Home | History | Annotate | Download | only in Parse
      1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Provides the Expression parsing implementation.
     12 ///
     13 /// Expressions in C99 basically consist of a bunch of binary operators with
     14 /// unary operators and other random stuff at the leaves.
     15 ///
     16 /// In the C99 grammar, these unary operators bind tightest and are represented
     17 /// as the 'cast-expression' production.  Everything else is either a binary
     18 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
     19 /// handled by ParseCastExpression, the higher level pieces are handled by
     20 /// ParseBinaryExpression.
     21 ///
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "clang/Parse/Parser.h"
     25 #include "RAIIObjectsForParser.h"
     26 #include "clang/AST/ASTContext.h"
     27 #include "clang/Basic/PrettyStackTrace.h"
     28 #include "clang/Sema/DeclSpec.h"
     29 #include "clang/Sema/ParsedTemplate.h"
     30 #include "clang/Sema/Scope.h"
     31 #include "clang/Sema/TypoCorrection.h"
     32 #include "llvm/ADT/SmallString.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 using namespace clang;
     35 
     36 /// \brief Simple precedence-based parser for binary/ternary operators.
     37 ///
     38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
     39 /// production.  C99 specifies that the LHS of an assignment operator should be
     40 /// parsed as a unary-expression, but consistency dictates that it be a
     41 /// conditional-expession.  In practice, the important thing here is that the
     42 /// LHS of an assignment has to be an l-value, which productions between
     43 /// unary-expression and conditional-expression don't produce.  Because we want
     44 /// consistency, we parse the LHS as a conditional-expression, then check for
     45 /// l-value-ness in semantic analysis stages.
     46 ///
     47 /// \verbatim
     48 ///       pm-expression: [C++ 5.5]
     49 ///         cast-expression
     50 ///         pm-expression '.*' cast-expression
     51 ///         pm-expression '->*' cast-expression
     52 ///
     53 ///       multiplicative-expression: [C99 6.5.5]
     54 ///     Note: in C++, apply pm-expression instead of cast-expression
     55 ///         cast-expression
     56 ///         multiplicative-expression '*' cast-expression
     57 ///         multiplicative-expression '/' cast-expression
     58 ///         multiplicative-expression '%' cast-expression
     59 ///
     60 ///       additive-expression: [C99 6.5.6]
     61 ///         multiplicative-expression
     62 ///         additive-expression '+' multiplicative-expression
     63 ///         additive-expression '-' multiplicative-expression
     64 ///
     65 ///       shift-expression: [C99 6.5.7]
     66 ///         additive-expression
     67 ///         shift-expression '<<' additive-expression
     68 ///         shift-expression '>>' additive-expression
     69 ///
     70 ///       relational-expression: [C99 6.5.8]
     71 ///         shift-expression
     72 ///         relational-expression '<' shift-expression
     73 ///         relational-expression '>' shift-expression
     74 ///         relational-expression '<=' shift-expression
     75 ///         relational-expression '>=' shift-expression
     76 ///
     77 ///       equality-expression: [C99 6.5.9]
     78 ///         relational-expression
     79 ///         equality-expression '==' relational-expression
     80 ///         equality-expression '!=' relational-expression
     81 ///
     82 ///       AND-expression: [C99 6.5.10]
     83 ///         equality-expression
     84 ///         AND-expression '&' equality-expression
     85 ///
     86 ///       exclusive-OR-expression: [C99 6.5.11]
     87 ///         AND-expression
     88 ///         exclusive-OR-expression '^' AND-expression
     89 ///
     90 ///       inclusive-OR-expression: [C99 6.5.12]
     91 ///         exclusive-OR-expression
     92 ///         inclusive-OR-expression '|' exclusive-OR-expression
     93 ///
     94 ///       logical-AND-expression: [C99 6.5.13]
     95 ///         inclusive-OR-expression
     96 ///         logical-AND-expression '&&' inclusive-OR-expression
     97 ///
     98 ///       logical-OR-expression: [C99 6.5.14]
     99 ///         logical-AND-expression
    100 ///         logical-OR-expression '||' logical-AND-expression
    101 ///
    102 ///       conditional-expression: [C99 6.5.15]
    103 ///         logical-OR-expression
    104 ///         logical-OR-expression '?' expression ':' conditional-expression
    105 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
    106 /// [C++] the third operand is an assignment-expression
    107 ///
    108 ///       assignment-expression: [C99 6.5.16]
    109 ///         conditional-expression
    110 ///         unary-expression assignment-operator assignment-expression
    111 /// [C++]   throw-expression [C++ 15]
    112 ///
    113 ///       assignment-operator: one of
    114 ///         = *= /= %= += -= <<= >>= &= ^= |=
    115 ///
    116 ///       expression: [C99 6.5.17]
    117 ///         assignment-expression ...[opt]
    118 ///         expression ',' assignment-expression ...[opt]
    119 /// \endverbatim
    120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
    121   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
    122   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    123 }
    124 
    125 /// This routine is called when the '@' is seen and consumed.
    126 /// Current token is an Identifier and is not a 'try'. This
    127 /// routine is necessary to disambiguate \@try-statement from,
    128 /// for example, \@encode-expression.
    129 ///
    130 ExprResult
    131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
    132   ExprResult LHS(ParseObjCAtExpression(AtLoc));
    133   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    134 }
    135 
    136 /// This routine is called when a leading '__extension__' is seen and
    137 /// consumed.  This is necessary because the token gets consumed in the
    138 /// process of disambiguating between an expression and a declaration.
    139 ExprResult
    140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
    141   ExprResult LHS(true);
    142   {
    143     // Silence extension warnings in the sub-expression
    144     ExtensionRAIIObject O(Diags);
    145 
    146     LHS = ParseCastExpression(false);
    147   }
    148 
    149   if (!LHS.isInvalid())
    150     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
    151                                LHS.get());
    152 
    153   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    154 }
    155 
    156 /// \brief Parse an expr that doesn't include (top-level) commas.
    157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
    158   if (Tok.is(tok::code_completion)) {
    159     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
    160     cutOffParsing();
    161     return ExprError();
    162   }
    163 
    164   if (Tok.is(tok::kw_throw))
    165     return ParseThrowExpression();
    166 
    167   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
    168                                        /*isAddressOfOperand=*/false,
    169                                        isTypeCast);
    170   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
    171 }
    172 
    173 /// \brief Parse an assignment expression where part of an Objective-C message
    174 /// send has already been parsed.
    175 ///
    176 /// In this case \p LBracLoc indicates the location of the '[' of the message
    177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
    178 /// the receiver of the message.
    179 ///
    180 /// Since this handles full assignment-expression's, it handles postfix
    181 /// expressions and other binary operators for these expressions as well.
    182 ExprResult
    183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
    184                                                     SourceLocation SuperLoc,
    185                                                     ParsedType ReceiverType,
    186                                                     Expr *ReceiverExpr) {
    187   ExprResult R
    188     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
    189                                      ReceiverType, ReceiverExpr);
    190   R = ParsePostfixExpressionSuffix(R);
    191   return ParseRHSOfBinaryExpression(R, prec::Assignment);
    192 }
    193 
    194 
    195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
    196   // C++03 [basic.def.odr]p2:
    197   //   An expression is potentially evaluated unless it appears where an
    198   //   integral constant expression is required (see 5.19) [...].
    199   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
    200   EnterExpressionEvaluationContext Unevaluated(Actions,
    201                                                Sema::ConstantEvaluated);
    202 
    203   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
    204   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
    205   return Actions.ActOnConstantExpression(Res);
    206 }
    207 
    208 bool Parser::isNotExpressionStart() {
    209   tok::TokenKind K = Tok.getKind();
    210   if (K == tok::l_brace || K == tok::r_brace  ||
    211       K == tok::kw_for  || K == tok::kw_while ||
    212       K == tok::kw_if   || K == tok::kw_else  ||
    213       K == tok::kw_goto || K == tok::kw_try)
    214     return true;
    215   // If this is a decl-specifier, we can't be at the start of an expression.
    216   return isKnownToBeDeclarationSpecifier();
    217 }
    218 
    219 static bool isFoldOperator(prec::Level Level) {
    220   return Level > prec::Unknown && Level != prec::Conditional;
    221 }
    222 static bool isFoldOperator(tok::TokenKind Kind) {
    223   return isFoldOperator(getBinOpPrecedence(Kind, false, true));
    224 }
    225 
    226 /// \brief Parse a binary expression that starts with \p LHS and has a
    227 /// precedence of at least \p MinPrec.
    228 ExprResult
    229 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
    230   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
    231                                                GreaterThanIsOperator,
    232                                                getLangOpts().CPlusPlus11);
    233   SourceLocation ColonLoc;
    234 
    235   while (1) {
    236     // If this token has a lower precedence than we are allowed to parse (e.g.
    237     // because we are called recursively, or because the token is not a binop),
    238     // then we are done!
    239     if (NextTokPrec < MinPrec)
    240       return LHS;
    241 
    242     // Consume the operator, saving the operator token for error reporting.
