Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkRRect_DEFINED
      9 #define SkRRect_DEFINED
     10 
     11 #include "SkRect.h"
     12 #include "SkPoint.h"
     13 
     14 class SkPath;
     15 class SkMatrix;
     16 
     17 // Path forward:
     18 //   core work
     19 //      add validate method (all radii positive, all radii sums < rect size, etc.)
     20 //      add contains(SkRect&)  - for clip stack
     21 //      add contains(SkRRect&) - for clip stack
     22 //      add heart rect computation (max rect inside RR)
     23 //      add 9patch rect computation
     24 //      add growToInclude(SkPath&)
     25 //   analysis
     26 //      use growToInclude to fit skp round rects & generate stats (RRs vs. real paths)
     27 //      check on # of rectorus's the RRs could handle
     28 //   rendering work
     29 //      update SkPath.addRRect() to only use quads
     30 //      add GM and bench
     31 //   further out
     32 //      detect and triangulate RRectorii rather than falling back to SW in Ganesh
     33 //
     34 
     35 /** \class SkRRect
     36 
     37     The SkRRect class represents a rounded rect with a potentially different
     38     radii for each corner. It does not have a constructor so must be
     39     initialized with one of the initialization functions (e.g., setEmpty,
     40     setRectRadii, etc.)
     41 
     42     This class is intended to roughly match CSS' border-*-*-radius capabilities.
     43     This means:
     44         If either of a corner's radii are 0 the corner will be square.
     45         Negative radii are not allowed (they are clamped to zero).
     46         If the corner curves overlap they will be proportionally reduced to fit.
     47 */
     48 class SK_API SkRRect {
     49 public:
     50     /**
     51      * Enum to capture the various possible subtypes of RR. Accessed
     52      * by type(). The subtypes become progressively less restrictive.
     53      */
     54     enum Type {
     55         // !< The RR is empty
     56         kEmpty_Type,
     57 
     58         //!< The RR is actually a (non-empty) rect (i.e., at least one radius
     59         //!< at each corner is zero)
     60         kRect_Type,
     61 
     62         //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal
     63         //!< and >= width/2 and all the y radii are equal and >= height/2
     64         kOval_Type,
     65 
     66         //!< The RR is non-empty and all the x radii are equal & all y radii
     67         //!< are equal but it is not an oval (i.e., there are lines between
     68         //!< the curves) nor a rect (i.e., both radii are non-zero)
     69         kSimple_Type,
     70 
     71         //!< The RR is non-empty and the two left x radii are equal, the two top
     72         //!< y radii are equal, and the same for the right and bottom but it is
     73         //!< neither an rect, oval, nor a simple RR. It is called "nine patch"
     74         //!< because the centers of the corner ellipses form an axis aligned
     75         //!< rect with edges that divide the RR into an 9 rectangular patches:
     76         //!< an interior patch, four edge patches, and four corner patches.
     77         kNinePatch_Type,
     78 
     79         //!< A fully general (non-empty) RR. Some of the x and/or y radii are
     80         //!< different from the others and there must be one corner where
     81         //!< both radii are non-zero.
     82         kComplex_Type,
     83     };
     84 
     85     /**
     86      * Returns the RR's sub type.
     87      */
     88     Type getType() const {
     89         SkDEBUGCODE(this->validate();)
     90         return static_cast<Type>(fType);
     91     }
     92 
     93     Type type() const { return this->getType(); }
     94 
     95     inline bool isEmpty() const { return kEmpty_Type == this->getType(); }
     96     inline bool isRect() const { return kRect_Type == this->getType(); }
     97     inline bool isOval() const { return kOval_Type == this->getType(); }
     98     inline bool isSimple() const { return kSimple_Type == this->getType(); }
     99     inline bool isSimpleCircular() const {
    100         return this->isSimple() && fRadii[0].fX == fRadii[0].fY;
    101     }
    102     inline bool isNinePatch() const { return kNinePatch_Type == this->getType(); }
    103     inline bool isComplex() const { return kComplex_Type == this->getType(); }
    104 
    105     bool allCornersCircular() const;
    106 
    107     SkScalar width() const { return fRect.width(); }
    108     SkScalar height() const { return fRect.height(); }
    109 
    110     /**
    111      * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii.
    112      */
    113     void setEmpty() {
    114         fRect.setEmpty();
    115         memset(fRadii, 0, sizeof(fRadii));
    116         fType = kEmpty_Type;
    117 
    118         SkDEBUGCODE(this->validate();)
    119     }
    120 
    121     /**
    122      * Set this RR to match the supplied rect. All radii will be 0.
    123      */
    124     void setRect(const SkRect& rect) {
    125         if (rect.isEmpty()) {
    126             this->setEmpty();
    127             return;
    128         }
    129 
    130         fRect = rect;
    131         memset(fRadii, 0, sizeof(fRadii));
    132         fType = kRect_Type;
    133 
    134         SkDEBUGCODE(this->validate();)
    135     }
    136 
    137     /**
    138      * Set this RR to match the supplied oval. All x radii will equal half the
    139      * width and all y radii will equal half the height.
    140      */
    141     void setOval(const SkRect& oval) {
    142         if (oval.isEmpty()) {
    143             this->setEmpty();
    144             return;
    145         }
    146 
    147         SkScalar xRad = SkScalarHalf(oval.width());
    148         SkScalar yRad = SkScalarHalf(oval.height());
    149 
    150         fRect = oval;
    151         for (int i = 0; i < 4; ++i) {
    152             fRadii[i].set(xRad, yRad);
    153         }
    154         fType = kOval_Type;
    155 
    156         SkDEBUGCODE(this->validate();)
    157     }
    158 
    159     /**
    160      * Initialize the RR with the same radii for all four corners.
