Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
     18 #define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
     19 
     20 #include "nodes.h"
     21 #include <iostream>
     22 
     23 namespace art {
     24 
     25 class CodeGenerator;
     26 class SsaLivenessAnalysis;
     27 
     28 static constexpr int kNoRegister = -1;
     29 
     30 class BlockInfo : public ArenaObject<kArenaAllocMisc> {
     31  public:
     32   BlockInfo(ArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
     33       : block_(block),
     34         live_in_(allocator, number_of_ssa_values, false),
     35         live_out_(allocator, number_of_ssa_values, false),
     36         kill_(allocator, number_of_ssa_values, false) {
     37     UNUSED(block_);
     38     live_in_.ClearAllBits();
     39     live_out_.ClearAllBits();
     40     kill_.ClearAllBits();
     41   }
     42 
     43  private:
     44   const HBasicBlock& block_;
     45   ArenaBitVector live_in_;
     46   ArenaBitVector live_out_;
     47   ArenaBitVector kill_;
     48 
     49   friend class SsaLivenessAnalysis;
     50 
     51   DISALLOW_COPY_AND_ASSIGN(BlockInfo);
     52 };
     53 
     54 /**
     55  * A live range contains the start and end of a range where an instruction or a temporary
     56  * is live.
     57  */
     58 class LiveRange FINAL : public ArenaObject<kArenaAllocMisc> {
     59  public:
     60   LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) {
     61     DCHECK_LT(start, end);
     62     DCHECK(next_ == nullptr || next_->GetStart() > GetEnd());
     63   }
     64 
     65   size_t GetStart() const { return start_; }
     66   size_t GetEnd() const { return end_; }
     67   LiveRange* GetNext() const { return next_; }
     68 
     69   bool IntersectsWith(const LiveRange& other) const {
     70     return (start_ >= other.start_ && start_ < other.end_)
     71         || (other.start_ >= start_ && other.start_ < end_);
     72   }
     73 
     74   bool IsBefore(const LiveRange& other) const {
     75     return end_ <= other.start_;
     76   }
     77 
     78   void Dump(std::ostream& stream) const {
     79     stream << "[" << start_ << ", " << end_ << ")";
     80   }
     81 
     82   LiveRange* Dup(ArenaAllocator* allocator) const {
     83     return new (allocator) LiveRange(
     84         start_, end_, next_ == nullptr ? nullptr : next_->Dup(allocator));
     85   }
     86 
     87   LiveRange* GetLastRange() {
     88     return next_ == nullptr ? this : next_->GetLastRange();
     89   }
     90 
     91  private:
     92   size_t start_;
     93   size_t end_;
     94   LiveRange* next_;
     95 
     96   friend class LiveInterval;
     97 
     98   DISALLOW_COPY_AND_ASSIGN(LiveRange);
     99 };
    100 
    101 /**
    102  * A use position represents a live interval use at a given position.
    103  */
    104 class UsePosition : public ArenaObject<kArenaAllocMisc> {
    105  public:
    106   UsePosition(HInstruction* user,
    107               HEnvironment* environment,
    108               size_t input_index,
    109               size_t position,
    110               UsePosition* next)
    111       : user_(user),
    112         environment_(environment),
    113         input_index_(input_index),
    114         position_(position),
    115         next_(next) {
    116     DCHECK((user == nullptr)
    117         || user->IsPhi()
    118         || (GetPosition() == user->GetLifetimePosition() + 1)
    119         || (GetPosition() == user->GetLifetimePosition()));
    120     DCHECK(next_ == nullptr || next->GetPosition() >= GetPosition());
    121   }
    122 
    123   static constexpr size_t kNoInput = -1;
    124 
    125   size_t GetPosition() const { return position_; }
    126 
    127   UsePosition* GetNext() const { return next_; }
    128   void SetNext(UsePosition* next) { next_ = next; }
    129 
    130   HInstruction* GetUser() const { return user_; }
    131 
    132   bool GetIsEnvironment() const { return environment_ != nullptr; }
    133   bool IsSynthesized() const { return user_ == nullptr; }
    134 
    135   size_t GetInputIndex() const { return input_index_; }
    136 
    137   void Dump(std::ostream& stream) const {
    138     stream << position_;
    139   }
    140 
    141   HLoopInformation* GetLoopInformation() const {
    142     return user_->GetBlock()->GetLoopInformation();
    143   }
    144 
    145   UsePosition* Dup(ArenaAllocator* allocator) const {
    146     return new (allocator) UsePosition(
    147         user_, environment_, input_index_, position_,
    148         next_ == nullptr ? nullptr : next_->Dup(allocator));
    149   }
    150 
    151   bool RequiresRegister() const {
    152     if (GetIsEnvironment()) return false;
    153     if (IsSynthesized()) return false;
    154     Location location = GetUser()->GetLocations()->InAt(GetInputIndex());
    155     return location.IsUnallocated()
    156         && (location.GetPolicy() == Location::kRequiresRegister
    157             || location.GetPolicy() == Location::kRequiresFpuRegister);
    158   }
    159 
    160  private:
    161   HInstruction* const user_;
    162   HEnvironment* const environment_;
    163   const size_t input_index_;
    164   const size_t position_;
    165   UsePosition* next_;
    166 
    167   DISALLOW_COPY_AND_ASSIGN(UsePosition);
    168 };
    169 
    170 class SafepointPosition : public ArenaObject<kArenaAllocMisc> {
    171  public:
    172   explicit SafepointPosition(HInstruction* instruction)
    173       : instruction_(instruction),
    174         next_(nullptr) {}
    175 
    176   void SetNext(SafepointPosition* next) {
    177     next_ = next;
    178   }
    179 
    180   size_t GetPosition() const {
    181     return instruction_->GetLifetimePosition();
    182   }
    183 
    184   SafepointPosition* GetNext() const {
    185     return next_;
    186   }
    187 
    188   LocationSummary* GetLocations() const {
    189     return instruction_->GetLocations();
    190   }
    191 
    192   HInstruction* GetInstruction() const {
    193     return instruction_;
    194   }
    195 
    196  private:
    197   HInstruction* const instruction_;
    198   SafepointPosition* next_;
    199 
    200   DISALLOW_COPY_AND_ASSIGN(SafepointPosition);
    201 };
    202 
    203 /**
    204  * An interval is a list of disjoint live ranges where an instruction is live.