    243     Token OpToken = Tok;
    244     ConsumeToken();
    245 
    246     // Bail out when encountering a comma followed by a token which can't
    247     // possibly be the start of an expression. For instance:
    248     //   int f() { return 1, }
    249     // We can't do this before consuming the comma, because
    250     // isNotExpressionStart() looks at the token stream.
    251     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
    252       PP.EnterToken(Tok);
    253       Tok = OpToken;
    254       return LHS;
    255     }
    256 
    257     // If the next token is an ellipsis, then this is a fold-expression. Leave
    258     // it alone so we can handle it in the paren expression.
    259     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
    260       // FIXME: We can't check this via lookahead before we consume the token
    261       // because that tickles a lexer bug.
    262       PP.EnterToken(Tok);
    263       Tok = OpToken;
    264       return LHS;
    265     }
    266 
    267     // Special case handling for the ternary operator.
    268     ExprResult TernaryMiddle(true);
    269     if (NextTokPrec == prec::Conditional) {
    270       if (Tok.isNot(tok::colon)) {
    271         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
    272         ColonProtectionRAIIObject X(*this);
    273 
    274         // Handle this production specially:
    275         //   logical-OR-expression '?' expression ':' conditional-expression
    276         // In particular, the RHS of the '?' is 'expression', not
    277         // 'logical-OR-expression' as we might expect.
    278         TernaryMiddle = ParseExpression();
    279         if (TernaryMiddle.isInvalid()) {
    280           Actions.CorrectDelayedTyposInExpr(LHS);
    281           LHS = ExprError();
    282           TernaryMiddle = nullptr;
    283         }
    284       } else {
    285         // Special case handling of "X ? Y : Z" where Y is empty:
    286         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
    287         TernaryMiddle = nullptr;
    288         Diag(Tok, diag::ext_gnu_conditional_expr);
    289       }
    290 
    291       if (!TryConsumeToken(tok::colon, ColonLoc)) {
    292         // Otherwise, we're missing a ':'.  Assume that this was a typo that
    293         // the user forgot. If we're not in a macro expansion, we can suggest
    294         // a fixit hint. If there were two spaces before the current token,
    295         // suggest inserting the colon in between them, otherwise insert ": ".
    296         SourceLocation FILoc = Tok.getLocation();
    297         const char *FIText = ": ";
    298         const SourceManager &SM = PP.getSourceManager();
    299         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
    300           assert(FILoc.isFileID());
    301           bool IsInvalid = false;
    302           const char *SourcePtr =
    303             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
    304           if (!IsInvalid && *SourcePtr == ' ') {
    305             SourcePtr =
    306               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
    307             if (!IsInvalid && *SourcePtr == ' ') {
    308               FILoc = FILoc.getLocWithOffset(-1);
    309               FIText = ":";
    310             }
    311           }
    312         }
    313 
    314         Diag(Tok, diag::err_expected)
    315             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
    316         Diag(OpToken, diag::note_matching) << tok::question;
    317         ColonLoc = Tok.getLocation();
    318       }
    319     }
    320 
    321     // Code completion for the right-hand side of an assignment expression
    322     // goes through a special hook that takes the left-hand side into account.
    323     if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
    324       Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
    325       cutOffParsing();
    326       return ExprError();
    327     }
    328 
    329     // Parse another leaf here for the RHS of the operator.
    330     // ParseCastExpression works here because all RHS expressions in C have it
    331     // as a prefix, at least. However, in C++, an assignment-expression could
    332     // be a throw-expression, which is not a valid cast-expression.
    333     // Therefore we need some special-casing here.
    334     // Also note that the third operand of the conditional operator is
    335     // an assignment-expression in C++, and in C++11, we can have a
    336     // braced-init-list on the RHS of an assignment. For better diagnostics,
    337     // parse as if we were allowed braced-init-lists everywhere, and check that
    338     // they only appear on the RHS of assignments later.
    339     ExprResult RHS;
    340     bool RHSIsInitList = false;
    341     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
    342       RHS = ParseBraceInitializer();
    343       RHSIsInitList = true;
    344     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
    345       RHS = ParseAssignmentExpression();
    346     else
    347       RHS = ParseCastExpression(false);
    348 
    349     if (RHS.isInvalid()) {
    350       Actions.CorrectDelayedTyposInExpr(LHS);
    351       LHS = ExprError();
    352     }
    353 
    354     // Remember the precedence of this operator and get the precedence of the
    355     // operator immediately to the right of the RHS.
    356     prec::Level ThisPrec = NextTokPrec;
    357     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
    358                                      getLangOpts().CPlusPlus11);
    359 
    360     // Assignment and conditional expressions are right-associative.
    361     bool isRightAssoc = ThisPrec == prec::Conditional ||
    362                         ThisPrec == prec::Assignment;
    363 
    364     // Get the precedence of the operator to the right of the RHS.  If it binds
    365     // more tightly with RHS than we do, evaluate it completely first.
    366     if (ThisPrec < NextTokPrec ||
    367         (ThisPrec == NextTokPrec && isRightAssoc)) {
    368       if (!RHS.isInvalid() && RHSIsInitList) {
    369         Diag(Tok, diag::err_init_list_bin_op)
    370           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
    371         RHS = ExprError();
    372       }
    373       // If this is left-associative, only parse things on the RHS that bind
    374       // more tightly than the current operator.  If it is left-associative, it
    375       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
    376       // A=(B=(C=D)), where each paren is a level of recursion here.
    377       // The function takes ownership of the RHS.
    378       RHS = ParseRHSOfBinaryExpression(RHS,
    379                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
    380       RHSIsInitList = false;
    381 
    382       if (RHS.isInvalid()) {
    383         Actions.CorrectDelayedTyposInExpr(LHS);
    384         LHS = ExprError();
    385       }
    386 
    387       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
    388                                        getLangOpts().CPlusPlus11);
    389     }
    390 
    391     if (!RHS.isInvalid() && RHSIsInitList) {
    392       if (ThisPrec == prec::Assignment) {
    393         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
    394           << Actions.getExprRange(RHS.get());
    395       } else {
    396         Diag(OpToken, diag::err_init_list_bin_op)
    397           << /*RHS*/1 << PP.getSpelling(OpToken)
    398           << Actions.getExprRange(RHS.get());
    399         LHS = ExprError();
    400       }
    401     }
    402 
    403     if (!LHS.isInvalid()) {
    404       // Combine the LHS and RHS into the LHS (e.g. build AST).
    405       if (TernaryMiddle.isInvalid()) {
    406         // If we're using '>>' as an operator within a template
    407         // argument list (in C++98), suggest the addition of
    408         // parentheses so that the code remains well-formed in C++0x.
    409         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
    410           SuggestParentheses(OpToken.getLocation(),
    411                              diag::warn_cxx11_right_shift_in_template_arg,
    412                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
    413                                      Actions.getExprRange(RHS.get()).getEnd()));
    414 
    415         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
    416                                  OpToken.getKind(), LHS.get(), RHS.get());
    417       } else
    418         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
    419                                          LHS.get(), TernaryMiddle.get(),
    420                                          RHS.get());
    421     } else
    422       // Ensure potential typos in the RHS aren't left undiagnosed.
    423       Actions.CorrectDelayedTyposInExpr(RHS);
    424   }
    425 }
    426 
    427 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
    428 /// parse a unary-expression.
    429 ///
    430 /// \p isAddressOfOperand exists because an id-expression that is the
    431 /// operand of address-of gets special treatment due to member pointers.
    432 ///
    433 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
    434                                        bool isAddressOfOperand,
    435                                        TypeCastState isTypeCast) {
    436   bool NotCastExpr;
    437   ExprResult Res = ParseCastExpression(isUnaryExpression,
    438                                        isAddressOfOperand,
    439                                        NotCastExpr,
    440                                        isTypeCast);
    441   if (NotCastExpr)
    442     Diag(Tok, diag::err_expected_expression);
    443   return Res;
    444 }
    445 
    446 namespace {
    447 class CastExpressionIdValidator : public CorrectionCandidateCallback {
    448  public:
    449   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
    450       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
    451     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
    452   }
    453 
    454   bool ValidateCandidate(const TypoCorrection &candidate) override {
    455     NamedDecl *ND = candidate.getCorrectionDecl();
    456     if (!ND)
    457       return candidate.isKeyword();
    458 
    459     if (isa<TypeDecl>(ND))
    460       return WantTypeSpecifiers;
    461 
    462     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
    463       return false;
    464 
    465     if (!(NextToken.is(tok::equal) || NextToken.is(tok::arrow) ||
    466           NextToken.is(tok::period)))
    467       return true;
    468 
    469     for (auto *C : candidate) {
    470       NamedDecl *ND = C->getUnderlyingDecl();
    471       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
    472         return true;
    473     }
    474     return false;
    475   }
    476 
    477  private:
    478   Token NextToken;
    479   bool AllowNonTypes;
    480 };
    481 }
    482 
    483 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
    484 /// a unary-expression.
    485 ///
    486 /// \p isAddressOfOperand exists because an id-expression that is the operand
    487 /// of address-of gets special treatment due to member pointers. NotCastExpr
    488 /// is set to true if the token is not the start of a cast-expression, and no
    489 /// diagnostic is emitted in this case.