    161      */
    162     void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad);
    163 
    164     /**
    165      * Initialize the rr with one radius per-side.
    166      */
    167     void setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
    168                       SkScalar rightRad, SkScalar bottomRad);
    169 
    170     /**
    171      * Initialize the RR with potentially different radii for all four corners.
    172      */
    173     void setRectRadii(const SkRect& rect, const SkVector radii[4]);
    174 
    175     // The radii are stored in UL, UR, LR, LL order.
    176     enum Corner {
    177         kUpperLeft_Corner,
    178         kUpperRight_Corner,
    179         kLowerRight_Corner,
    180         kLowerLeft_Corner
    181     };
    182 
    183     const SkRect& rect() const { return fRect; }
    184     const SkVector& radii(Corner corner) const { return fRadii[corner]; }
    185     const SkRect& getBounds() const { return fRect; }
    186 
    187     /**
    188      *  When a rrect is simple, all of its radii are equal. This returns one
    189      *  of those radii. This call requires the rrect to be non-complex.
    190      */
    191     const SkVector& getSimpleRadii() const {
    192         SkASSERT(!this->isComplex());
    193         return fRadii[0];
    194     }
    195 
    196     friend bool operator==(const SkRRect& a, const SkRRect& b) {
    197         return a.fRect == b.fRect &&
    198                SkScalarsEqual(a.fRadii[0].asScalars(),
    199                               b.fRadii[0].asScalars(), 8);
    200     }
    201 
    202     friend bool operator!=(const SkRRect& a, const SkRRect& b) {
    203         return a.fRect != b.fRect ||
    204                !SkScalarsEqual(a.fRadii[0].asScalars(),
    205                                b.fRadii[0].asScalars(), 8);
    206     }
    207 
    208     /**
    209      *  Call inset on the bounds, and adjust the radii to reflect what happens
    210      *  in stroking: If the corner is sharp (no curvature), leave it alone,
    211      *  otherwise we grow/shrink the radii by the amount of the inset. If a
    212      *  given radius becomes negative, it is pinned to 0.
    213      *
    214      *  It is valid for dst == this.
    215      */
    216     void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const;
    217 
    218     void inset(SkScalar dx, SkScalar dy) {
    219         this->inset(dx, dy, this);
    220     }
    221 
    222     /**
    223      *  Call outset on the bounds, and adjust the radii to reflect what happens
    224      *  in stroking: If the corner is sharp (no curvature), leave it alone,
    225      *  otherwise we grow/shrink the radii by the amount of the inset. If a
    226      *  given radius becomes negative, it is pinned to 0.
    227      *
    228      *  It is valid for dst == this.
    229      */
    230     void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
    231         this->inset(-dx, -dy, dst);
    232     }
    233     void outset(SkScalar dx, SkScalar dy) {
    234         this->inset(-dx, -dy, this);
    235     }
    236 
    237     /**
    238      * Translate the rrect by (dx, dy).
    239      */
    240     void offset(SkScalar dx, SkScalar dy) {
    241         fRect.offset(dx, dy);
    242     }
    243 
    244     /**
    245      *  Returns true if 'rect' is wholy inside the RR, and both
    246      *  are not empty.
    247      */
    248     bool contains(const SkRect& rect) const;
    249 
    250     SkDEBUGCODE(void validate() const;)
    251 
    252     enum {
    253         kSizeInMemory = 12 * sizeof(SkScalar)
    254     };
    255 
    256     /**
    257      *  Write the rrect into the specified buffer. This is guaranteed to always
    258      *  write kSizeInMemory bytes, and that value is guaranteed to always be
    259      *  a multiple of 4. Return kSizeInMemory.
    260      */
    261     size_t writeToMemory(void* buffer) const;
    262 
    263     /**
    264      * Reads the rrect from the specified buffer
    265      *
    266      * If the specified buffer is large enough, this will read kSizeInMemory bytes,
    267      * and that value is guaranteed to always be a multiple of 4.
    268      *
    269      * @param buffer Memory to read from
    270      * @param length Amount of memory available in the buffer
    271      * @return number of bytes read (must be a multiple of 4) or
    272      *         0 if there was not enough memory available
    273      */
    274     size_t readFromMemory(const void* buffer, size_t length);
    275 
    276     /**
    277      *  Transform by the specified matrix, and put the result in dst.
    278      *
    279      *  @param matrix SkMatrix specifying the transform. Must only contain
    280      *      scale and/or translate, or this call will fail.
    281      *  @param dst SkRRect to store the result. It is an error to use this,
    282      *      which would make this function no longer const.
    283      *  @return true on success, false on failure. If false, dst is unmodified.
    284      */
    285     bool transform(const SkMatrix& matrix, SkRRect* dst) const;
    286 
    287     void dump(bool asHex) const;
    288     void dump() const { this->dump(false); }
    289     void dumpHex() const { this->dump(true); }
    290 
    291 private:
    292     SkRect fRect;
    293     // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[]
    294     SkVector fRadii[4];
    295     // use an explicitly sized type so we're sure the class is dense (no uninitialized bytes)
    296     int32_t fType;
    297     // TODO: add padding so we can use memcpy for flattening and not copy
    298     // uninitialized data
    299 
    300     void computeType();
    301     bool checkCornerContainment(SkScalar x, SkScalar y) const;
    302 
    303     // to access fRadii directly
    304     friend class SkPath;
    305 };
    306 
    307 #endif
    308