    205  * Each instruction that has uses gets an interval.
    206  */
    207 class LiveInterval : public ArenaObject<kArenaAllocMisc> {
    208  public:
    209   static LiveInterval* MakeInterval(ArenaAllocator* allocator,
    210                                     Primitive::Type type,
    211                                     HInstruction* instruction = nullptr) {
    212     return new (allocator) LiveInterval(allocator, type, instruction);
    213   }
    214 
    215   static LiveInterval* MakeSlowPathInterval(ArenaAllocator* allocator, HInstruction* instruction) {
    216     return new (allocator) LiveInterval(
    217         allocator, Primitive::kPrimVoid, instruction, false, kNoRegister, false, true);
    218   }
    219 
    220   static LiveInterval* MakeFixedInterval(ArenaAllocator* allocator, int reg, Primitive::Type type) {
    221     return new (allocator) LiveInterval(allocator, type, nullptr, true, reg, false);
    222   }
    223 
    224   static LiveInterval* MakeTempInterval(ArenaAllocator* allocator, Primitive::Type type) {
    225     return new (allocator) LiveInterval(allocator, type, nullptr, false, kNoRegister, true);
    226   }
    227 
    228   bool IsFixed() const { return is_fixed_; }
    229   bool IsTemp() const { return is_temp_; }
    230   bool IsSlowPathSafepoint() const { return is_slow_path_safepoint_; }
    231   // This interval is the result of a split.
    232   bool IsSplit() const { return parent_ != this; }
    233 
    234   void AddTempUse(HInstruction* instruction, size_t temp_index) {
    235     DCHECK(IsTemp());
    236     DCHECK(first_use_ == nullptr) << "A temporary can only have one user";
    237     DCHECK(first_env_use_ == nullptr) << "A temporary cannot have environment user";
    238     size_t position = instruction->GetLifetimePosition();
    239     first_use_ = new (allocator_) UsePosition(
    240         instruction, /* environment */ nullptr, temp_index, position, first_use_);
    241     AddRange(position, position + 1);
    242   }
    243 
    244   void AddUse(HInstruction* instruction,
    245               HEnvironment* environment,
    246               size_t input_index,
    247               bool keep_alive = false) {
    248     // Set the use within the instruction.
    249     bool is_environment = (environment != nullptr);
    250     size_t position = instruction->GetLifetimePosition() + 1;
    251     LocationSummary* locations = instruction->GetLocations();
    252     if (!is_environment) {
    253       if (locations->IsFixedInput(input_index) || locations->OutputUsesSameAs(input_index)) {
    254         // For fixed inputs and output same as input, the register allocator
    255         // requires to have inputs die at the instruction, so that input moves use the
    256         // location of the input just before that instruction (and not potential moves due
    257         // to splitting).
    258         position = instruction->GetLifetimePosition();
    259       } else if (!locations->InAt(input_index).IsValid()) {
    260         return;
    261       }
    262     }
    263 
    264     if (!is_environment && instruction->IsInLoop()) {
    265       AddBackEdgeUses(*instruction->GetBlock());
    266     }
    267 
    268     DCHECK(position == instruction->GetLifetimePosition()
    269            || position == instruction->GetLifetimePosition() + 1);
    270 
    271     if ((first_use_ != nullptr)
    272         && (first_use_->GetUser() == instruction)
    273         && (first_use_->GetPosition() < position)) {
    274       // The user uses the instruction multiple times, and one use dies before the other.
    275       // We update the use list so that the latter is first.
    276       DCHECK(!is_environment);
    277       UsePosition* cursor = first_use_;
    278       while ((cursor->GetNext() != nullptr) && (cursor->GetNext()->GetPosition() < position)) {
    279         cursor = cursor->GetNext();
    280       }
    281       DCHECK(first_use_->GetPosition() + 1 == position);
    282       UsePosition* new_use = new (allocator_) UsePosition(
    283           instruction, environment, input_index, position, cursor->GetNext());
    284       cursor->SetNext(new_use);
    285       if (first_range_->GetEnd() == first_use_->GetPosition()) {
    286         first_range_->end_ = position;
    287       }
    288       return;
    289     }
    290 
    291     if (is_environment) {
    292       first_env_use_ = new (allocator_) UsePosition(
    293           instruction, environment, input_index, position, first_env_use_);
    294     } else {
    295       first_use_ = new (allocator_) UsePosition(
    296           instruction, environment, input_index, position, first_use_);
    297     }
    298 
    299     if (is_environment && !keep_alive) {
    300       // If this environment use does not keep the instruction live, it does not
    301       // affect the live range of that instruction.
    302       return;
    303     }
    304 
    305     size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
    306     if (first_range_ == nullptr) {
    307       // First time we see a use of that interval.
    308       first_range_ = last_range_ = range_search_start_ =
    309           new (allocator_) LiveRange(start_block_position, position, nullptr);
    310     } else if (first_range_->GetStart() == start_block_position) {
    311       // There is a use later in the same block or in a following block.
    312       // Note that in such a case, `AddRange` for the whole blocks has been called
    313       // before arriving in this method, and this is the reason the start of
    314       // `first_range_` is before the given `position`.
    315       DCHECK_LE(position, first_range_->GetEnd());
    316     } else {
    317       DCHECK(first_range_->GetStart() > position);
    318       // There is a hole in the interval. Create a new range.
    319       // Note that the start of `first_range_` can be equal to `end`: two blocks
    320       // having adjacent lifetime positions are not necessarily
    321       // predecessor/successor. When two blocks are predecessor/successor, the
    322       // liveness algorithm has called `AddRange` before arriving in this method,
    323       // and the check line 205 would succeed.
