Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkTypes_DEFINED
      9 #define SkTypes_DEFINED
     10 
     11 #include "SkPreConfig.h"
     12 #include "SkUserConfig.h"
     13 #include "SkPostConfig.h"
     14 #include <stdint.h>
     15 #include <sys/types.h>
     16 
     17 #if defined(SK_ARM_HAS_NEON)
     18     #include <arm_neon.h>
     19 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
     20     #include <immintrin.h>
     21 #endif
     22 
     23 /** \file SkTypes.h
     24 */
     25 
     26 /** See SkGraphics::GetVersion() to retrieve these at runtime
     27  */
     28 #define SKIA_VERSION_MAJOR  1
     29 #define SKIA_VERSION_MINOR  0
     30 #define SKIA_VERSION_PATCH  0
     31 
     32 /*
     33     memory wrappers to be implemented by the porting layer (platform)
     34 */
     35 
     36 /** Called internally if we run out of memory. The platform implementation must
     37     not return, but should either throw an exception or otherwise exit.
     38 */
     39 SK_API extern void sk_out_of_memory(void);
     40 /** Called internally if we hit an unrecoverable error.
     41     The platform implementation must not return, but should either throw
     42     an exception or otherwise exit.
     43 */
     44 SK_API extern void sk_throw(void);
     45 
     46 enum {
     47     SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
     48     SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
     49 };
     50 /** Return a block of memory (at least 4-byte aligned) of at least the
     51     specified size. If the requested memory cannot be returned, either
     52     return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
     53     (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
     54 */
     55 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
     56 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
     57 */
     58 SK_API extern void* sk_malloc_throw(size_t size);
     59 /** Same as standard realloc(), but this one never returns null on failure. It will throw
     60     an exception if it fails.
     61 */
     62 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
     63 /** Free memory returned by sk_malloc(). It is safe to pass null.
     64 */
     65 SK_API extern void sk_free(void*);
     66 
     67 /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
     68  */
     69 SK_API extern void* sk_calloc(size_t size);
     70 
     71 /** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
     72  */
     73 SK_API extern void* sk_calloc_throw(size_t size);
     74 
     75 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
     76 static inline void sk_bzero(void* buffer, size_t size) {
     77     memset(buffer, 0, size);
     78 }
     79 
     80 ///////////////////////////////////////////////////////////////////////////////
     81 
     82 #ifdef override_GLOBAL_NEW
     83 #include <new>
     84 
     85 inline void* operator new(size_t size) {
     86     return sk_malloc_throw(size);
     87 }
     88 
     89 inline void operator delete(void* p) {
     90     sk_free(p);
     91 }
     92 #endif
     93 
     94 ///////////////////////////////////////////////////////////////////////////////
     95 
     96 #define SK_INIT_TO_AVOID_WARNING    = 0
     97 
     98 #ifndef SkDebugf
     99     SK_API void SkDebugf(const char format[], ...);
    100 #endif
    101 
    102 #ifdef SK_DEBUG
    103     #define SkASSERT(cond)              SK_ALWAYSBREAK(cond)
    104     #define SkDEBUGFAIL(message)        SkASSERT(false && message)
    105     #define SkDEBUGCODE(code)           code
    106     #define SkDECLAREPARAM(type, var)   , type var
    107     #define SkPARAM(var)                , var
    108 //  #define SkDEBUGF(args       )       SkDebugf##args
    109     #define SkDEBUGF(args       )       SkDebugf args
    110     #define SkAssertResult(cond)        SkASSERT(cond)
    111 #else
    112     #define SkASSERT(cond)
    113     #define SkDEBUGFAIL(message)
    114     #define SkDEBUGCODE(code)
    115     #define SkDEBUGF(args)
    116     #define SkDECLAREPARAM(type, var)
    117     #define SkPARAM(var)
    118 
    119     // unlike SkASSERT, this guy executes its condition in the non-debug build
    120     #define SkAssertResult(cond)        cond
    121 #endif
    122 
    123 #define SkFAIL(message)                 SK_ALWAYSBREAK(false && message)
    124 
    125 // We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
    126 // So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
    127 // and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
    128 #define SkASSERTF(cond, fmt, ...)       SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
    129 
    130 #ifdef SK_DEVELOPER
    131     #define SkDEVCODE(code)             code
    132 #else
    133     #define SkDEVCODE(code)
    134 #endif
    135 
    136 #ifdef SK_IGNORE_TO_STRING
    137     #define SK_TO_STRING_NONVIRT()
    138     #define SK_TO_STRING_VIRT()
    139     #define SK_TO_STRING_PUREVIRT()
    140     #define SK_TO_STRING_OVERRIDE()
    141 #else
    142     // the 'toString' helper functions convert Sk* objects to human-readable
    143     // form in developer mode
    144     #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
    145     #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
    146     #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
    147     #define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override;
    148 #endif
    149 
    150 template <bool>
    151 struct SkCompileAssert {
    152 };
    153 
    154 // Uses static_cast<bool>(expr) instead of bool(expr) due to
    155 // https://connect.microsoft.com/VisualStudio/feedback/details/832915
    156 
    157 // The extra parentheses in SkCompileAssert<(...)> are a work around for
    158 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
    159 // which was fixed in gcc 4.8.2.
