28   // Return with a flag operand.  Operand 0 is the chain operand.
     29   RET_FLAG,
     30 
     31   // Calls a function.  Operand 0 is the chain operand and operand 1
     32   // is the target address.  The arguments start at operand 2.
     33   // There is an optional glue operand at the end.
     34   CALL,
     35   SIBCALL,
     36 
     37   // TLS calls.  Like regular calls, except operand 1 is the TLS symbol.
     38   // (The call target is implicitly __tls_get_offset.)
     39   TLS_GDCALL,
     40   TLS_LDCALL,
     41 
     42   // Wraps a TargetGlobalAddress that should be loaded using PC-relative
     43   // accesses (LARL).  Operand 0 is the address.
     44   PCREL_WRAPPER,
     45 
     46   // Used in cases where an offset is applied to a TargetGlobalAddress.
     47   // Operand 0 is the full TargetGlobalAddress and operand 1 is a
     48   // PCREL_WRAPPER for an anchor point.  This is used so that we can
     49   // cheaply refer to either the full address or the anchor point
     50   // as a register base.
     51   PCREL_OFFSET,
     52 
     53   // Integer absolute.
     54   IABS,
     55 
     56   // Integer comparisons.  There are three operands: the two values
     57   // to compare, and an integer of type SystemZICMP.
     58   ICMP,
     59 
     60   // Floating-point comparisons.  The two operands are the values to compare.
     61   FCMP,
     62 
     63   // Test under mask.  The first operand is ANDed with the second operand
     64   // and the condition codes are set on the result.  The third operand is
     65   // a boolean that is true if the condition codes need to distinguish
     66   // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
     67   // register forms do but the memory forms don't).
     68   TM,
     69 
     70   // Branches if a condition is true.  Operand 0 is the chain operand;
     71   // operand 1 is the 4-bit condition-code mask, with bit N in
     72   // big-endian order meaning "branch if CC=N"; operand 2 is the
     73   // target block and operand 3 is the flag operand.
     74   BR_CCMASK,
     75 
     76   // Selects between operand 0 and operand 1.  Operand 2 is the
     77   // mask of condition-code values for which operand 0 should be
     78   // chosen over operand 1; it has the same form as BR_CCMASK.
     79   // Operand 3 is the flag operand.
     80   SELECT_CCMASK,
     81 
     82   // Evaluates to the gap between the stack pointer and the
     83   // base of the dynamically-allocatable area.
     84   ADJDYNALLOC,
     85 
     86   // Extracts the value of a 32-bit access register.  Operand 0 is
     87   // the number of the register.
     88   EXTRACT_ACCESS,
     89 
     90   // Count number of bits set in operand 0 per byte.
     91   POPCNT,
     92 
     93   // Wrappers around the ISD opcodes of the same name.  The output and
     94   // first input operands are GR128s.  The trailing numbers are the
     95   // widths of the second operand in bits.
     96   UMUL_LOHI64,
     97   SDIVREM32,
     98   SDIVREM64,
     99   UDIVREM32,
    100   UDIVREM64,
    101 
    102   // Use a series of MVCs to copy bytes from one memory location to another.
    103   // The operands are:
    104   // - the target address
    105   // - the source address
    106   // - the constant length
    107   //
    108   // This isn't a memory opcode because we'd need to attach two
    109   // MachineMemOperands rather than one.
    110   MVC,
    111 
    112   // Like MVC, but implemented as a loop that handles X*256 bytes
    113   // followed by straight-line code to handle the rest (if any).
    114   // The value of X is passed as an additional operand.
    115   MVC_LOOP,
    116 
    117   // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
    118   NC,
    119   NC_LOOP,
    120   OC,
    121   OC_LOOP,
    122   XC,
    123   XC_LOOP,
    124 
    125   // Use CLC to compare two blocks of memory, with the same comments
    126   // as for MVC and MVC_LOOP.
    127   CLC,
    128   CLC_LOOP,
    129 
    130   // Use an MVST-based sequence to implement stpcpy().
    131   STPCPY,
    132 
    133   // Use a CLST-based sequence to implement strcmp().  The two input operands
    134   // are the addresses of the strings to compare.
    135   STRCMP,
    136 
    137   // Use an SRST-based sequence to search a block of memory.  The first
    138   // operand is the end address, the second is the start, and the third
    139   // is the character to search for.  CC is set to 1 on success and 2
    140   // on failure.
    141   SEARCH_STRING,
    142 
    143   // Store the CC value in bits 29 and 28 of an integer.
    144   IPM,
    145 
    146   // Perform a serialization operation.  (BCR 15,0 or BCR 14,0.)