    490 ///
    491 /// \verbatim
    492 ///       cast-expression: [C99 6.5.4]
    493 ///         unary-expression
    494 ///         '(' type-name ')' cast-expression
    495 ///
    496 ///       unary-expression:  [C99 6.5.3]
    497 ///         postfix-expression
    498 ///         '++' unary-expression
    499 ///         '--' unary-expression
    500 ///         unary-operator cast-expression
    501 ///         'sizeof' unary-expression
    502 ///         'sizeof' '(' type-name ')'
    503 /// [C++11] 'sizeof' '...' '(' identifier ')'
    504 /// [GNU]   '__alignof' unary-expression
    505 /// [GNU]   '__alignof' '(' type-name ')'
    506 /// [C11]   '_Alignof' '(' type-name ')'
    507 /// [C++11] 'alignof' '(' type-id ')'
    508 /// [GNU]   '&&' identifier
    509 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
    510 /// [C++]   new-expression
    511 /// [C++]   delete-expression
    512 ///
    513 ///       unary-operator: one of
    514 ///         '&'  '*'  '+'  '-'  '~'  '!'
    515 /// [GNU]   '__extension__'  '__real'  '__imag'
    516 ///
    517 ///       primary-expression: [C99 6.5.1]
    518 /// [C99]   identifier
    519 /// [C++]   id-expression
    520 ///         constant
    521 ///         string-literal
    522 /// [C++]   boolean-literal  [C++ 2.13.5]
    523 /// [C++11] 'nullptr'        [C++11 2.14.7]
    524 /// [C++11] user-defined-literal
    525 ///         '(' expression ')'
    526 /// [C11]   generic-selection
    527 ///         '__func__'        [C99 6.4.2.2]
    528 /// [GNU]   '__FUNCTION__'
    529 /// [MS]    '__FUNCDNAME__'
    530 /// [MS]    'L__FUNCTION__'
    531 /// [GNU]   '__PRETTY_FUNCTION__'
    532 /// [GNU]   '(' compound-statement ')'
    533 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
    534 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
    535 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
    536 ///                                     assign-expr ')'
    537 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
    538 /// [GNU]   '__null'
    539 /// [OBJC]  '[' objc-message-expr ']'
    540 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
    541 /// [OBJC]  '\@protocol' '(' identifier ')'
    542 /// [OBJC]  '\@encode' '(' type-name ')'
    543 /// [OBJC]  objc-string-literal
    544 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
    545 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
    546 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
    547 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
    548 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
    549 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
    550 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
    551 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
    552 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
    553 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
    554 /// [C++]   'this'          [C++ 9.3.2]
    555 /// [G++]   unary-type-trait '(' type-id ')'
    556 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
    557 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
    558 /// [clang] '^' block-literal
    559 ///
    560 ///       constant: [C99 6.4.4]
    561 ///         integer-constant
    562 ///         floating-constant
    563 ///         enumeration-constant -> identifier
    564 ///         character-constant
    565 ///
    566 ///       id-expression: [C++ 5.1]
    567 ///                   unqualified-id
    568 ///                   qualified-id
    569 ///
    570 ///       unqualified-id: [C++ 5.1]
    571 ///                   identifier
    572 ///                   operator-function-id
    573 ///                   conversion-function-id
    574 ///                   '~' class-name
    575 ///                   template-id
    576 ///
    577 ///       new-expression: [C++ 5.3.4]
    578 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
    579 ///                                     new-initializer[opt]
    580 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
    581 ///                                     new-initializer[opt]
    582 ///
    583 ///       delete-expression: [C++ 5.3.5]
    584 ///                   '::'[opt] 'delete' cast-expression
    585 ///                   '::'[opt] 'delete' '[' ']' cast-expression
    586 ///
    587 /// [GNU/Embarcadero] unary-type-trait:
    588 ///                   '__is_arithmetic'
    589 ///                   '__is_floating_point'
    590 ///                   '__is_integral'
    591 ///                   '__is_lvalue_expr'
    592 ///                   '__is_rvalue_expr'
    593 ///                   '__is_complete_type'
    594 ///                   '__is_void'
    595 ///                   '__is_array'
    596 ///                   '__is_function'
    597 ///                   '__is_reference'
    598 ///                   '__is_lvalue_reference'
    599 ///                   '__is_rvalue_reference'
    600 ///                   '__is_fundamental'
    601 ///                   '__is_object'
    602 ///                   '__is_scalar'
    603 ///                   '__is_compound'
    604 ///                   '__is_pointer'
    605 ///                   '__is_member_object_pointer'
    606 ///                   '__is_member_function_pointer'
    607 ///                   '__is_member_pointer'
    608 ///                   '__is_const'
    609 ///                   '__is_volatile'
    610 ///                   '__is_trivial'
    611 ///                   '__is_standard_layout'
    612 ///                   '__is_signed'
    613 ///                   '__is_unsigned'
    614 ///
    615 /// [GNU] unary-type-trait:
    616 ///                   '__has_nothrow_assign'
    617 ///                   '__has_nothrow_copy'
    618 ///                   '__has_nothrow_constructor'
    619 ///                   '__has_trivial_assign'                  [TODO]
    620 ///                   '__has_trivial_copy'                    [TODO]
    621 ///                   '__has_trivial_constructor'
    622 ///                   '__has_trivial_destructor'
    623 ///                   '__has_virtual_destructor'
    624 ///                   '__is_abstract'                         [TODO]
    625 ///                   '__is_class'
    626 ///                   '__is_empty'                            [TODO]
    627 ///                   '__is_enum'
    628 ///                   '__is_final'
    629 ///                   '__is_pod'
    630 ///                   '__is_polymorphic'
    631 ///                   '__is_sealed'                           [MS]
    632 ///                   '__is_trivial'
    633 ///                   '__is_union'
    634 ///
    635 /// [Clang] unary-type-trait:
    636 ///                   '__trivially_copyable'
    637 ///
    638 ///       binary-type-trait:
    639 /// [GNU]             '__is_base_of'
    640 /// [MS]              '__is_convertible_to'
    641 ///                   '__is_convertible'
    642 ///                   '__is_same'
    643 ///
    644 /// [Embarcadero] array-type-trait:
    645 ///                   '__array_rank'
    646 ///                   '__array_extent'
    647 ///
    648 /// [Embarcadero] expression-trait:
    649 ///                   '__is_lvalue_expr'
    650 ///                   '__is_rvalue_expr'
    651 /// \endverbatim
    652 ///
    653 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
    654                                        bool isAddressOfOperand,
    655                                        bool &NotCastExpr,
    656                                        TypeCastState isTypeCast) {
    657   ExprResult Res;
    658   tok::TokenKind SavedKind = Tok.getKind();
    659   NotCastExpr = false;
    660 
    661   // This handles all of cast-expression, unary-expression, postfix-expression,
    662   // and primary-expression.  We handle them together like this for efficiency
    663   // and to simplify handling of an expression starting with a '(' token: which
    664   // may be one of a parenthesized expression, cast-expression, compound literal
    665   // expression, or statement expression.
    666   //
    667   // If the parsed tokens consist of a primary-expression, the cases below
    668   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
    669   // to handle the postfix expression suffixes.  Cases that cannot be followed
    670   // by postfix exprs should return without invoking
    671   // ParsePostfixExpressionSuffix.
    672   switch (SavedKind) {
    673   case tok::l_paren: {
    674     // If this expression is limited to being a unary-expression, the parent can
    675     // not start a cast expression.
    676     ParenParseOption ParenExprType =
    677         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
    678                                                         : CastExpr;
    679     ParsedType CastTy;
    680     SourceLocation RParenLoc;
    681     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
    682                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
    683 
    684     switch (ParenExprType) {
    685     case SimpleExpr:   break;    // Nothing else to do.
    686     case CompoundStmt: break;  // Nothing else to do.
    687     case CompoundLiteral:
    688       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
    689       // postfix-expression exist, parse them now.
    690       break;
    691     case CastExpr:
    692       // We have parsed the cast-expression and no postfix-expr pieces are
    693       // following.
    694       return Res;
    695     }
    696 
    697     break;
    698   }
    699 
    700     // primary-expression
    701   case tok::numeric_constant:
    702     // constant: integer-constant
    703     // constant: floating-constant
    704 
    705     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
    706     ConsumeToken();
    707     break;
    708 
    709   case tok::kw_true:
    710   case tok::kw_false:
    711     return ParseCXXBoolLiteral();
    712 
    713   case tok::kw___objc_yes:
    714   case tok::kw___objc_no:
    715       return ParseObjCBoolLiteral();
    716 
    717   case tok::kw_nullptr:
    718     Diag(Tok, diag::warn_cxx98_compat_nullptr);
    719     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
    720 
    721   case tok::annot_primary_expr:
    722     assert(Res.get() == nullptr && "Stray primary-expression annotation?");
    723     Res = getExprAnnotation(Tok);
    724     ConsumeToken();
    725     break;
    726 
    727   case tok::kw___super:
    728   case tok::kw_decltype:
    729     // Annotate the token and tail recurse.