    160 #define SK_COMPILE_ASSERT(expr, msg) \
    161     typedef SkCompileAssert<(static_cast<bool>(expr))> \
    162             msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
    163 
    164 /*
    165  *  Usage:  SK_MACRO_CONCAT(a, b)   to construct the symbol ab
    166  *
    167  *  SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
    168  *
    169  */
    170 #define SK_MACRO_CONCAT(X, Y)           SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
    171 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y)  X ## Y
    172 
    173 /*
    174  *  Usage: SK_MACRO_APPEND_LINE(foo)    to make foo123, where 123 is the current
    175  *                                      line number. Easy way to construct
    176  *                                      unique names for local functions or
    177  *                                      variables.
    178  */
    179 #define SK_MACRO_APPEND_LINE(name)  SK_MACRO_CONCAT(name, __LINE__)
    180 
    181 /**
    182  * For some classes, it's almost always an error to instantiate one without a name, e.g.
    183  *   {
    184  *       SkAutoMutexAcquire(&mutex);
    185  *       <some code>
    186  *   }
    187  * In this case, the writer meant to hold mutex while the rest of the code in the block runs,
    188  * but instead the mutex is acquired and then immediately released.  The correct usage is
    189  *   {
    190  *       SkAutoMutexAcquire lock(&mutex);
    191  *       <some code>
    192  *   }
    193  *
    194  * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
    195  * like this:
    196  *   class classname {
    197  *       <your class>
    198  *   };
    199  *   #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
    200  *
    201  * This won't work with templates, and you must inline the class' constructors and destructors.
    202  * Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
    203  */
    204 #define SK_REQUIRE_LOCAL_VAR(classname) \
    205     SK_COMPILE_ASSERT(false, missing_name_for_##classname)
    206 
    207 ///////////////////////////////////////////////////////////////////////
    208 
    209 /**
    210  *  Fast type for signed 8 bits. Use for parameter passing and local variables,
    211  *  not for storage.
    212  */
    213 typedef int S8CPU;
    214 
    215 /**
    216  *  Fast type for unsigned 8 bits. Use for parameter passing and local
    217  *  variables, not for storage
    218  */
    219 typedef unsigned U8CPU;
    220 
    221 /**
    222  *  Fast type for signed 16 bits. Use for parameter passing and local variables,
    223  *  not for storage
    224  */
    225 typedef int S16CPU;
    226 
    227 /**
    228  *  Fast type for unsigned 16 bits. Use for parameter passing and local
    229  *  variables, not for storage
    230  */
    231 typedef unsigned U16CPU;
    232 
    233 /**
    234  *  Meant to be faster than bool (doesn't promise to be 0 or 1,
    235  *  just 0 or non-zero
    236  */
    237 typedef int SkBool;
    238 
    239 /**
    240  *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
    241  */
    242 typedef uint8_t SkBool8;
    243 
    244 #ifdef SK_DEBUG
    245     SK_API int8_t      SkToS8(intmax_t);
    246     SK_API uint8_t     SkToU8(uintmax_t);
    247     SK_API int16_t     SkToS16(intmax_t);
    248     SK_API uint16_t    SkToU16(uintmax_t);
    249     SK_API int32_t     SkToS32(intmax_t);
    250     SK_API uint32_t    SkToU32(uintmax_t);
    251     SK_API int         SkToInt(intmax_t);
    252     SK_API unsigned    SkToUInt(uintmax_t);
    253     SK_API size_t      SkToSizeT(uintmax_t);
    254     SK_API off_t       SkToOffT(intmax_t x);
    255 #else
    256     #define SkToS8(x)   ((int8_t)(x))
    257     #define SkToU8(x)   ((uint8_t)(x))
    258     #define SkToS16(x)  ((int16_t)(x))