    147   SERIALIZE,
    148 
    149   // Transaction begin.  The first operand is the chain, the second
    150   // the TDB pointer, and the third the immediate control field.
    151   // Returns chain and glue.
    152   TBEGIN,
    153   TBEGIN_NOFLOAT,
    154 
    155   // Transaction end.  Just the chain operand.  Returns chain and glue.
    156   TEND,
    157 
    158   // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
    159   // ATOMIC_LOAD_<op>.
    160   //
    161   // Operand 0: the address of the containing 32-bit-aligned field
    162   // Operand 1: the second operand of <op>, in the high bits of an i32
    163   //            for everything except ATOMIC_SWAPW
    164   // Operand 2: how many bits to rotate the i32 left to bring the first
    165   //            operand into the high bits
    166   // Operand 3: the negative of operand 2, for rotating the other way
    167   // Operand 4: the width of the field in bits (8 or 16)
    168   ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
    169   ATOMIC_LOADW_ADD,
    170   ATOMIC_LOADW_SUB,
    171   ATOMIC_LOADW_AND,
    172   ATOMIC_LOADW_OR,
    173   ATOMIC_LOADW_XOR,
    174   ATOMIC_LOADW_NAND,
    175   ATOMIC_LOADW_MIN,
    176   ATOMIC_LOADW_MAX,
    177   ATOMIC_LOADW_UMIN,
    178   ATOMIC_LOADW_UMAX,
    179 
    180   // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
    181   //
    182   // Operand 0: the address of the containing 32-bit-aligned field
    183   // Operand 1: the compare value, in the low bits of an i32
    184   // Operand 2: the swap value, in the low bits of an i32
    185   // Operand 3: how many bits to rotate the i32 left to bring the first
    186   //            operand into the high bits
    187   // Operand 4: the negative of operand 2, for rotating the other way
    188   // Operand 5: the width of the field in bits (8 or 16)
    189   ATOMIC_CMP_SWAPW,
    190 
    191   // Prefetch from the second operand using the 4-bit control code in
    192   // the first operand.  The code is 1 for a load prefetch and 2 for
    193   // a store prefetch.
    194   PREFETCH
    195 };
    196 
    197 // Return true if OPCODE is some kind of PC-relative address.
    198 inline bool isPCREL(unsigned Opcode) {
    199   return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
    200 }
    201 } // end namespace SystemZISD
    202 
    203 namespace SystemZICMP {
    204 // Describes whether an integer comparison needs to be signed or unsigned,
    205 // or whether either type is OK.
    206 enum {
    207   Any,
    208   UnsignedOnly,
    209   SignedOnly
    210 };
    211 } // end namespace SystemZICMP
    212 
    213 class SystemZSubtarget;
    214 class SystemZTargetMachine;
    215 
    216 class SystemZTargetLowering : public TargetLowering {
    217 public:
    218   explicit SystemZTargetLowering(const TargetMachine &TM,
    219                                  const SystemZSubtarget &STI);
    220 
    221   // Override TargetLowering.
    222   MVT getScalarShiftAmountTy(EVT LHSTy) const override {
    223     return MVT::i32;
    224   }
    225   EVT getSetCCResultType(LLVMContext &, EVT) const override;
    226   bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    227   bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
    228   bool isLegalICmpImmediate(int64_t Imm) const override;
    229   bool isLegalAddImmediate(int64_t Imm) const override;
    230   bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
    231   bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
    232                                       unsigned Align,
    233                                       bool *Fast) const override;
    234   bool isTruncateFree(Type *, Type *) const override;
    235   bool isTruncateFree(EVT, EVT) const override;
    236   const char *getTargetNodeName(unsigned Opcode) const override;
    237   std::pair<unsigned, const TargetRegisterClass *>
    238   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    239                                const std::string &Constraint,
    240                                MVT VT) const override;
    241   TargetLowering::ConstraintType
    242     getConstraintType(const std::string &Constraint) const override;
    243   TargetLowering::ConstraintWeight
    244     getSingleConstraintMatchWeight(AsmOperandInfo &info,
    245                                    const char *constraint) const override;
    246   void LowerAsmOperandForConstraint(SDValue Op,
    247                                     std::string &Constraint,
    248                                     std::vector<SDValue> &Ops,
    249                                     SelectionDAG &DAG) const override;
    250 
    251   unsigned getInlineAsmMemConstraint(
    252       const std::string &ConstraintCode) const override {
    253     if (ConstraintCode.size() == 1) {
    254       switch(ConstraintCode[0]) {
    255       default:
    256         break;
    257       case 'Q':
    258         return InlineAsm::Constraint_Q;
    259       case 'R':
    260         return InlineAsm::Constraint_R;
    261       case 'S':
    262         return InlineAsm::Constraint_S;
    263       case 'T':
    264         return InlineAsm::Constraint_T;
    265       }
    266     }
    267     return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    268   }
    269 
    270   MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
    271                                                  MachineBasicBlock *BB) const
    272     override;
    273   SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    274   bool allowTruncateForTailCall(Type *, Type *) const override;
    275   bool mayBeEmittedAsTailCall(CallInst *CI) const override;
    276   SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
    277                                bool isVarArg,
    278                                const SmallVectorImpl<ISD::InputArg> &Ins,