    730     if (TryAnnotateTypeOrScopeToken())
    731       return ExprError();
    732     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
    733     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
    734 
    735   case tok::identifier: {      // primary-expression: identifier
    736                                // unqualified-id: identifier
    737                                // constant: enumeration-constant
    738     // Turn a potentially qualified name into a annot_typename or
    739     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
    740     if (getLangOpts().CPlusPlus) {
    741       // Avoid the unnecessary parse-time lookup in the common case
    742       // where the syntax forbids a type.
    743       const Token &Next = NextToken();
    744 
    745       // If this identifier was reverted from a token ID, and the next token
    746       // is a parenthesis, this is likely to be a use of a type trait. Check
    747       // those tokens.
    748       if (Next.is(tok::l_paren) &&
    749           Tok.is(tok::identifier) &&
    750           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
    751         IdentifierInfo *II = Tok.getIdentifierInfo();
    752         // Build up the mapping of revertible type traits, for future use.
    753         if (RevertibleTypeTraits.empty()) {
    754 #define RTT_JOIN(X,Y) X##Y
    755 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
    756           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
    757             = RTT_JOIN(tok::kw_,Name)
    758 
    759           REVERTIBLE_TYPE_TRAIT(__is_abstract);
    760           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
    761           REVERTIBLE_TYPE_TRAIT(__is_array);
    762           REVERTIBLE_TYPE_TRAIT(__is_base_of);
    763           REVERTIBLE_TYPE_TRAIT(__is_class);
    764           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
    765           REVERTIBLE_TYPE_TRAIT(__is_compound);
    766           REVERTIBLE_TYPE_TRAIT(__is_const);
    767           REVERTIBLE_TYPE_TRAIT(__is_constructible);
    768           REVERTIBLE_TYPE_TRAIT(__is_convertible);
    769           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
    770           REVERTIBLE_TYPE_TRAIT(__is_destructible);
    771           REVERTIBLE_TYPE_TRAIT(__is_empty);
    772           REVERTIBLE_TYPE_TRAIT(__is_enum);
    773           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
    774           REVERTIBLE_TYPE_TRAIT(__is_final);
    775           REVERTIBLE_TYPE_TRAIT(__is_function);
    776           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
    777           REVERTIBLE_TYPE_TRAIT(__is_integral);
    778           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
    779           REVERTIBLE_TYPE_TRAIT(__is_literal);
    780           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
    781           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
    782           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
    783           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
    784           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
    785           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
    786           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
    787           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
    788           REVERTIBLE_TYPE_TRAIT(__is_object);
    789           REVERTIBLE_TYPE_TRAIT(__is_pod);
    790           REVERTIBLE_TYPE_TRAIT(__is_pointer);
    791           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
    792           REVERTIBLE_TYPE_TRAIT(__is_reference);
    793           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
    794           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
    795           REVERTIBLE_TYPE_TRAIT(__is_same);
    796           REVERTIBLE_TYPE_TRAIT(__is_scalar);
    797           REVERTIBLE_TYPE_TRAIT(__is_sealed);
    798           REVERTIBLE_TYPE_TRAIT(__is_signed);
    799           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
    800           REVERTIBLE_TYPE_TRAIT(__is_trivial);
    801           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
    802           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
    803           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
    804           REVERTIBLE_TYPE_TRAIT(__is_union);
    805           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
    806           REVERTIBLE_TYPE_TRAIT(__is_void);
    807           REVERTIBLE_TYPE_TRAIT(__is_volatile);
    808 #undef REVERTIBLE_TYPE_TRAIT
    809 #undef RTT_JOIN
    810         }
    811 
    812         // If we find that this is in fact the name of a type trait,
    813         // update the token kind in place and parse again to treat it as
    814         // the appropriate kind of type trait.
    815         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
    816           = RevertibleTypeTraits.find(II);
    817         if (Known != RevertibleTypeTraits.end()) {
    818           Tok.setKind(Known->second);
    819           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
    820                                      NotCastExpr, isTypeCast);
    821         }
    822       }
    823 
    824       if (Next.is(tok::coloncolon) ||
    825           (!ColonIsSacred && Next.is(tok::colon)) ||
    826           Next.is(tok::less) ||
    827           Next.is(tok::l_paren) ||
    828           Next.is(tok::l_brace)) {
    829         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
    830         if (TryAnnotateTypeOrScopeToken())
    831           return ExprError();
    832         if (!Tok.is(tok::identifier))
    833           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
    834       }
    835     }
    836 
    837     // Consume the identifier so that we can see if it is followed by a '(' or
    838     // '.'.
    839     IdentifierInfo &II = *Tok.getIdentifierInfo();
    840     SourceLocation ILoc = ConsumeToken();
    841 
    842     // Support 'Class.property' and 'super.property' notation.
    843     if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
    844         (Actions.getTypeName(II, ILoc, getCurScope()) ||
    845          // Allow the base to be 'super' if in an objc-method.
    846          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
    847       ConsumeToken();
    848 
    849       // Allow either an identifier or the keyword 'class' (in C++).
    850       if (Tok.isNot(tok::identifier) &&
    851           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
    852         Diag(Tok, diag::err_expected_property_name);
    853         return ExprError();
    854       }
    855       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
    856       SourceLocation PropertyLoc = ConsumeToken();
    857 
    858       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
    859                                               ILoc, PropertyLoc);
    860       break;
    861     }
    862 
    863     // In an Objective-C method, if we have "super" followed by an identifier,
    864     // the token sequence is ill-formed. However, if there's a ':' or ']' after
    865     // that identifier, this is probably a message send with a missing open
    866     // bracket. Treat it as such.
    867     if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
    868         getCurScope()->isInObjcMethodScope() &&
    869         ((Tok.is(tok::identifier) &&
    870          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
    871          Tok.is(tok::code_completion))) {
    872       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
    873                                            nullptr);
    874       break;
    875     }
    876 
    877     // If we have an Objective-C class name followed by an identifier
    878     // and either ':' or ']', this is an Objective-C class message
    879     // send that's missing the opening '['. Recovery
    880     // appropriately. Also take this path if we're performing code
    881     // completion after an Objective-C class name.
    882     if (getLangOpts().ObjC1 &&
    883         ((Tok.is(tok::identifier) && !InMessageExpression) ||
    884          Tok.is(tok::code_completion))) {
    885       const Token& Next = NextToken();
    886       if (Tok.is(tok::code_completion) ||
    887           Next.is(tok::colon) || Next.is(tok::r_square))
    888         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
    889           if (Typ.get()->isObjCObjectOrInterfaceType()) {
    890             // Fake up a Declarator to use with ActOnTypeName.
    891             DeclSpec DS(AttrFactory);
    892             DS.SetRangeStart(ILoc);
    893             DS.SetRangeEnd(ILoc);
    894             const char *PrevSpec = nullptr;
    895             unsigned DiagID;
    896             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
    897                                Actions.getASTContext().getPrintingPolicy());
    898 
    899             Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
    900             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
    901                                                   DeclaratorInfo);
    902             if (Ty.isInvalid())
    903               break;
    904 
    905             Res = ParseObjCMessageExpressionBody(SourceLocation(),
    906                                                  SourceLocation(),
    907                                                  Ty.get(), nullptr);
    908             break;
    909           }
    910     }
    911 
    912     // Make sure to pass down the right value for isAddressOfOperand.
    913     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
    914       isAddressOfOperand = false;
    915 
    916     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
    917     // need to know whether or not this identifier is a function designator or
    918     // not.
    919     UnqualifiedId Name;
    920     CXXScopeSpec ScopeSpec;
    921     SourceLocation TemplateKWLoc;
    922     Token Replacement;
    923     auto Validator = llvm::make_unique<CastExpressionIdValidator>(
    924         Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
    925     Validator->IsAddressOfOperand = isAddressOfOperand;
    926     Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
    927     Name.setIdentifier(&II, ILoc);
    928     Res = Actions.ActOnIdExpression(
    929         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
    930         isAddressOfOperand, std::move(Validator),
    931         /*IsInlineAsmIdentifier=*/false,
    932         Tok.is(tok::r_paren) ? nullptr : &Replacement);
    933     if (!Res.isInvalid() && !Res.get()) {
    934       UnconsumeToken(Replacement);
    935       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
    936                                  NotCastExpr, isTypeCast);
    937     }
    938     break;
    939   }
    940   case tok::char_constant:     // constant: character-constant
    941   case tok::wide_char_constant:
    942   case tok::utf8_char_constant:
    943   case tok::utf16_char_constant:
    944   case tok::utf32_char_constant:
    945     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
    946     ConsumeToken();
    947     break;
    948   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
    949   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
    950   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
    951   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
    952   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
    953   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
    954     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
    955     ConsumeToken();
    956     break;
    957   case tok::string_literal:    // primary-expression: string-literal
    958   case tok::wide_string_literal:
    959   case tok::utf8_string_literal:
    960   case tok::utf16_string_literal:
    961   case tok::utf32_string_literal:
    962     Res = ParseStringLiteralExpression(true);
    963     break;
    964   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
    965     Res = ParseGenericSelectionExpression();
    966     break;
    967   case tok::kw___builtin_va_arg:
    968   case tok::kw___builtin_offsetof:
    969   case tok::kw___builtin_choose_expr:
    970   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
    971   case tok::kw___builtin_convertvector:
    972     return ParseBuiltinPrimaryExpression();
    973   case tok::kw___null:
    974     return Actions.ActOnGNUNullExpr(ConsumeToken());
    975 
    976   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
    977   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
    978     // C++ [expr.unary] has:
    979     //   unary-expression:
    980     //     ++ cast-expression
    981     //     -- cast-expression
    982     SourceLocation SavedLoc = ConsumeToken();
    983     // One special case is implicitly handled here: if the preceding tokens are
    984     // an ambiguous cast expression, such as "(T())++", then we recurse to
    985     // determine whether the '++' is prefix or postfix.