    324       first_range_ = range_search_start_ =
    325           new (allocator_) LiveRange(start_block_position, position, first_range_);
    326     }
    327   }
    328 
    329   void AddPhiUse(HInstruction* instruction, size_t input_index, HBasicBlock* block) {
    330     DCHECK(instruction->IsPhi());
    331     if (block->IsInLoop()) {
    332       AddBackEdgeUses(*block);
    333     }
    334     first_use_ = new (allocator_) UsePosition(
    335         instruction, /* environment */ nullptr, input_index, block->GetLifetimeEnd(), first_use_);
    336   }
    337 
    338   void AddRange(size_t start, size_t end) {
    339     if (first_range_ == nullptr) {
    340       first_range_ = last_range_ = range_search_start_ =
    341           new (allocator_) LiveRange(start, end, first_range_);
    342     } else if (first_range_->GetStart() == end) {
    343       // There is a use in the following block.
    344       first_range_->start_ = start;
    345     } else if (first_range_->GetStart() == start && first_range_->GetEnd() == end) {
    346       DCHECK(is_fixed_);
    347     } else {
    348       DCHECK_GT(first_range_->GetStart(), end);
    349       // There is a hole in the interval. Create a new range.
    350       first_range_ = range_search_start_ = new (allocator_) LiveRange(start, end, first_range_);
    351     }
    352   }
    353 
    354   void AddLoopRange(size_t start, size_t end) {
    355     DCHECK(first_range_ != nullptr);
    356     DCHECK_LE(start, first_range_->GetStart());
    357     // Find the range that covers the positions after the loop.
    358     LiveRange* after_loop = first_range_;
    359     LiveRange* last_in_loop = nullptr;
    360     while (after_loop != nullptr && after_loop->GetEnd() < end) {
    361       DCHECK_LE(start, after_loop->GetStart());
    362       last_in_loop = after_loop;
    363       after_loop = after_loop->GetNext();
    364     }
    365     if (after_loop == nullptr) {
    366       // Uses are only in the loop.
    367       first_range_ = last_range_ = range_search_start_ =
    368           new (allocator_) LiveRange(start, end, nullptr);
    369     } else if (after_loop->GetStart() <= end) {
    370       first_range_ = range_search_start_ = after_loop;
    371       // There are uses after the loop.
    372       first_range_->start_ = start;
    373     } else {
    374       // The use after the loop is after a lifetime hole.
    375       DCHECK(last_in_loop != nullptr);
    376       first_range_ = range_search_start_ = last_in_loop;
    377       first_range_->start_ = start;
    378       first_range_->end_ = end;
    379     }
    380   }
    381 
    382   bool HasSpillSlot() const { return spill_slot_ != kNoSpillSlot; }
    383   void SetSpillSlot(int slot) {
    384     DCHECK(!is_fixed_);
    385     DCHECK(!is_temp_);
    386     spill_slot_ = slot;
    387   }
    388   int GetSpillSlot() const { return spill_slot_; }
    389 
    390   void SetFrom(size_t from) {
    391     if (first_range_ != nullptr) {
    392       first_range_->start_ = from;
    393     } else {
    394       // Instruction without uses.
    395       DCHECK(!defined_by_->HasNonEnvironmentUses());
    396       DCHECK(from == defined_by_->GetLifetimePosition());
    397       first_range_ = last_range_ = range_search_start_ =
    398           new (allocator_) LiveRange(from, from + 2, nullptr);
    399     }
    400   }
    401 
    402   LiveInterval* GetParent() const { return parent_; }
    403 
    404   // Returns whether this interval is the parent interval, that is, the interval
    405   // that starts where the HInstruction is defined.
    406   bool IsParent() const { return parent_ == this; }
    407 
    408   LiveRange* GetFirstRange() const { return first_range_; }
    409   LiveRange* GetLastRange() const { return last_range_; }
    410 
    411   int GetRegister() const { return register_; }
    412   void SetRegister(int reg) { register_ = reg; }
    413   void ClearRegister() { register_ = kNoRegister; }
    414   bool HasRegister() const { return register_ != kNoRegister; }
    415 
    416   bool IsDeadAt(size_t position) const {
    417     return GetEnd() <= position;
    418   }
    419 
    420   bool IsDefinedAt(size_t position) const {
    421     return GetStart() <= position && !IsDeadAt(position);
    422   }
    423 
    424   // Returns true if the interval contains a LiveRange covering `position`.
    425   // The range at or immediately after the current position of linear scan
    426   // is cached for better performance. If `position` can be smaller than
    427   // that, CoversSlow should be used instead.
    428   bool Covers(size_t position) {
    429     LiveRange* candidate = FindRangeAtOrAfter(position, range_search_start_);
    430     range_search_start_ = candidate;
    431     return (candidate != nullptr && candidate->GetStart() <= position);
    432   }
    433 
    434   // Same as Covers but always tests all ranges.
    435   bool CoversSlow(size_t position) const {
    436     LiveRange* candidate = FindRangeAtOrAfter(position, first_range_);
    437     return candidate != nullptr && candidate->GetStart() <= position;
    438   }
    439 
    440   // Returns the first intersection of this interval with `current`, which
    441   // must be the interval currently being allocated by linear scan.
    442   size_t FirstIntersectionWith(LiveInterval* current) const {
    443     // Find the first range after the start of `current`. We use the search
    444     // cache to improve performance.
    445     DCHECK(GetStart() <= current->GetStart() || IsFixed());
    446     LiveRange* other_range = current->first_range_;
    447     LiveRange* my_range = FindRangeAtOrAfter(other_range->GetStart(), range_search_start_);
    448     if (my_range == nullptr) {
    449       return kNoLifetime;
    450     }
    451 
    452     // Advance both intervals and find the first matching range start in
    453     // this interval.
