Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     18 #define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     19 
     20 #include <algorithm>
     21 #include <cmath>
     22 #include <limits>
     23 #include <ostream>
     24 
     25 #include "histogram.h"
     26 
     27 #include "base/bit_utils.h"
     28 #include "base/time_utils.h"
     29 
     30 namespace art {
     31 
     32 template <class Value> inline void Histogram<Value>::AddValue(Value value) {
     33   CHECK_GE(value, static_cast<Value>(0));
     34   if (value >= max_) {
     35     Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
     36     DCHECK_GT(new_max, max_);
     37     GrowBuckets(new_max);
     38   }
     39   BucketiseValue(value);
     40 }
     41 
     42 template <class Value> inline void Histogram<Value>::AdjustAndAddValue(Value value) {
     43   AddValue(value / kAdjust);
     44 }
     45 
     46 template <class Value> inline Histogram<Value>::Histogram(const char* name)
     47     : kAdjust(0),
     48       kInitialBucketCount(0),
     49       name_(name),
     50       max_buckets_(0) {
     51 }
     52 
     53 template <class Value>
     54 inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width,
     55                                    size_t max_buckets)
     56     : kAdjust(1000),
     57       kInitialBucketCount(8),
     58       name_(name),
     59       max_buckets_(max_buckets),
     60       bucket_width_(initial_bucket_width) {
     61   Reset();
     62 }
     63 
     64 template <class Value>
     65 inline void Histogram<Value>::GrowBuckets(Value new_max) {
     66   while (max_ < new_max) {
     67     // If we have reached the maximum number of buckets, merge buckets together.
     68     if (frequency_.size() >= max_buckets_) {
     69       CHECK(IsAligned<2>(frequency_.size()));
     70       // We double the width of each bucket to reduce the number of buckets by a factor of 2.
     71       bucket_width_ *= 2;
     72       const size_t limit = frequency_.size() / 2;
     73       // Merge the frequencies by adding each adjacent two together.
     74       for (size_t i = 0; i < limit; ++i) {
     75         frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1];
     76       }
     77       // Remove frequencies in the second half of the array which were added to the first half.
     78       while (frequency_.size() > limit) {
     79         frequency_.pop_back();
     80       }
     81     }
     82     max_ += bucket_width_;
     83     frequency_.push_back(0);
     84   }
     85 }
     86 
     87 template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const {
     88   // Since this is only a linear histogram, bucket index can be found simply with
     89   // dividing the value by the bucket width.
     90   DCHECK_GE(val, min_);
     91   DCHECK_LE(val, max_);
     92   const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_);
     93   DCHECK_GE(bucket_idx, 0ul);
     94   DCHECK_LE(bucket_idx, GetBucketCount());
     95   return bucket_idx;
     96 }
     97 
     98 template <class Value>
     99 inline void Histogram<Value>::BucketiseValue(Value val) {
    100   CHECK_LT(val, max_);
    101   sum_ += val;
    102   sum_of_squares_ += val * val;
    103   ++sample_size_;
    104   ++frequency_[FindBucket(val)];
    105   max_value_added_ = std::max(val, max_value_added_);
    106   min_value_added_ = std::min(val, min_value_added_);
    107 }
    108 
    109 template <class Value> inline void Histogram<Value>::Initialize() {
    110   for (size_t idx = 0; idx < kInitialBucketCount; idx++) {
    111     frequency_.push_back(0);
    112   }
    113   // Cumulative frequency and ranges has a length of 1 over frequency.
    114   max_ = bucket_width_ * GetBucketCount();
    115 }
    116 
    117 template <class Value> inline size_t Histogram<Value>::GetBucketCount() const {
    118   return frequency_.size();
    119 }
    120 
    121 template <class Value> inline void Histogram<Value>::Reset() {
    122   sum_of_squares_ = 0;
    123   sample_size_ = 0;
    124   min_ = 0;
    125   sum_ = 0;
    126   min_value_added_ = std::numeric_limits<Value>::max();
    127   max_value_added_ = std::numeric_limits<Value>::min();
    128   frequency_.clear();
    129   Initialize();
    130 }
    131 
    132 template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const {
    133   DCHECK_LE(bucket_idx, GetBucketCount());
    134   return min_ + bucket_idx * bucket_width_;
    135 }
    136 
    137 template <class Value> inline double Histogram<Value>::Mean() const {
    138   DCHECK_GT(sample_size_, 0ull);
    139   return static_cast<double>(sum_) / static_cast<double>(sample_size_);
    140 }
    141 
    142 template <class Value> inline double Histogram<Value>::Variance() const {
    143   DCHECK_GT(sample_size_, 0ull);
    144   // Using algorithms for calculating variance over a population:
    145   // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    146   Value sum_squared = sum_ * sum_;
    147   double sum_squared_by_n_squared =
    148       static_cast<double>(sum_squared) /
    149       static_cast<double>(sample_size_ * sample_size_);
    150   double sum_of_squares_by_n =
    151       static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
    152   return sum_of_squares_by_n - sum_squared_by_n_squared;
    153 }
    154 
    155 template <class Value>
    156 inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const {
    157   DCHECK_GT(sample_size_, 0ull);
    158   for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) {
    159     if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) {
    160       bin_idx++;
    161       continue;
    162     }
    163     os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t"
    164        << data.perc_[bin_idx] * 100.0 << "%\n";
    165   }
    166 }
    167 
    168 template <class Value>
    169 inline void Histogram<Value>::DumpBins(std::ostream& os) const {
    170   DCHECK_GT(sample_size_, 0ull);
    171   bool dumped_one = false;
    172   for (size_t bin_idx = 0; bin_idx < frequency_.size(); ++bin_idx) {
    173     if (frequency_[bin_idx] != 0U) {
    174       if (dumped_one) {
    175         // Prepend a comma if not the first bin.