    279                                SDLoc DL, SelectionDAG &DAG,
    280                                SmallVectorImpl<SDValue> &InVals) const override;
    281   SDValue LowerCall(CallLoweringInfo &CLI,
    282                     SmallVectorImpl<SDValue> &InVals) const override;
    283 
    284   SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    285                       const SmallVectorImpl<ISD::OutputArg> &Outs,
    286                       const SmallVectorImpl<SDValue> &OutVals,
    287                       SDLoc DL, SelectionDAG &DAG) const override;
    288   SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
    289                                       SelectionDAG &DAG) const override;
    290   SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    291 
    292 private:
    293   const SystemZSubtarget &Subtarget;
    294 
    295   // Implement LowerOperation for individual opcodes.
    296   SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    297   SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
    298   SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    299   SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
    300                              SelectionDAG &DAG) const;
    301   SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
    302                             SelectionDAG &DAG, unsigned Opcode,
    303                             SDValue GOTOffset) const;
    304   SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
    305                                 SelectionDAG &DAG) const;
    306   SDValue lowerBlockAddress(BlockAddressSDNode *Node,
    307                             SelectionDAG &DAG) const;
    308   SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
    309   SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
    310   SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    311   SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    312   SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    313   SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
    314   SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
    315   SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
    316   SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
    317   SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
    318   SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
    319   SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
    320   SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
    321   SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
    322   SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
    323                               unsigned Opcode) const;
    324   SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
    325   SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
    326   SDValue lowerLOAD_SEQUENCE_POINT(SDValue Op, SelectionDAG &DAG) const;
    327   SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
    328   SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
    329   SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
    330   SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    331 
    332   // If the last instruction before MBBI in MBB was some form of COMPARE,
    333   // try to replace it with a COMPARE AND BRANCH just before MBBI.
    334   // CCMask and Target are the BRC-like operands for the branch.
    335   // Return true if the change was made.
    336   bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
    337                                   MachineBasicBlock::iterator MBBI,
    338                                   unsigned CCMask,
    339                                   MachineBasicBlock *Target) const;
    340 
    341   // Implement EmitInstrWithCustomInserter for individual operation types.
    342   MachineBasicBlock *emitSelect(MachineInstr *MI,
    343                                 MachineBasicBlock *BB) const;
    344   MachineBasicBlock *emitCondStore(MachineInstr *MI,
    345                                    MachineBasicBlock *BB,
    346                                    unsigned StoreOpcode, unsigned STOCOpcode,
    347                                    bool Invert) const;
    348   MachineBasicBlock *emitExt128(MachineInstr *MI,
    349                                 MachineBasicBlock *MBB,
    350                                 bool ClearEven, unsigned SubReg) const;
    351   MachineBasicBlock *emitAtomicLoadBinary(MachineInstr *MI,
    352                                           MachineBasicBlock *BB,
    353                                           unsigned BinOpcode, unsigned BitSize,
    354                                           bool Invert = false) const;
    355   MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr *MI,
    356                                           MachineBasicBlock *MBB,
    357                                           unsigned CompareOpcode,
    358                                           unsigned KeepOldMask,
    359                                           unsigned BitSize) const;
    360   MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr *MI,
    361                                         MachineBasicBlock *BB) const;
    362   MachineBasicBlock *emitMemMemWrapper(MachineInstr *MI,
    363                                        MachineBasicBlock *BB,
    364                                        unsigned Opcode) const;
    365   MachineBasicBlock *emitStringWrapper(MachineInstr *MI,
    366                                        MachineBasicBlock *BB,
    367                                        unsigned Opcode) const;
    368   MachineBasicBlock *emitTransactionBegin(MachineInstr *MI,
    369                                           MachineBasicBlock *MBB,
    370                                           unsigned Opcode,
    371                                           bool NoFloat) const;
    372 };
    373 } // end namespace llvm
    374 
    375 #endif
    376