    454     do {
    455       if (my_range->IsBefore(*other_range)) {
    456         my_range = my_range->GetNext();
    457         if (my_range == nullptr) {
    458           return kNoLifetime;
    459         }
    460       } else if (other_range->IsBefore(*my_range)) {
    461         other_range = other_range->GetNext();
    462         if (other_range == nullptr) {
    463           return kNoLifetime;
    464         }
    465       } else {
    466         DCHECK(my_range->IntersectsWith(*other_range));
    467         return std::max(my_range->GetStart(), other_range->GetStart());
    468       }
    469     } while (true);
    470   }
    471 
    472   size_t GetStart() const {
    473     return first_range_->GetStart();
    474   }
    475 
    476   size_t GetEnd() const {
    477     return last_range_->GetEnd();
    478   }
    479 
    480   size_t FirstRegisterUseAfter(size_t position) const {
    481     if (is_temp_) {
    482       return position == GetStart() ? position : kNoLifetime;
    483     }
    484 
    485     if (IsDefiningPosition(position) && DefinitionRequiresRegister()) {
    486       return position;
    487     }
    488 
    489     UsePosition* use = first_use_;
    490     size_t end = GetEnd();
    491     while (use != nullptr && use->GetPosition() <= end) {
    492       size_t use_position = use->GetPosition();
    493       if (use_position > position) {
    494         if (use->RequiresRegister()) {
    495           return use_position;
    496         }
    497       }
    498       use = use->GetNext();
    499     }
    500     return kNoLifetime;
    501   }
    502 
    503   size_t FirstRegisterUse() const {
    504     return FirstRegisterUseAfter(GetStart());
    505   }
    506 
    507   size_t FirstUseAfter(size_t position) const {
    508     if (is_temp_) {
    509       return position == GetStart() ? position : kNoLifetime;
    510     }
    511 
    512     if (IsDefiningPosition(position)) {
    513       DCHECK(defined_by_->GetLocations()->Out().IsValid());
    514       return position;
    515     }
    516 
    517     UsePosition* use = first_use_;
    518     size_t end = GetEnd();
    519     while (use != nullptr && use->GetPosition() <= end) {
    520       size_t use_position = use->GetPosition();
    521       if (use_position > position) {
    522         return use_position;
    523       }
    524       use = use->GetNext();
    525     }
    526     return kNoLifetime;
    527   }
    528 
    529   UsePosition* GetFirstUse() const {
    530     return first_use_;
    531   }
    532 
    533   UsePosition* GetFirstEnvironmentUse() const {
    534     return first_env_use_;
    535   }
    536 
    537   Primitive::Type GetType() const {
    538     return type_;
    539   }
    540 
    541   HInstruction* GetDefinedBy() const {
    542     return defined_by_;
    543   }
    544 
    545   SafepointPosition* FindSafepointJustBefore(size_t position) const {
    546     for (SafepointPosition* safepoint = first_safepoint_, *previous = nullptr;
    547          safepoint != nullptr;
    548          previous = safepoint, safepoint = safepoint->GetNext()) {
    549       if (safepoint->GetPosition() >= position) return previous;
    550     }
    551     return last_safepoint_;
    552   }
    553 
    554   /**
    555    * Split this interval at `position`. This interval is changed to:
    556    * [start ... position).
    557    *
    558    * The new interval covers:
    559    * [position ... end)
    560    */
    561   LiveInterval* SplitAt(size_t position) {
    562     DCHECK(!is_temp_);
    563     DCHECK(!is_fixed_);
    564     DCHECK_GT(position, GetStart());
    565 
    566     if (GetEnd() <= position) {
    567       // This range dies before `position`, no need to split.
    568       return nullptr;
    569     }
    570 
    571     LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
    572     SafepointPosition* new_last_safepoint = FindSafepointJustBefore(position);
    573     if (new_last_safepoint == nullptr) {
    574       new_interval->first_safepoint_ = first_safepoint_;
    575       new_interval->last_safepoint_ = last_safepoint_;
    576       first_safepoint_ = last_safepoint_ = nullptr;
    577     } else if (last_safepoint_ != new_last_safepoint) {
    578       new_interval->last_safepoint_ = last_safepoint_;
    579       new_interval->first_safepoint_ = new_last_safepoint->GetNext();
    580       DCHECK(new_interval->first_safepoint_ != nullptr);
    581       last_safepoint_ = new_last_safepoint;
    582       last_safepoint_->SetNext(nullptr);
    583     }
    584 
    585     new_interval->next_sibling_ = next_sibling_;
    586     next_sibling_ = new_interval;
    587     new_interval->parent_ = parent_;
    588 
    589     new_interval->first_use_ = first_use_;
    590     new_interval->first_env_use_ = first_env_use_;
    591     LiveRange* current = first_range_;
    592     LiveRange* previous = nullptr;
    593     // Iterate over the ranges, and either find a range that covers this position, or
    594     // two ranges in between this position (that is, the position is in a lifetime hole).
    595     do {
    596       if (position >= current->GetEnd()) {
    597         // Move to next range.
    598         previous = current;
    599         current = current->next_;
    600       } else if (position <= current->GetStart()) {
    601         // If the previous range did not cover this position, we know position is in
    602         // a lifetime hole. We can just break the first_range_ and last_range_ links
    603         // and return the new interval.
    604         DCHECK(previous != nullptr);
    605         DCHECK(current != first_range_);
    606         new_interval->last_range_ = last_range_;
    607         last_range_ = previous;
    608         previous->next_ = nullptr;
    609         new_interval->first_range_ = current;
    610         if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) {
    611           // Search start point is inside `new_interval`. Change it to null
    612           // (i.e. the end of the interval) in the original interval.
    613           range_search_start_ = nullptr;
    614         }
    615         new_interval->range_search_start_ = new_interval->first_range_;
    616         return new_interval;
    617       } else {
    618         // This range covers position. We create a new last_range_ for this interval
    619         // that covers last_range_->Start() and position. We also shorten the current
    620         // range and make it the first range of the new interval.
    621         DCHECK(position < current->GetEnd() && position > current->GetStart());
    622         new_interval->last_range_ = last_range_;
    623         last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr);
    624         if (previous != nullptr) {
    625           previous->next_ = last_range_;
    626         } else {
    627           first_range_ = last_range_;
    628         }
    629         new_interval->first_range_ = current;
    630         current->start_ = position;
    631         if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) {
    632           // Search start point is inside `new_interval`. Change it to `last_range`
    633           // in the original interval. This is conservative but always correct.