    986     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
    987                               /*isAddressOfOperand*/false, NotCastExpr,
    988                               NotTypeCast);
    989     if (!Res.isInvalid())
    990       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
    991     return Res;
    992   }
    993   case tok::amp: {         // unary-expression: '&' cast-expression
    994     // Special treatment because of member pointers
    995     SourceLocation SavedLoc = ConsumeToken();
    996     Res = ParseCastExpression(false, true);
    997     if (!Res.isInvalid())
    998       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
    999     return Res;
   1000   }
   1001 
   1002   case tok::star:          // unary-expression: '*' cast-expression
   1003   case tok::plus:          // unary-expression: '+' cast-expression
   1004   case tok::minus:         // unary-expression: '-' cast-expression
   1005   case tok::tilde:         // unary-expression: '~' cast-expression
   1006   case tok::exclaim:       // unary-expression: '!' cast-expression
   1007   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
   1008   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
   1009     SourceLocation SavedLoc = ConsumeToken();
   1010     Res = ParseCastExpression(false);
   1011     if (!Res.isInvalid())
   1012       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1013     return Res;
   1014   }
   1015 
   1016   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
   1017     // __extension__ silences extension warnings in the subexpression.
   1018     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   1019     SourceLocation SavedLoc = ConsumeToken();
   1020     Res = ParseCastExpression(false);
   1021     if (!Res.isInvalid())
   1022       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1023     return Res;
   1024   }
   1025   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
   1026     if (!getLangOpts().C11)
   1027       Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
   1028     // fallthrough
   1029   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
   1030   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
   1031                            // unary-expression: '__alignof' '(' type-name ')'
   1032   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
   1033                            // unary-expression: 'sizeof' '(' type-name ')'
   1034   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
   1035     return ParseUnaryExprOrTypeTraitExpression();
   1036   case tok::ampamp: {      // unary-expression: '&&' identifier
   1037     SourceLocation AmpAmpLoc = ConsumeToken();
   1038     if (Tok.isNot(tok::identifier))
   1039       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
   1040 
   1041     if (getCurScope()->getFnParent() == nullptr)
   1042       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
   1043 
   1044     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
   1045     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
   1046                                                 Tok.getLocation());
   1047     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
   1048     ConsumeToken();
   1049     return Res;
   1050   }
   1051   case tok::kw_const_cast:
   1052   case tok::kw_dynamic_cast:
   1053   case tok::kw_reinterpret_cast:
   1054   case tok::kw_static_cast:
   1055     Res = ParseCXXCasts();
   1056     break;
   1057   case tok::kw_typeid:
   1058     Res = ParseCXXTypeid();
   1059     break;
   1060   case tok::kw___uuidof:
   1061     Res = ParseCXXUuidof();
   1062     break;
   1063   case tok::kw_this:
   1064     Res = ParseCXXThis();
   1065     break;
   1066 
   1067   case tok::annot_typename:
   1068     if (isStartOfObjCClassMessageMissingOpenBracket()) {
   1069       ParsedType Type = getTypeAnnotation(Tok);
   1070 
   1071       // Fake up a Declarator to use with ActOnTypeName.
   1072       DeclSpec DS(AttrFactory);
   1073       DS.SetRangeStart(Tok.getLocation());
   1074       DS.SetRangeEnd(Tok.getLastLoc());
   1075 
   1076       const char *PrevSpec = nullptr;
   1077       unsigned DiagID;
   1078       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
   1079                          PrevSpec, DiagID, Type,
   1080                          Actions.getASTContext().getPrintingPolicy());
   1081 
   1082       Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1083       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   1084       if (Ty.isInvalid())
   1085         break;
   1086 
   1087       ConsumeToken();
   1088       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
   1089                                            Ty.get(), nullptr);
   1090       break;
   1091     }
   1092     // Fall through
   1093 
   1094   case tok::annot_decltype:
   1095   case tok::kw_char:
   1096   case tok::kw_wchar_t:
   1097   case tok::kw_char16_t:
   1098   case tok::kw_char32_t:
   1099   case tok::kw_bool:
   1100   case tok::kw_short:
   1101   case tok::kw_int:
   1102   case tok::kw_long:
   1103   case tok::kw___int64:
   1104   case tok::kw___int128:
   1105   case tok::kw_signed:
   1106   case tok::kw_unsigned:
   1107   case tok::kw_half:
   1108   case tok::kw_float:
   1109   case tok::kw_double:
   1110   case tok::kw_void:
   1111   case tok::kw_typename:
   1112   case tok::kw_typeof:
   1113   case tok::kw___vector: {
   1114     if (!getLangOpts().CPlusPlus) {
   1115       Diag(Tok, diag::err_expected_expression);
   1116       return ExprError();
   1117     }
   1118 
   1119     if (SavedKind == tok::kw_typename) {
   1120       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
   1121       //                     typename-specifier braced-init-list
   1122       if (TryAnnotateTypeOrScopeToken())
   1123         return ExprError();
   1124 
   1125       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
   1126         // We are trying to parse a simple-type-specifier but might not get such
   1127         // a token after error recovery.
   1128         return ExprError();
   1129     }
   1130 
   1131     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
   1132     //                     simple-type-specifier braced-init-list
   1133     //
   1134     DeclSpec DS(AttrFactory);
   1135 
   1136     ParseCXXSimpleTypeSpecifier(DS);
   1137     if (Tok.isNot(tok::l_paren) &&
   1138         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
   1139       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
   1140                          << DS.getSourceRange());
   1141 
   1142     if (Tok.is(tok::l_brace))
   1143       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   1144 
   1145     Res = ParseCXXTypeConstructExpression(DS);
   1146     break;
   1147   }
   1148 
   1149   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
   1150     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
   1151     // (We can end up in this situation after tentative parsing.)
   1152     if (TryAnnotateTypeOrScopeToken())
   1153       return ExprError();
   1154     if (!Tok.is(tok::annot_cxxscope))
   1155       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1156                                  NotCastExpr, isTypeCast);
   1157 
   1158     Token Next = NextToken();
   1159     if (Next.is(tok::annot_template_id)) {
   1160       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
   1161       if (TemplateId->Kind == TNK_Type_template) {
   1162         // We have a qualified template-id that we know refers to a
   1163         // type, translate it into a type and continue parsing as a
   1164         // cast expression.
   1165         CXXScopeSpec SS;
   1166         ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   1167                                        /*EnteringContext=*/false);
   1168         AnnotateTemplateIdTokenAsType();
   1169         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1170                                    NotCastExpr, isTypeCast);
   1171       }
   1172     }
   1173 
   1174     // Parse as an id-expression.
   1175     Res = ParseCXXIdExpression(isAddressOfOperand);
   1176     break;
   1177   }
   1178 
   1179   case tok::annot_template_id: { // [C++]          template-id
   1180     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   1181     if (TemplateId->Kind == TNK_Type_template) {
   1182       // We have a template-id that we know refers to a type,
   1183       // translate it into a type and continue parsing as a cast
   1184       // expression.
   1185       AnnotateTemplateIdTokenAsType();
   1186       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1187                                  NotCastExpr, isTypeCast);
   1188     }
   1189 
   1190     // Fall through to treat the template-id as an id-expression.
   1191   }
   1192 
   1193   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
   1194     Res = ParseCXXIdExpression(isAddressOfOperand);
   1195     break;
   1196 
   1197   case tok::coloncolon: {
   1198     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
   1199     // annotates the token, tail recurse.
   1200     if (TryAnnotateTypeOrScopeToken())
   1201       return ExprError();
   1202     if (!Tok.is(tok::coloncolon))
   1203       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
   1204 
   1205     // ::new -> [C++] new-expression
   1206     // ::delete -> [C++] delete-expression
   1207     SourceLocation CCLoc = ConsumeToken();
   1208     if (Tok.is(tok::kw_new))
   1209       return ParseCXXNewExpression(true, CCLoc);
   1210     if (Tok.is(tok::kw_delete))
   1211       return ParseCXXDeleteExpression(true, CCLoc);
   1212 
   1213     // This is not a type name or scope specifier, it is an invalid expression.