    259     #define SkToU16(x)  ((uint16_t)(x))
    260     #define SkToS32(x)  ((int32_t)(x))
    261     #define SkToU32(x)  ((uint32_t)(x))
    262     #define SkToInt(x)  ((int)(x))
    263     #define SkToUInt(x) ((unsigned)(x))
    264     #define SkToSizeT(x) ((size_t)(x))
    265     #define SkToOffT(x) ((off_t)(x))
    266 #endif
    267 
    268 /** Returns 0 or 1 based on the condition
    269 */
    270 #define SkToBool(cond)  ((cond) != 0)
    271 
    272 #define SK_MaxS16   32767
    273 #define SK_MinS16   -32767
    274 #define SK_MaxU16   0xFFFF
    275 #define SK_MinU16   0
    276 #define SK_MaxS32   0x7FFFFFFF
    277 #define SK_MinS32   -SK_MaxS32
    278 #define SK_MaxU32   0xFFFFFFFF
    279 #define SK_MinU32   0
    280 #define SK_NaN32    (1 << 31)
    281 
    282 /** Returns true if the value can be represented with signed 16bits
    283  */
    284 static inline bool SkIsS16(long x) {
    285     return (int16_t)x == x;
    286 }
    287 
    288 /** Returns true if the value can be represented with unsigned 16bits
    289  */
    290 static inline bool SkIsU16(long x) {
    291     return (uint16_t)x == x;
    292 }
    293 
    294 //////////////////////////////////////////////////////////////////////////////
    295 #ifndef SK_OFFSETOF
    296     #define SK_OFFSETOF(type, field)    (size_t)((char*)&(((type*)1)->field) - (char*)1)
    297 #endif
    298 
    299 /** Returns the number of entries in an array (not a pointer) */
    300 template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N];
    301 #define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array)))
    302 
    303 #define SkAlign2(x)     (((x) + 1) >> 1 << 1)
    304 #define SkIsAlign2(x)   (0 == ((x) & 1))
    305 
    306 #define SkAlign4(x)     (((x) + 3) >> 2 << 2)
    307 #define SkIsAlign4(x)   (0 == ((x) & 3))
    308 
    309 #define SkAlign8(x)     (((x) + 7) >> 3 << 3)
    310 #define SkIsAlign8(x)   (0 == ((x) & 7))
    311 
    312 #define SkAlignPtr(x)   (sizeof(void*) == 8 ?   SkAlign8(x) :   SkAlign4(x))
    313 #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
    314 
    315 typedef uint32_t SkFourByteTag;
    316 #define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
    317 
    318 /** 32 bit integer to hold a unicode value
    319 */
    320 typedef int32_t SkUnichar;
    321 /** 32 bit value to hold a millisecond count
    322 */
    323 typedef uint32_t SkMSec;
    324 /** 1 second measured in milliseconds
    325 */
    326 #define SK_MSec1 1000
    327 /** maximum representable milliseconds
    328 */
    329 #define SK_MSecMax 0x7FFFFFFF
    330 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    331 */
    332 #define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
    333 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    334 */
    335 #define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
    336 
    337 /** The generation IDs in Skia reserve 0 has an invalid marker.
    338  */
    339 #define SK_InvalidGenID     0
    340 /** The unique IDs in Skia reserve 0 has an invalid marker.
    341  */
    342 #define SK_InvalidUniqueID  0
    343 
    344 /****************************************************************************
    345     The rest of these only build with C++
    346 */
    347 #ifdef __cplusplus
    348 
    349 /** Faster than SkToBool for integral conditions. Returns 0 or 1
    350 */
    351 static inline int Sk32ToBool(uint32_t n) {
    352     return (n | (0-n)) >> 31;
    353 }
    354 
    355 /** Generic swap function. Classes with efficient swaps should specialize this function to take
    356     their fast path. This function is used by SkTSort. */
    357 template <typename T> inline void SkTSwap(T& a, T& b) {
    358     T c(a);
    359     a = b;
    360     b = c;