    634           range_search_start_ = last_range_;
    635         }
    636         new_interval->range_search_start_ = new_interval->first_range_;
    637         return new_interval;
    638       }
    639     } while (current != nullptr);
    640 
    641     LOG(FATAL) << "Unreachable";
    642     return nullptr;
    643   }
    644 
    645   bool StartsBeforeOrAt(LiveInterval* other) const {
    646     return GetStart() <= other->GetStart();
    647   }
    648 
    649   bool StartsAfter(LiveInterval* other) const {
    650     return GetStart() > other->GetStart();
    651   }
    652 
    653   void Dump(std::ostream& stream) const {
    654     stream << "ranges: { ";
    655     LiveRange* current = first_range_;
    656     while (current != nullptr) {
    657       current->Dump(stream);
    658       stream << " ";
    659       current = current->GetNext();
    660     }
    661     stream << "}, uses: { ";
    662     UsePosition* use = first_use_;
    663     if (use != nullptr) {
    664       do {
    665         use->Dump(stream);
    666         stream << " ";
    667       } while ((use = use->GetNext()) != nullptr);
    668     }
    669     stream << "}, { ";
    670     use = first_env_use_;
    671     if (use != nullptr) {
    672       do {
    673         use->Dump(stream);
    674         stream << " ";
    675       } while ((use = use->GetNext()) != nullptr);
    676     }
    677     stream << "}";
    678     stream << " is_fixed: " << is_fixed_ << ", is_split: " << IsSplit();
    679     stream << " is_low: " << IsLowInterval();
    680     stream << " is_high: " << IsHighInterval();
    681   }
    682 
    683   LiveInterval* GetNextSibling() const { return next_sibling_; }
    684   LiveInterval* GetLastSibling() {
    685     LiveInterval* result = this;
    686     while (result->next_sibling_ != nullptr) {
    687       result = result->next_sibling_;
    688     }
    689     return result;
    690   }
    691 
    692   // Returns the first register hint that is at least free before
    693   // the value contained in `free_until`. If none is found, returns
    694   // `kNoRegister`.
    695   int FindFirstRegisterHint(size_t* free_until, const SsaLivenessAnalysis& liveness) const;
    696 
    697   // If there is enough at the definition site to find a register (for example
    698   // it uses the same input as the first input), returns the register as a hint.
    699   // Returns kNoRegister otherwise.
    700   int FindHintAtDefinition() const;
    701 
    702   // Returns whether the interval needs two (Dex virtual register size `kVRegSize`)
    703   // slots for spilling.
    704   bool NeedsTwoSpillSlots() const;
    705 
    706   bool IsFloatingPoint() const {
    707     return type_ == Primitive::kPrimFloat || type_ == Primitive::kPrimDouble;
    708   }
    709 
    710   // Converts the location of the interval to a `Location` object.
    711   Location ToLocation() const;
    712 
    713   // Returns the location of the interval following its siblings at `position`.
    714   Location GetLocationAt(size_t position);
    715 
    716   // Finds the sibling that is defined at `position`.
    717   LiveInterval* GetSiblingAt(size_t position);
    718 
    719   // Returns whether `other` and `this` share the same kind of register.
    720   bool SameRegisterKind(Location other) const;
    721   bool SameRegisterKind(const LiveInterval& other) const {
    722     return IsFloatingPoint() == other.IsFloatingPoint();
    723   }
    724 
    725   bool HasHighInterval() const {
    726     return IsLowInterval();
    727   }
    728 
    729   bool HasLowInterval() const {
    730     return IsHighInterval();
    731   }
    732 
    733   LiveInterval* GetLowInterval() const {
    734     DCHECK(HasLowInterval());
    735     return high_or_low_interval_;
    736   }
    737 
    738   LiveInterval* GetHighInterval() const {
    739     DCHECK(HasHighInterval());
    740     return high_or_low_interval_;
    741   }
    742 
    743   bool IsHighInterval() const {
    744     return GetParent()->is_high_interval_;
    745   }
    746 
    747   bool IsLowInterval() const {
    748     return !IsHighInterval() && (GetParent()->high_or_low_interval_ != nullptr);
    749   }
    750 
    751   void SetLowInterval(LiveInterval* low) {
    752     DCHECK(IsHighInterval());
    753     high_or_low_interval_ = low;
    754   }
    755 
    756   void SetHighInterval(LiveInterval* high) {
    757     DCHECK(IsLowInterval());
    758     high_or_low_interval_ = high;
    759   }
    760 
    761   void AddHighInterval(bool is_temp = false) {
    762     DCHECK(IsParent());
    763     DCHECK(!HasHighInterval());
    764     DCHECK(!HasLowInterval());
    765     high_or_low_interval_ = new (allocator_) LiveInterval(
    766         allocator_, type_, defined_by_, false, kNoRegister, is_temp, false, true);
    767     high_or_low_interval_->high_or_low_interval_ = this;
    768     if (first_range_ != nullptr) {
    769       high_or_low_interval_->first_range_ = first_range_->Dup(allocator_);
    770       high_or_low_interval_->last_range_ = high_or_low_interval_->first_range_->GetLastRange();
    771       high_or_low_interval_->range_search_start_ = high_or_low_interval_->first_range_;
    772     }
    773     if (first_use_ != nullptr) {
    774       high_or_low_interval_->first_use_ = first_use_->Dup(allocator_);
    775     }
    776 
    777     if (first_env_use_ != nullptr) {
    778       high_or_low_interval_->first_env_use_ = first_env_use_->Dup(allocator_);
    779     }
    780   }
    781 
    782   // Returns whether an interval, when it is non-split, is using
    783   // the same register of one of its input.
    784   bool IsUsingInputRegister() const {
    785     CHECK(kIsDebugBuild) << "Function should be used only for DCHECKs";
    786     if (defined_by_ != nullptr && !IsSplit()) {
    787       for (HInputIterator it(defined_by_); !it.Done(); it.Advance()) {
    788         LiveInterval* interval = it.Current()->GetLiveInterval();
    789 
    790         // Find the interval that covers `defined_by`_. Calls to this function
    791         // are made outside the linear scan, hence we need to use CoversSlow.