   1214     Diag(CCLoc, diag::err_expected_expression);
   1215     return ExprError();
   1216   }
   1217 
   1218   case tok::kw_new: // [C++] new-expression
   1219     return ParseCXXNewExpression(false, Tok.getLocation());
   1220 
   1221   case tok::kw_delete: // [C++] delete-expression
   1222     return ParseCXXDeleteExpression(false, Tok.getLocation());
   1223 
   1224   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
   1225     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
   1226     SourceLocation KeyLoc = ConsumeToken();
   1227     BalancedDelimiterTracker T(*this, tok::l_paren);
   1228 
   1229     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
   1230       return ExprError();
   1231     // C++11 [expr.unary.noexcept]p1:
   1232     //   The noexcept operator determines whether the evaluation of its operand,
   1233     //   which is an unevaluated operand, can throw an exception.
   1234     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   1235     ExprResult Result = ParseExpression();
   1236 
   1237     T.consumeClose();
   1238 
   1239     if (!Result.isInvalid())
   1240       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
   1241                                          Result.get(), T.getCloseLocation());
   1242     return Result;
   1243   }
   1244 
   1245 #define TYPE_TRAIT(N,Spelling,K) \
   1246   case tok::kw_##Spelling:
   1247 #include "clang/Basic/TokenKinds.def"
   1248     return ParseTypeTrait();
   1249 
   1250   case tok::kw___array_rank:
   1251   case tok::kw___array_extent:
   1252     return ParseArrayTypeTrait();
   1253 
   1254   case tok::kw___is_lvalue_expr:
   1255   case tok::kw___is_rvalue_expr:
   1256     return ParseExpressionTrait();
   1257 
   1258   case tok::at: {
   1259     SourceLocation AtLoc = ConsumeToken();
   1260     return ParseObjCAtExpression(AtLoc);
   1261   }
   1262   case tok::caret:
   1263     Res = ParseBlockLiteralExpression();
   1264     break;
   1265   case tok::code_completion: {
   1266     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
   1267     cutOffParsing();
   1268     return ExprError();
   1269   }
   1270   case tok::l_square:
   1271     if (getLangOpts().CPlusPlus11) {
   1272       if (getLangOpts().ObjC1) {
   1273         // C++11 lambda expressions and Objective-C message sends both start with a
   1274         // square bracket.  There are three possibilities here:
   1275         // we have a valid lambda expression, we have an invalid lambda
   1276         // expression, or we have something that doesn't appear to be a lambda.
   1277         // If we're in the last case, we fall back to ParseObjCMessageExpression.
   1278         Res = TryParseLambdaExpression();
   1279         if (!Res.isInvalid() && !Res.get())
   1280           Res = ParseObjCMessageExpression();
   1281         break;
   1282       }
   1283       Res = ParseLambdaExpression();
   1284       break;
   1285     }
   1286     if (getLangOpts().ObjC1) {
   1287       Res = ParseObjCMessageExpression();
   1288       break;
   1289     }
   1290     // FALL THROUGH.
   1291   default:
   1292     NotCastExpr = true;
   1293     return ExprError();
   1294   }
   1295 
   1296   // These can be followed by postfix-expr pieces.
   1297   return ParsePostfixExpressionSuffix(Res);
   1298 }
   1299 
   1300 /// \brief Once the leading part of a postfix-expression is parsed, this
   1301 /// method parses any suffixes that apply.
   1302 ///
   1303 /// \verbatim
   1304 ///       postfix-expression: [C99 6.5.2]
   1305 ///         primary-expression
   1306 ///         postfix-expression '[' expression ']'
   1307 ///         postfix-expression '[' braced-init-list ']'
   1308 ///         postfix-expression '(' argument-expression-list[opt] ')'
   1309 ///         postfix-expression '.' identifier
   1310 ///         postfix-expression '->' identifier
   1311 ///         postfix-expression '++'
   1312 ///         postfix-expression '--'
   1313 ///         '(' type-name ')' '{' initializer-list '}'
   1314 ///         '(' type-name ')' '{' initializer-list ',' '}'
   1315 ///
   1316 ///       argument-expression-list: [C99 6.5.2]
   1317 ///         argument-expression ...[opt]
   1318 ///         argument-expression-list ',' assignment-expression ...[opt]
   1319 /// \endverbatim
   1320 ExprResult
   1321 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
   1322   // Now that the primary-expression piece of the postfix-expression has been
   1323   // parsed, see if there are any postfix-expression pieces here.
   1324   SourceLocation Loc;
   1325   while (1) {
   1326     switch (Tok.getKind()) {
   1327     case tok::code_completion:
   1328       if (InMessageExpression)
   1329         return LHS;
   1330 
   1331       Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
   1332       cutOffParsing();
   1333       return ExprError();
   1334 
   1335     case tok::identifier:
   1336       // If we see identifier: after an expression, and we're not already in a
   1337       // message send, then this is probably a message send with a missing
   1338       // opening bracket '['.
   1339       if (getLangOpts().ObjC1 && !InMessageExpression &&
   1340           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
   1341         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
   1342                                              ParsedType(), LHS.get());
   1343         break;
   1344       }
   1345 
   1346       // Fall through; this isn't a message send.
   1347 
   1348     default:  // Not a postfix-expression suffix.
   1349       return LHS;
   1350     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
   1351       // If we have a array postfix expression that starts on a new line and
   1352       // Objective-C is enabled, it is highly likely that the user forgot a
   1353       // semicolon after the base expression and that the array postfix-expr is
   1354       // actually another message send.  In this case, do some look-ahead to see
   1355       // if the contents of the square brackets are obviously not a valid
   1356       // expression and recover by pretending there is no suffix.
   1357       if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
   1358           isSimpleObjCMessageExpression())
   1359         return LHS;
   1360 
   1361       // Reject array indices starting with a lambda-expression. '[[' is
   1362       // reserved for attributes.
   1363       if (CheckProhibitedCXX11Attribute())
   1364         return ExprError();
   1365 
   1366       BalancedDelimiterTracker T(*this, tok::l_square);
   1367       T.consumeOpen();
   1368       Loc = T.getOpenLocation();
   1369       ExprResult Idx;
   1370       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   1371         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   1372         Idx = ParseBraceInitializer();
   1373       } else
   1374         Idx = ParseExpression();
   1375 
   1376       SourceLocation RLoc = Tok.getLocation();
   1377 
   1378       if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
   1379         LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
   1380                                               Idx.get(), RLoc);
   1381       } else {
   1382         (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1383         (void)Actions.CorrectDelayedTyposInExpr(Idx);
   1384         LHS = ExprError();
   1385         Idx = ExprError();
   1386       }
   1387 
   1388       // Match the ']'.
   1389       T.consumeClose();
   1390       break;
   1391     }
   1392 
   1393     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
   1394     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
   1395                                //   '(' argument-expression-list[opt] ')'
   1396       tok::TokenKind OpKind = Tok.getKind();
   1397       InMessageExpressionRAIIObject InMessage(*this, false);
   1398 
   1399       Expr *ExecConfig = nullptr;
   1400 
   1401       BalancedDelimiterTracker PT(*this, tok::l_paren);
   1402 
   1403       if (OpKind == tok::lesslessless) {
   1404         ExprVector ExecConfigExprs;
   1405         CommaLocsTy ExecConfigCommaLocs;
   1406         SourceLocation OpenLoc = ConsumeToken();
   1407 
   1408         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
   1409           (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1410           LHS = ExprError();
   1411         }
   1412 
   1413         SourceLocation CloseLoc;
   1414         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
   1415         } else if (LHS.isInvalid()) {
   1416           SkipUntil(tok::greatergreatergreater, StopAtSemi);
   1417         } else {
   1418           // There was an error closing the brackets
   1419           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
   1420           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
   1421           SkipUntil(tok::greatergreatergreater, StopAtSemi);
   1422           LHS = ExprError();
   1423         }
   1424 
   1425         if (!LHS.isInvalid()) {
   1426           if (ExpectAndConsume(tok::l_paren))
   1427             LHS = ExprError();
   1428           else
   1429             Loc = PrevTokLocation;
   1430         }
   1431 
   1432         if (!LHS.isInvalid()) {
   1433           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
   1434                                     OpenLoc,
   1435                                     ExecConfigExprs,
   1436                                     CloseLoc);
   1437           if (ECResult.isInvalid())
   1438             LHS = ExprError();
   1439           else
   1440             ExecConfig = ECResult.get();
   1441         }
   1442       } else {
   1443         PT.consumeOpen();
   1444         Loc = PT.getOpenLocation();
   1445       }
   1446 
   1447       ExprVector ArgExprs;
   1448       CommaLocsTy CommaLocs;
   1449 
   1450       if (Tok.is(tok::code_completion)) {
   1451         Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
   1452         cutOffParsing();
   1453         return ExprError();
   1454       }
   1455 
   1456       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
   1457         if (Tok.isNot(tok::r_paren)) {
   1458           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
   1459                 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
   1460              })) {
   1461             (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1462             LHS = ExprError();
   1463           } else if (LHS.isInvalid()) {
   1464             for (auto &E : ArgExprs)
   1465               Actions.CorrectDelayedTyposInExpr(E);
   1466           }
   1467         }
   1468       }
   1469 
   1470       // Match the ')'.