    361 }
    362 
    363 static inline int32_t SkAbs32(int32_t value) {
    364     SkASSERT(value != SK_NaN32);  // The most negative int32_t can't be negated.
    365     if (value < 0) {
    366         value = -value;
    367     }
    368     return value;
    369 }
    370 
    371 template <typename T> inline T SkTAbs(T value) {
    372     if (value < 0) {
    373         value = -value;
    374     }
    375     return value;
    376 }
    377 
    378 static inline int32_t SkMax32(int32_t a, int32_t b) {
    379     if (a < b)
    380         a = b;
    381     return a;
    382 }
    383 
    384 static inline int32_t SkMin32(int32_t a, int32_t b) {
    385     if (a > b)
    386         a = b;
    387     return a;
    388 }
    389 
    390 template <typename T> const T& SkTMin(const T& a, const T& b) {
    391     return (a < b) ? a : b;
    392 }
    393 
    394 template <typename T> const T& SkTMax(const T& a, const T& b) {
    395     return (b < a) ? a : b;
    396 }
    397 
    398 static inline int32_t SkSign32(int32_t a) {
    399     return (a >> 31) | ((unsigned) -a >> 31);
    400 }
    401 
    402 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
    403     if (value > max) {
    404         value = max;
    405     }
    406     return value;
    407 }
    408 
    409 template <typename T> static inline const T& SkTPin(const T& x, const T& min, const T& max) {
    410     return SkTMax(SkTMin(x, max), min);
    411 }
    412 
    413 /** Returns signed 32 bit value pinned between min and max, inclusively. */
    414 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
    415     return SkTPin(value, min, max);
    416 }
    417 
    418 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
    419                                        unsigned shift) {
    420     SkASSERT((int)cond == 0 || (int)cond == 1);
    421     return (bits & ~(1 << shift)) | ((int)cond << shift);
    422 }
    423 
    424 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
    425                                       uint32_t mask) {
    426     return cond ? bits | mask : bits & ~mask;
    427 }
    428 
    429 ///////////////////////////////////////////////////////////////////////////////
    430 
    431 /** Use to combine multiple bits in a bitmask in a type safe way.
    432  */
    433 template <typename T>
    434 T SkTBitOr(T a, T b) {
    435     return (T)(a | b);
    436 }
    437 
    438 /**
    439  *  Use to cast a pointer to a different type, and maintaining strict-aliasing
    440  */
    441 template <typename Dst> Dst SkTCast(const void* ptr) {
    442     union {
    443         const void* src;
    444         Dst dst;
    445     } data;
    446     data.src = ptr;
    447     return data.dst;
    448 }
    449 
    450 //////////////////////////////////////////////////////////////////////////////
    451 
    452 /** \class SkNoncopyable
    453 
    454 SkNoncopyable is the base class for objects that do not want to
    455 be copied. It hides its copy-constructor and its assignment-operator.
    456 */
    457 class SK_API SkNoncopyable {
    458 public:
    459     SkNoncopyable() {}
    460 
    461 private:
    462     SkNoncopyable(const SkNoncopyable&);
    463     SkNoncopyable& operator=(const SkNoncopyable&);
    464 };
    465 
    466 class SkAutoFree : SkNoncopyable {
    467 public:
    468     SkAutoFree() : fPtr(NULL) {}
    469     explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
    470     ~SkAutoFree() { sk_free(fPtr); }
    471 
    472     /** Return the currently allocate buffer, or null
    473     */
    474     void* get() const { return fPtr; }
    475 
    476     /** Assign a new ptr allocated with sk_malloc (or null), and return the
    477         previous ptr. Note it is the caller's responsibility to sk_free the
    478         returned ptr.
    479     */
    480     void* set(void* ptr) {
    481         void* prev = fPtr;
    482         fPtr = ptr;
    483         return prev;
    484     }
    485 
    486     /** Transfer ownership of the current ptr to the caller, setting the
    487         internal reference to null. Note the caller is reponsible for calling
    488         sk_free on the returned address.
    489     */
    490     void* detach() { return this->set(NULL); }
    491 
    492     /** Free the current buffer, and set the internal reference to NULL. Same
    493         as calling sk_free(detach())
    494     */
    495     void free() {
    496         sk_free(fPtr);
    497         fPtr = NULL;
    498     }
    499 
    500 private:
    501     void* fPtr;
    502     // illegal
    503     SkAutoFree(const SkAutoFree&);
    504     SkAutoFree& operator=(const SkAutoFree&);
    505 };
    506 #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
    507 
    508 /**
    509  *  Manage an allocated block of heap memory. This object is the sole manager of
    510  *  the lifetime of the block, so the caller must not call sk_free() or delete
    511  *  on the block, unless detach() was called.
    512  */
    513 class SkAutoMalloc : SkNoncopyable {
    514 public:
    515     explicit SkAutoMalloc(size_t size = 0) {
    516         fPtr = size ? sk_malloc_throw(size) : NULL;
    517         fSize = size;
    518     }
    519 
    520     ~SkAutoMalloc() {
    521         sk_free(fPtr);
    522     }
    523 
    524     /**
    525      *  Passed to reset to specify what happens if the requested size is smaller
    526      *  than the current size (and the current block was dynamically allocated).
    527      */
    528     enum OnShrink {
    529         /**
    530          *  If the requested size is smaller than the current size, and the
    531          *  current block is dynamically allocated, free the old block and
    532          *  malloc a new block of the smaller size.