    792         while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) {
    793           interval = interval->GetNextSibling();
    794         }
    795 
    796         // Check if both intervals have the same register of the same kind.
    797         if (interval != nullptr
    798             && interval->SameRegisterKind(*this)
    799             && interval->GetRegister() == GetRegister()) {
    800           return true;
    801         }
    802       }
    803     }
    804     return false;
    805   }
    806 
    807   // Returns whether an interval, when it is non-split, can safely use
    808   // the same register of one of its input. Note that this method requires
    809   // IsUsingInputRegister() to be true.
    810   bool CanUseInputRegister() const {
    811     CHECK(kIsDebugBuild) << "Function should be used only for DCHECKs";
    812     DCHECK(IsUsingInputRegister());
    813     if (defined_by_ != nullptr && !IsSplit()) {
    814       LocationSummary* locations = defined_by_->GetLocations();
    815       if (locations->OutputCanOverlapWithInputs()) {
    816         return false;
    817       }
    818       for (HInputIterator it(defined_by_); !it.Done(); it.Advance()) {
    819         LiveInterval* interval = it.Current()->GetLiveInterval();
    820 
    821         // Find the interval that covers `defined_by`_. Calls to this function
    822         // are made outside the linear scan, hence we need to use CoversSlow.
    823         while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) {
    824           interval = interval->GetNextSibling();
    825         }
    826 
    827         if (interval != nullptr
    828             && interval->SameRegisterKind(*this)
    829             && interval->GetRegister() == GetRegister()) {
    830           // We found the input that has the same register. Check if it is live after
    831           // `defined_by`_.
    832           return !interval->CoversSlow(defined_by_->GetLifetimePosition() + 1);
    833         }
    834       }
    835     }
    836     LOG(FATAL) << "Unreachable";
    837     UNREACHABLE();
    838   }
    839 
    840   void AddSafepoint(HInstruction* instruction) {
    841     SafepointPosition* safepoint = new (allocator_) SafepointPosition(instruction);
    842     if (first_safepoint_ == nullptr) {
    843       first_safepoint_ = last_safepoint_ = safepoint;
    844     } else {
    845       DCHECK_LT(last_safepoint_->GetPosition(), safepoint->GetPosition());
    846       last_safepoint_->SetNext(safepoint);
    847       last_safepoint_ = safepoint;
    848     }
    849   }
    850 
    851   SafepointPosition* GetFirstSafepoint() const {
    852     return first_safepoint_;
    853   }
    854 
    855   // Resets the starting point for range-searching queries to the first range.
    856   // Intervals must be reset prior to starting a new linear scan over them.
    857   void ResetSearchCache() {
    858     range_search_start_ = first_range_;
    859   }
    860 
    861  private:
    862   LiveInterval(ArenaAllocator* allocator,
    863                Primitive::Type type,
    864                HInstruction* defined_by = nullptr,
    865                bool is_fixed = false,
    866                int reg = kNoRegister,
    867                bool is_temp = false,
    868                bool is_slow_path_safepoint = false,
    869                bool is_high_interval = false)
    870       : allocator_(allocator),
    871         first_range_(nullptr),
    872         last_range_(nullptr),
    873         range_search_start_(nullptr),
    874         first_safepoint_(nullptr),
    875         last_safepoint_(nullptr),
    876         first_use_(nullptr),
    877         first_env_use_(nullptr),
    878         type_(type),
    879         next_sibling_(nullptr),
    880         parent_(this),
    881         register_(reg),
    882         spill_slot_(kNoSpillSlot),
    883         is_fixed_(is_fixed),
    884         is_temp_(is_temp),
    885         is_slow_path_safepoint_(is_slow_path_safepoint),
    886         is_high_interval_(is_high_interval),
    887         high_or_low_interval_(nullptr),
    888         defined_by_(defined_by) {}
    889 
    890   // Searches for a LiveRange that either covers the given position or is the
    891   // first next LiveRange. Returns null if no such LiveRange exists. Ranges
    892   // known to end before `position` can be skipped with `search_start`.
    893   LiveRange* FindRangeAtOrAfter(size_t position, LiveRange* search_start) const {
    894     if (kIsDebugBuild) {
    895       if (search_start != first_range_) {
    896         // If we are not searching the entire list of ranges, make sure we do
    897         // not skip the range we are searching for.
    898         if (search_start == nullptr) {
    899           DCHECK(IsDeadAt(position));
    900         } else if (search_start->GetStart() > position) {
    901           DCHECK_EQ(search_start, FindRangeAtOrAfter(position, first_range_));
    902         }
    903       }
    904     }
    905 
    906     LiveRange* range;
    907     for (range = search_start;
    908          range != nullptr && range->GetEnd() <= position;
    909          range = range->GetNext()) {
    910       continue;
    911     }
    912     return range;
    913   }
    914 
    915   bool DefinitionRequiresRegister() const {
    916     DCHECK(IsParent());
    917     LocationSummary* locations = defined_by_->GetLocations();
    918     Location location = locations->Out();
    919     // This interval is the first interval of the instruction. If the output
    920     // of the instruction requires a register, we return the position of that instruction
    921     // as the first register use.
    922     if (location.IsUnallocated()) {
    923       if ((location.GetPolicy() == Location::kRequiresRegister)
    924            || (location.GetPolicy() == Location::kSameAsFirstInput
    925                && (locations->InAt(0).IsRegister()
    926                    || locations->InAt(0).IsRegisterPair()
    927                    || locations->InAt(0).GetPolicy() == Location::kRequiresRegister))) {
    928         return true;
    929       } else if ((location.GetPolicy() == Location::kRequiresFpuRegister)
    930                  || (location.GetPolicy() == Location::kSameAsFirstInput
    931                      && (locations->InAt(0).IsFpuRegister()
    932                          || locations->InAt(0).IsFpuRegisterPair()
    933                          || locations->InAt(0).GetPolicy() == Location::kRequiresFpuRegister))) {
    934         return true;
    935       }
    936     } else if (location.IsRegister() || location.IsRegisterPair()) {
    937       return true;
    938     }
    939     return false;
    940   }
    941 
    942   bool IsDefiningPosition(size_t position) const {
    943     return IsParent() && (position == GetStart());
    944   }
    945 
    946   bool HasSynthesizeUseAt(size_t position) const {
    947     UsePosition* use = first_use_;
    948     while (use != nullptr) {
    949       size_t use_position = use->GetPosition();
    950       if ((use_position == position) && use->IsSynthesized()) {
    951         return true;
    952       }
    953       if (use_position > position) break;
    954       use = use->GetNext();
    955     }
    956     return false;
    957   }
    958 
    959   void AddBackEdgeUses(const HBasicBlock& block_at_use) {
    960     DCHECK(block_at_use.IsInLoop());
    961     // Add synthesized uses at the back edge of loops to help the register allocator.