   1471       if (LHS.isInvalid()) {
   1472         SkipUntil(tok::r_paren, StopAtSemi);
   1473       } else if (Tok.isNot(tok::r_paren)) {
   1474         PT.consumeClose();
   1475         LHS = ExprError();
   1476       } else {
   1477         assert((ArgExprs.size() == 0 ||
   1478                 ArgExprs.size()-1 == CommaLocs.size())&&
   1479                "Unexpected number of commas!");
   1480         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
   1481                                     ArgExprs, Tok.getLocation(),
   1482                                     ExecConfig);
   1483         PT.consumeClose();
   1484       }
   1485 
   1486       break;
   1487     }
   1488     case tok::arrow:
   1489     case tok::period: {
   1490       // postfix-expression: p-e '->' template[opt] id-expression
   1491       // postfix-expression: p-e '.' template[opt] id-expression
   1492       tok::TokenKind OpKind = Tok.getKind();
   1493       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
   1494 
   1495       CXXScopeSpec SS;
   1496       ParsedType ObjectType;
   1497       bool MayBePseudoDestructor = false;
   1498       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
   1499         Expr *Base = LHS.get();
   1500         const Type* BaseType = Base->getType().getTypePtrOrNull();
   1501         if (BaseType && Tok.is(tok::l_paren) &&
   1502             (BaseType->isFunctionType() ||
   1503              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
   1504           Diag(OpLoc, diag::err_function_is_not_record)
   1505               << OpKind << Base->getSourceRange()
   1506               << FixItHint::CreateRemoval(OpLoc);
   1507           return ParsePostfixExpressionSuffix(Base);
   1508         }
   1509 
   1510         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
   1511                                                    OpLoc, OpKind, ObjectType,
   1512                                                    MayBePseudoDestructor);
   1513         if (LHS.isInvalid())
   1514           break;
   1515 
   1516         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
   1517                                        /*EnteringContext=*/false,
   1518                                        &MayBePseudoDestructor);
   1519         if (SS.isNotEmpty())
   1520           ObjectType = ParsedType();
   1521       }
   1522 
   1523       if (Tok.is(tok::code_completion)) {
   1524         // Code completion for a member access expression.
   1525         Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
   1526                                                 OpLoc, OpKind == tok::arrow);
   1527 
   1528         cutOffParsing();
   1529         return ExprError();
   1530       }
   1531 
   1532       if (MayBePseudoDestructor && !LHS.isInvalid()) {
   1533         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
   1534                                        ObjectType);
   1535         break;
   1536       }
   1537 
   1538       // Either the action has told us that this cannot be a
   1539       // pseudo-destructor expression (based on the type of base
   1540       // expression), or we didn't see a '~' in the right place. We
   1541       // can still parse a destructor name here, but in that case it
   1542       // names a real destructor.
   1543       // Allow explicit constructor calls in Microsoft mode.
   1544       // FIXME: Add support for explicit call of template constructor.
   1545       SourceLocation TemplateKWLoc;
   1546       UnqualifiedId Name;
   1547       if (getLangOpts().ObjC2 && OpKind == tok::period &&
   1548           Tok.is(tok::kw_class)) {
   1549         // Objective-C++:
   1550         //   After a '.' in a member access expression, treat the keyword
   1551         //   'class' as if it were an identifier.
   1552         //
   1553         // This hack allows property access to the 'class' method because it is
   1554         // such a common method name. For other C++ keywords that are
   1555         // Objective-C method names, one must use the message send syntax.
   1556         IdentifierInfo *Id = Tok.getIdentifierInfo();
   1557         SourceLocation Loc = ConsumeToken();
   1558         Name.setIdentifier(Id, Loc);
   1559       } else if (ParseUnqualifiedId(SS,
   1560                                     /*EnteringContext=*/false,
   1561                                     /*AllowDestructorName=*/true,
   1562                                     /*AllowConstructorName=*/
   1563                                       getLangOpts().MicrosoftExt,
   1564                                     ObjectType, TemplateKWLoc, Name)) {
   1565         (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1566         LHS = ExprError();
   1567       }
   1568 
   1569       if (!LHS.isInvalid())
   1570         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
   1571                                             OpKind, SS, TemplateKWLoc, Name,
   1572                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
   1573                                                    : nullptr);
   1574       break;
   1575     }
   1576     case tok::plusplus:    // postfix-expression: postfix-expression '++'
   1577     case tok::minusminus:  // postfix-expression: postfix-expression '--'
   1578       if (!LHS.isInvalid()) {
   1579         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
   1580                                           Tok.getKind(), LHS.get());
   1581       }
   1582       ConsumeToken();
   1583       break;
   1584     }
   1585   }
   1586 }
   1587 
   1588 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
   1589 /// vec_step and we are at the start of an expression or a parenthesized
   1590 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
   1591 /// expression (isCastExpr == false) or the type (isCastExpr == true).
   1592 ///
   1593 /// \verbatim
   1594 ///       unary-expression:  [C99 6.5.3]
   1595 ///         'sizeof' unary-expression
   1596 ///         'sizeof' '(' type-name ')'
   1597 /// [GNU]   '__alignof' unary-expression
   1598 /// [GNU]   '__alignof' '(' type-name ')'
   1599 /// [C11]   '_Alignof' '(' type-name ')'
   1600 /// [C++0x] 'alignof' '(' type-id ')'
   1601 ///
   1602 /// [GNU]   typeof-specifier:
   1603 ///           typeof ( expressions )
   1604 ///           typeof ( type-name )
   1605 /// [GNU/C++] typeof unary-expression
   1606 ///
   1607 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
   1608 ///           vec_step ( expressions )
   1609 ///           vec_step ( type-name )
   1610 /// \endverbatim
   1611 ExprResult
   1612 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
   1613                                            bool &isCastExpr,
   1614                                            ParsedType &CastTy,
   1615                                            SourceRange &CastRange) {
   1616 
   1617   assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
   1618           OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
   1619           OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
   1620           "Not a typeof/sizeof/alignof/vec_step expression!");
   1621 
   1622   ExprResult Operand;
   1623 
   1624   // If the operand doesn't start with an '(', it must be an expression.
   1625   if (Tok.isNot(tok::l_paren)) {
   1626     // If construct allows a form without parenthesis, user may forget to put
   1627     // pathenthesis around type name.
   1628     if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
   1629         OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
   1630       if (isTypeIdUnambiguously()) {
   1631         DeclSpec DS(AttrFactory);
   1632         ParseSpecifierQualifierList(DS);
   1633         Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1634         ParseDeclarator(DeclaratorInfo);
   1635 
   1636         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
   1637         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
   1638         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
   1639           << OpTok.getName()
   1640           << FixItHint::CreateInsertion(LParenLoc, "(")
   1641           << FixItHint::CreateInsertion(RParenLoc, ")");
   1642         isCastExpr = true;
   1643         return ExprEmpty();
   1644       }
   1645     }
   1646 
   1647     isCastExpr = false;
   1648     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
   1649       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
   1650                                           << tok::l_paren;
   1651       return ExprError();
   1652     }
   1653 
   1654     Operand = ParseCastExpression(true/*isUnaryExpression*/);
   1655   } else {
   1656     // If it starts with a '(', we know that it is either a parenthesized
   1657     // type-name, or it is a unary-expression that starts with a compound
   1658     // literal, or starts with a primary-expression that is a parenthesized
   1659     // expression.
   1660     ParenParseOption ExprType = CastExpr;
   1661     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
   1662 
   1663     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
   1664                                    false, CastTy, RParenLoc);
   1665     CastRange = SourceRange(LParenLoc, RParenLoc);
   1666 
   1667     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
   1668     // a type.
   1669     if (ExprType == CastExpr) {
   1670       isCastExpr = true;
   1671       return ExprEmpty();
   1672     }
   1673 
   1674     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
   1675       // GNU typeof in C requires the expression to be parenthesized. Not so for
   1676       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
   1677       // the start of a unary-expression, but doesn't include any postfix
   1678       // pieces. Parse these now if present.
   1679       if (!Operand.isInvalid())
   1680         Operand = ParsePostfixExpressionSuffix(Operand.get());
   1681     }
   1682   }
   1683 
   1684   // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
   1685   isCastExpr = false;
   1686   return Operand;
   1687 }
   1688 
   1689 
   1690 /// \brief Parse a sizeof or alignof expression.