    533          */
    534         kAlloc_OnShrink,
    535 
    536         /**
    537          *  If the requested size is smaller than the current size, and the
    538          *  current block is dynamically allocated, just return the old
    539          *  block.
    540          */
    541         kReuse_OnShrink
    542     };
    543 
    544     /**
    545      *  Reallocates the block to a new size. The ptr may or may not change.
    546      */
    547     void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink,  bool* didChangeAlloc = NULL) {
    548         if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
    549             if (didChangeAlloc) {
    550                 *didChangeAlloc = false;
    551             }
    552             return fPtr;
    553         }
    554 
    555         sk_free(fPtr);
    556         fPtr = size ? sk_malloc_throw(size) : NULL;
    557         fSize = size;
    558         if (didChangeAlloc) {
    559             *didChangeAlloc = true;
    560         }
    561 
    562         return fPtr;
    563     }
    564 
    565     /**
    566      *  Releases the block back to the heap
    567      */
    568     void free() {
    569         this->reset(0);
    570     }
    571 
    572     /**
    573      *  Return the allocated block.
    574      */
    575     void* get() { return fPtr; }
    576     const void* get() const { return fPtr; }
    577 
    578    /** Transfer ownership of the current ptr to the caller, setting the
    579        internal reference to null. Note the caller is reponsible for calling
    580        sk_free on the returned address.
    581     */
    582     void* detach() {
    583         void* ptr = fPtr;
    584         fPtr = NULL;
    585         fSize = 0;
    586         return ptr;
    587     }
    588 
    589 private:
    590     void*   fPtr;
    591     size_t  fSize;  // can be larger than the requested size (see kReuse)
    592 };
    593 #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
    594 
    595 /**
    596  *  Manage an allocated block of memory. If the requested size is <= kSize, then
    597  *  the allocation will come from the stack rather than the heap. This object
    598  *  is the sole manager of the lifetime of the block, so the caller must not
    599  *  call sk_free() or delete on the block.
    600  */
    601 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
    602 public:
    603     /**
    604      *  Creates initially empty storage. get() returns a ptr, but it is to
    605      *  a zero-byte allocation. Must call reset(size) to return an allocated
    606      *  block.
    607      */
    608     SkAutoSMalloc() {
    609         fPtr = fStorage;
    610         fSize = kSize;
    611     }
    612 
    613     /**
    614      *  Allocate a block of the specified size. If size <= kSize, then the
    615      *  allocation will come from the stack, otherwise it will be dynamically
    616      *  allocated.
    617      */
    618     explicit SkAutoSMalloc(size_t size) {
    619         fPtr = fStorage;
    620         fSize = kSize;
    621         this->reset(size);
    622     }
    623 
    624     /**
    625      *  Free the allocated block (if any). If the block was small enought to
    626      *  have been allocated on the stack (size <= kSize) then this does nothing.
    627      */
    628     ~SkAutoSMalloc() {
    629         if (fPtr != (void*)fStorage) {
    630             sk_free(fPtr);
    631         }
    632     }
    633 
    634     /**
    635      *  Return the allocated block. May return non-null even if the block is
    636      *  of zero size. Since this may be on the stack or dynamically allocated,
    637      *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
    638      *  to manage it.
    639      */
    640     void* get() const { return fPtr; }
    641 
    642     /**
    643      *  Return a new block of the requested size, freeing (as necessary) any
    644      *  previously allocated block. As with the constructor, if size <= kSize
    645      *  then the return block may be allocated locally, rather than from the
    646      *  heap.
    647      */
    648     void* reset(size_t size,
    649                 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
    650                 bool* didChangeAlloc = NULL) {
    651         size = (size < kSize) ? kSize : size;
    652         bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
    653         if (didChangeAlloc) {
    654             *didChangeAlloc = alloc;
    655         }
    656         if (alloc) {
    657             if (fPtr != (void*)fStorage) {
    658                 sk_free(fPtr);
    659             }
    660 
    661             if (size == kSize) {
    662                 SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
    663                 fPtr = fStorage;
    664             } else {
    665                 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
    666             }
    667 
    668             fSize = size;
    669         }
    670         SkASSERT(fSize >= size && fSize >= kSize);
    671         SkASSERT((fPtr == fStorage) || fSize > kSize);
    672         return fPtr;
    673     }
    674 
    675 private:
    676     void*       fPtr;
    677     size_t      fSize;  // can be larger than the requested size (see kReuse)
    678     uint32_t    fStorage[(kSize + 3) >> 2];
    679 };
    680 // Can't guard the constructor because it's a template class.
    681 
    682 #endif /* C++ */
    683 
    684 #endif
    685