    176         os << ",";
    177       } else {
    178         dumped_one = true;
    179       }
    180       os << GetRange(bin_idx) << ":" << frequency_[bin_idx];
    181     }
    182   }
    183 }
    184 
    185 template <class Value>
    186 inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval,
    187                                                        const CumulativeData& data) const {
    188   static constexpr size_t kFractionalDigits = 3;
    189   DCHECK_GT(interval, 0);
    190   DCHECK_LT(interval, 1.0);
    191   const double per_0 = (1.0 - interval) / 2.0;
    192   const double per_1 = per_0 + interval;
    193   const TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
    194   os << Name() << ":\tSum: " << PrettyDuration(Sum() * kAdjust) << " "
    195      << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit,
    196                                                         kFractionalDigits)
    197      << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit, kFractionalDigits) << " "
    198      << "Avg: " << FormatDuration(Mean() * kAdjust, unit, kFractionalDigits) << " Max: "
    199      << FormatDuration(Max() * kAdjust, unit, kFractionalDigits) << "\n";
    200 }
    201 
    202 template <class Value>
    203 inline void Histogram<Value>::CreateHistogram(CumulativeData* out_data) const {
    204   DCHECK_GT(sample_size_, 0ull);
    205   out_data->freq_.clear();
    206   out_data->perc_.clear();
    207   uint64_t accumulated = 0;
    208   out_data->freq_.push_back(accumulated);
    209   out_data->perc_.push_back(0.0);
    210   for (size_t idx = 0; idx < frequency_.size(); idx++) {
    211     accumulated += frequency_[idx];
    212     out_data->freq_.push_back(accumulated);
    213     out_data->perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_));
    214   }
    215   DCHECK_EQ(out_data->freq_.back(), sample_size_);
    216   DCHECK_LE(std::abs(out_data->perc_.back() - 1.0), 0.001);
    217 }
    218 
    219 #if defined(__clang__)
    220 #pragma clang diagnostic push
    221 #pragma clang diagnostic ignored "-Wfloat-equal"
    222 #endif
    223 
    224 template <class Value>
    225 inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const {
    226   DCHECK_GT(data.perc_.size(), 0ull);
    227   size_t upper_idx = 0, lower_idx = 0;
    228   for (size_t idx = 0; idx < data.perc_.size(); idx++) {
    229     if (per <= data.perc_[idx]) {
    230       upper_idx = idx;
    231       break;
    232     }
    233 
    234     if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) {
    235       lower_idx = idx;
    236     }
    237   }
    238 
    239   const double lower_perc = data.perc_[lower_idx];
    240   const double lower_value = static_cast<double>(GetRange(lower_idx));
    241   if (per == lower_perc) {
    242     return lower_value;
    243   }
    244 
    245   const double upper_perc = data.perc_[upper_idx];
    246   const double upper_value = static_cast<double>(GetRange(upper_idx));
    247   if (per == upper_perc) {
    248     return upper_value;
    249   }
    250   DCHECK_GT(upper_perc, lower_perc);
    251 
    252   double value = lower_value + (upper_value - lower_value) *
    253                                (per - lower_perc) / (upper_perc - lower_perc);
    254 
    255   if (value < min_value_added_) {
    256     value = min_value_added_;
    257   } else if (value > max_value_added_) {
    258     value = max_value_added_;
    259   }
    260 
    261   return value;
    262 }
    263 
    264 #if defined(__clang__)
    265 #pragma clang diagnostic pop
    266 #endif
    267 
    268 }  // namespace art
    269 #endif  // ART_RUNTIME_BASE_HISTOGRAM_INL_H_
    270