    962     // Note that this method is called in decreasing liveness order, to faciliate adding
    963     // uses at the head of the `first_use_` linked list. Because below
    964     // we iterate from inner-most to outer-most, which is in increasing liveness order,
    965     // we need to take extra care of how the `first_use_` linked list is being updated.
    966     UsePosition* first_in_new_list = nullptr;
    967     UsePosition* last_in_new_list = nullptr;
    968     for (HLoopInformationOutwardIterator it(block_at_use);
    969          !it.Done();
    970          it.Advance()) {
    971       HLoopInformation* current = it.Current();
    972       if (GetDefinedBy()->GetLifetimePosition() >= current->GetHeader()->GetLifetimeStart()) {
    973         // This interval is defined in the loop. We can stop going outward.
    974         break;
    975       }
    976 
    977       // We're only adding a synthesized use at the last back edge. Adding syntehsized uses on
    978       // all back edges is not necessary: anything used in the loop will have its use at the
    979       // last back edge. If we want branches in a loop to have better register allocation than
    980       // another branch, then it is the linear order we should change.
    981       size_t back_edge_use_position = current->GetLifetimeEnd();
    982       if ((first_use_ != nullptr) && (first_use_->GetPosition() <= back_edge_use_position)) {
    983         // There was a use already seen in this loop. Therefore the previous call to `AddUse`
    984         // already inserted the backedge use. We can stop going outward.
    985         DCHECK(HasSynthesizeUseAt(back_edge_use_position));
    986         break;
    987       }
    988 
    989       DCHECK(last_in_new_list == nullptr
    990              || back_edge_use_position > last_in_new_list->GetPosition());
    991 
    992       UsePosition* new_use = new (allocator_) UsePosition(
    993           /* user */ nullptr,
    994           /* environment */ nullptr,
    995           UsePosition::kNoInput,
    996           back_edge_use_position,
    997           /* next */ nullptr);
    998 
    999       if (last_in_new_list != nullptr) {
   1000         // Going outward. The latest created use needs to point to the new use.
   1001         last_in_new_list->SetNext(new_use);
   1002       } else {
   1003         // This is the inner-most loop.
   1004         DCHECK_EQ(current, block_at_use.GetLoopInformation());
   1005         first_in_new_list = new_use;
   1006       }
   1007       last_in_new_list = new_use;
   1008     }
   1009     // Link the newly created linked list with `first_use_`.
   1010     if (last_in_new_list != nullptr) {
   1011       last_in_new_list->SetNext(first_use_);
   1012       first_use_ = first_in_new_list;
   1013     }
   1014   }
   1015 
   1016   ArenaAllocator* const allocator_;
   1017 
   1018   // Ranges of this interval. We need a quick access to the last range to test
   1019   // for liveness (see `IsDeadAt`).
   1020   LiveRange* first_range_;
   1021   LiveRange* last_range_;
   1022 
   1023   // The first range at or after the current position of a linear scan. It is
   1024   // used to optimize range-searching queries.
   1025   LiveRange* range_search_start_;
   1026 
   1027   // Safepoints where this interval is live.
   1028   SafepointPosition* first_safepoint_;
   1029   SafepointPosition* last_safepoint_;
   1030 
   1031   // Uses of this interval. Note that this linked list is shared amongst siblings.
   1032   UsePosition* first_use_;
   1033   UsePosition* first_env_use_;
   1034 
   1035   // The instruction type this interval corresponds to.
   1036   const Primitive::Type type_;
   1037 
   1038   // Live interval that is the result of a split.
   1039   LiveInterval* next_sibling_;
   1040 
   1041   // The first interval from which split intervals come from.
   1042   LiveInterval* parent_;
   1043 
   1044   // The register allocated to this interval.
   1045   int register_;
   1046 
   1047   // The spill slot allocated to this interval.
   1048   int spill_slot_;
   1049 
   1050   // Whether the interval is for a fixed register.
   1051   const bool is_fixed_;
   1052 
   1053   // Whether the interval is for a temporary.
   1054   const bool is_temp_;
   1055 
   1056   // Whether the interval is for a safepoint that calls on slow path.
   1057   const bool is_slow_path_safepoint_;
   1058 
   1059   // Whether this interval is a synthesized interval for register pair.
   1060   const bool is_high_interval_;
   1061 
   1062   // If this interval needs a register pair, the high or low equivalent.
   1063   // `is_high_interval_` tells whether this holds the low or the high.
   1064   LiveInterval* high_or_low_interval_;
   1065 
   1066   // The instruction represented by this interval.
   1067   HInstruction* const defined_by_;
   1068 
   1069   static constexpr int kNoRegister = -1;
   1070   static constexpr int kNoSpillSlot = -1;
   1071 
   1072   ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive);
   1073 
   1074   DISALLOW_COPY_AND_ASSIGN(LiveInterval);
   1075 };
   1076 
   1077 /**
   1078  * Analysis that computes the liveness of instructions:
   1079  *
   1080  * (a) Non-environment uses of an instruction always make
   1081  *     the instruction live.
   1082  * (b) Environment uses of an instruction whose type is
   1083  *     object (that is, non-primitive), make the instruction live.
   1084  *     This is due to having to keep alive objects that have
   1085  *     finalizers deleting native objects.
   1086  * (c) When the graph has the debuggable property, environment uses
   1087  *     of an instruction that has a primitive type make the instruction live.
   1088  *     If the graph does not have the debuggable property, the environment
   1089  *     use has no effect, and may get a 'none' value after register allocation.
   1090  *
   1091  * (b) and (c) are implemented through SsaLivenessAnalysis::ShouldBeLiveForEnvironment.
   1092  */
   1093 class SsaLivenessAnalysis : public ValueObject {
   1094  public:
   1095   SsaLivenessAnalysis(HGraph* graph, CodeGenerator* codegen)
   1096       : graph_(graph),
   1097         codegen_(codegen),
   1098         block_infos_(graph->GetArena(), graph->GetBlocks().Size()),
   1099         instructions_from_ssa_index_(graph->GetArena(), 0),
   1100         instructions_from_lifetime_position_(graph->GetArena(), 0),
   1101         number_of_ssa_values_(0) {
   1102     block_infos_.SetSize(graph->GetBlocks().Size());
   1103   }
   1104 
   1105   void Analyze();
   1106 
   1107   BitVector* GetLiveInSet(const HBasicBlock& block) const {
   1108     return &block_infos_.Get(block.GetBlockId())->live_in_;
   1109   }
   1110 
   1111   BitVector* GetLiveOutSet(const HBasicBlock& block) const {
   1112     return &block_infos_.Get(block.GetBlockId())->live_out_;
   1113   }
   1114 
   1115   BitVector* GetKillSet(const HBasicBlock& block) const {
   1116     return &block_infos_.Get(block.GetBlockId())->kill_;
   1117   }
   1118 
   1119   HInstruction* GetInstructionFromSsaIndex(size_t index) const {
   1120     return instructions_from_ssa_index_.Get(index);
   1121   }
   1122 
   1123   HInstruction* GetInstructionFromPosition(size_t index) const {
   1124     return instructions_from_lifetime_position_.Get(index);
   1125   }
   1126 
   1127   HBasicBlock* GetBlockFromPosition(size_t index) const {
   1128     HInstruction* instruction = GetInstructionFromPosition(index);
   1129     if (instruction == nullptr) {
   1130       // If we are at a block boundary, get the block following.
   1131       instruction = GetInstructionFromPosition(index + 1);
   1132     }
   1133     return instruction->GetBlock();
   1134   }
   1135 
   1136   bool IsAtBlockBoundary(size_t index) const {
   1137     return GetInstructionFromPosition(index) == nullptr;
   1138   }
   1139 
   1140   HInstruction* GetTempUser(LiveInterval* temp) const {
   1141     // A temporary shares the same lifetime start as the instruction that requires it.
   1142     DCHECK(temp->IsTemp());
   1143     HInstruction* user = GetInstructionFromPosition(temp->GetStart() / 2);
   1144     DCHECK_EQ(user, temp->GetFirstUse()->GetUser());
   1145     return user;
   1146   }
   1147 
   1148   size_t GetTempIndex(LiveInterval* temp) const {
   1149     // We use the input index to store the index of the temporary in the user's temporary list.
   1150     DCHECK(temp->IsTemp());
   1151     return temp->GetFirstUse()->GetInputIndex();
   1152   }
   1153 
   1154   size_t GetMaxLifetimePosition() const {
   1155     return instructions_from_lifetime_position_.Size() * 2 - 1;
   1156   }
   1157 
   1158   size_t GetNumberOfSsaValues() const {
   1159     return number_of_ssa_values_;
   1160   }
   1161 
   1162   static constexpr const char* kLivenessPassName = "liveness";
   1163 
   1164  private:
   1165   // Linearize the graph so that:
   1166   // (1): a block is always after its dominator,
   1167   // (2): blocks of loops are contiguous.
   1168   // This creates a natural and efficient ordering when visualizing live ranges.
   1169   void LinearizeGraph();
   1170 
   1171   // Give an SSA number to each instruction that defines a value used by another instruction,
   1172   // and setup the lifetime information of each instruction and block.
   1173   void NumberInstructions();
   1174 
   1175   // Compute live ranges of instructions, as well as live_in, live_out and kill sets.
   1176   void ComputeLiveness();
   1177 
   1178   // Compute the live ranges of instructions, as well as the initial live_in, live_out and
   1179   // kill sets, that do not take into account backward branches.
   1180   void ComputeLiveRanges();
   1181 
   1182   // After computing the initial sets, this method does a fixed point
   1183   // calculation over the live_in and live_out set to take into account
   1184   // backwards branches.
   1185   void ComputeLiveInAndLiveOutSets();
   1186 
   1187   // Update the live_in set of the block and returns whether it has changed.
   1188   bool UpdateLiveIn(const HBasicBlock& block);
   1189 
   1190   // Update the live_out set of the block and returns whether it has changed.
   1191   bool UpdateLiveOut(const HBasicBlock& block);
   1192 
   1193   // Returns whether `instruction` in an HEnvironment held by `env_holder`
   1194   // should be kept live by the HEnvironment.
   1195   static bool ShouldBeLiveForEnvironment(HInstruction* env_holder,
   1196                                          HInstruction* instruction) {
   1197     if (instruction == nullptr) return false;
   1198     // A value that's not live in compiled code may still be needed in interpreter,
   1199     // due to code motion, etc.
   1200     if (env_holder->IsDeoptimize()) return true;
   1201     if (instruction->GetBlock()->GetGraph()->IsDebuggable()) return true;
   1202     return instruction->GetType() == Primitive::kPrimNot;
   1203   }
   1204 
   1205   HGraph* const graph_;
   1206   CodeGenerator* const codegen_;
   1207   GrowableArray<BlockInfo*> block_infos_;
   1208 
   1209   // Temporary array used when computing live_in, live_out, and kill sets.
   1210   GrowableArray<HInstruction*> instructions_from_ssa_index_;
   1211 
   1212   // Temporary array used when inserting moves in the graph.
   1213   GrowableArray<HInstruction*> instructions_from_lifetime_position_;
   1214   size_t number_of_ssa_values_;
   1215 
   1216   ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive);
   1217 
   1218   DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
   1219 };
   1220 
   1221 }  // namespace art
   1222 
   1223 #endif  // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
   1224