   1691 ///
   1692 /// \verbatim
   1693 ///       unary-expression:  [C99 6.5.3]
   1694 ///         'sizeof' unary-expression
   1695 ///         'sizeof' '(' type-name ')'
   1696 /// [C++11] 'sizeof' '...' '(' identifier ')'
   1697 /// [GNU]   '__alignof' unary-expression
   1698 /// [GNU]   '__alignof' '(' type-name ')'
   1699 /// [C11]   '_Alignof' '(' type-name ')'
   1700 /// [C++11] 'alignof' '(' type-id ')'
   1701 /// \endverbatim
   1702 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
   1703   assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
   1704           Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
   1705           Tok.is(tok::kw_vec_step)) &&
   1706          "Not a sizeof/alignof/vec_step expression!");
   1707   Token OpTok = Tok;
   1708   ConsumeToken();
   1709 
   1710   // [C++11] 'sizeof' '...' '(' identifier ')'
   1711   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
   1712     SourceLocation EllipsisLoc = ConsumeToken();
   1713     SourceLocation LParenLoc, RParenLoc;
   1714     IdentifierInfo *Name = nullptr;
   1715     SourceLocation NameLoc;
   1716     if (Tok.is(tok::l_paren)) {
   1717       BalancedDelimiterTracker T(*this, tok::l_paren);
   1718       T.consumeOpen();
   1719       LParenLoc = T.getOpenLocation();
   1720       if (Tok.is(tok::identifier)) {
   1721         Name = Tok.getIdentifierInfo();
   1722         NameLoc = ConsumeToken();
   1723         T.consumeClose();
   1724         RParenLoc = T.getCloseLocation();
   1725         if (RParenLoc.isInvalid())
   1726           RParenLoc = PP.getLocForEndOfToken(NameLoc);
   1727       } else {
   1728         Diag(Tok, diag::err_expected_parameter_pack);
   1729         SkipUntil(tok::r_paren, StopAtSemi);
   1730       }
   1731     } else if (Tok.is(tok::identifier)) {
   1732       Name = Tok.getIdentifierInfo();
   1733       NameLoc = ConsumeToken();
   1734       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
   1735       RParenLoc = PP.getLocForEndOfToken(NameLoc);
   1736       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
   1737         << Name
   1738         << FixItHint::CreateInsertion(LParenLoc, "(")
   1739         << FixItHint::CreateInsertion(RParenLoc, ")");
   1740     } else {
   1741       Diag(Tok, diag::err_sizeof_parameter_pack);
   1742     }
   1743 
   1744     if (!Name)
   1745       return ExprError();
   1746 
   1747     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1748                                                  Sema::ReuseLambdaContextDecl);
   1749 
   1750     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
   1751                                                 OpTok.getLocation(),
   1752                                                 *Name, NameLoc,
   1753                                                 RParenLoc);
   1754   }
   1755 
   1756   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
   1757     Diag(OpTok, diag::warn_cxx98_compat_alignof);
   1758 
   1759   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1760                                                Sema::ReuseLambdaContextDecl);
   1761 
   1762   bool isCastExpr;
   1763   ParsedType CastTy;
   1764   SourceRange CastRange;
   1765   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
   1766                                                           isCastExpr,
   1767                                                           CastTy,
   1768                                                           CastRange);
   1769 
   1770   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
   1771   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
   1772       OpTok.is(tok::kw__Alignof))
   1773     ExprKind = UETT_AlignOf;
   1774   else if (OpTok.is(tok::kw_vec_step))
   1775     ExprKind = UETT_VecStep;
   1776 
   1777   if (isCastExpr)
   1778     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
   1779                                                  ExprKind,
   1780                                                  /*isType=*/true,
   1781                                                  CastTy.getAsOpaquePtr(),
   1782                                                  CastRange);
   1783 
   1784   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
   1785     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
   1786 
   1787   // If we get here, the operand to the sizeof/alignof was an expresion.
   1788   if (!Operand.isInvalid())
   1789     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
   1790                                                     ExprKind,
   1791                                                     /*isType=*/false,
   1792                                                     Operand.get(),
   1793                                                     CastRange);
   1794   return Operand;
   1795 }
   1796 
   1797 /// ParseBuiltinPrimaryExpression
   1798 ///
   1799 /// \verbatim
   1800 ///       primary-expression: [C99 6.5.1]
   1801 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
   1802 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
   1803 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
   1804 ///                                     assign-expr ')'
   1805 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
   1806 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
   1807 ///
   1808 /// [GNU] offsetof-member-designator:
   1809 /// [GNU]   identifier
   1810 /// [GNU]   offsetof-member-designator '.' identifier
   1811 /// [GNU]   offsetof-member-designator '[' expression ']'
   1812 /// \endverbatim
   1813 ExprResult Parser::ParseBuiltinPrimaryExpression() {
   1814   ExprResult Res;
   1815   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
   1816 
   1817   tok::TokenKind T = Tok.getKind();
   1818   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
   1819 
   1820   // All of these start with an open paren.
   1821   if (Tok.isNot(tok::l_paren))
   1822     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
   1823                                                          << tok::l_paren);
   1824 
   1825   BalancedDelimiterTracker PT(*this, tok::l_paren);
   1826   PT.consumeOpen();
   1827 
   1828   // TODO: Build AST.
   1829 
   1830   switch (T) {
   1831   default: llvm_unreachable("Not a builtin primary expression!");
   1832   case tok::kw___builtin_va_arg: {
   1833     ExprResult Expr(ParseAssignmentExpression());
   1834 
   1835     if (ExpectAndConsume(tok::comma)) {
   1836       SkipUntil(tok::r_paren, StopAtSemi);
   1837       Expr = ExprError();
   1838     }
   1839 
   1840     TypeResult Ty = ParseTypeName();
   1841 
   1842     if (Tok.isNot(tok::r_paren)) {
   1843       Diag(Tok, diag::err_expected) << tok::r_paren;
   1844       Expr = ExprError();
   1845     }
   1846 
   1847     if (Expr.isInvalid() || Ty.isInvalid())
   1848       Res = ExprError();
   1849     else
   1850       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
   1851     break;
   1852   }
   1853   case tok::kw___builtin_offsetof: {
   1854     SourceLocation TypeLoc = Tok.getLocation();
   1855     TypeResult Ty = ParseTypeName();
   1856     if (Ty.isInvalid()) {
   1857       SkipUntil(tok::r_paren, StopAtSemi);
   1858       return ExprError();
   1859     }
   1860 
   1861     if (ExpectAndConsume(tok::comma)) {
   1862       SkipUntil(tok::r_paren, StopAtSemi);
   1863       return ExprError();
   1864     }
   1865 
   1866     // We must have at least one identifier here.
   1867     if (Tok.isNot(tok::identifier)) {
   1868       Diag(Tok, diag::err_expected) << tok::identifier;
   1869       SkipUntil(tok::r_paren, StopAtSemi);
   1870       return ExprError();
   1871     }
   1872 
   1873     // Keep track of the various subcomponents we see.
   1874     SmallVector<Sema::OffsetOfComponent, 4> Comps;
   1875 
   1876     Comps.push_back(Sema::OffsetOfComponent());
   1877     Comps.back().isBrackets = false;
   1878     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
   1879     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
   1880 
   1881     // FIXME: This loop leaks the index expressions on error.
   1882     while (1) {
   1883       if (Tok.is(tok::period)) {
   1884         // offsetof-member-designator: offsetof-member-designator '.' identifier
   1885         Comps.push_back(Sema::OffsetOfComponent());
   1886         Comps.back().isBrackets = false;
   1887         Comps.back().LocStart = ConsumeToken();
   1888 
   1889         if (Tok.isNot(tok::identifier)) {
   1890           Diag(Tok, diag::err_expected) << tok::identifier;
   1891           SkipUntil(tok::r_paren, StopAtSemi);
   1892           return ExprError();
   1893         }
   1894         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
   1895         Comps.back().LocEnd = ConsumeToken();
   1896 
   1897       } else if (Tok.is(tok::l_square)) {
   1898         if (CheckProhibitedCXX11Attribute())
   1899           return ExprError();
   1900 
   1901         // offsetof-member-designator: offsetof-member-design '[' expression ']'
   1902         Comps.push_back(Sema::OffsetOfComponent());
   1903         Comps.back().isBrackets = true;
   1904         BalancedDelimiterTracker ST(*this, tok::l_square);
   1905         ST.consumeOpen();
   1906         Comps.back().LocStart = ST.getOpenLocation();
   1907         Res = ParseExpression();
   1908         if (Res.isInvalid()) {
   1909           SkipUntil(tok::r_paren, StopAtSemi);
   1910           return Res;
   1911         }
   1912         Comps.back().U.E = Res.get();
   1913 
   1914         ST.consumeClose();
   1915         Comps.back().LocEnd = ST.getCloseLocation();
   1916       } else {
   1917         if (Tok.isNot(tok::r_paren)) {
   1918           PT.consumeClose();
   1919           Res = ExprError();
   1920         } else if (Ty.isInvalid()) {
   1921           Res = ExprError();
   1922         } else {
   1923           PT.consumeClose();
   1924           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
   1925                                              Ty.get(), &Comps[0], Comps.size(),
   1926                                              PT.getCloseLocation());
   1927         }
   1928         break;
   1929       }
   1930     }
   1931     break;
   1932   }
   1933   case tok::kw___builtin_choose_expr: {
   1934     ExprResult Cond(ParseAssignmentExpression());
   1935     if (Cond.isInvalid()) {
   1936       SkipUntil(tok::r_paren, StopAtSemi);
   1937       return Cond;
   1938     }
   1939     if (ExpectAndConsume(tok::comma)) {
   1940       SkipUntil(tok::r_paren, StopAtSemi);
   1941       return ExprError();
   1942     }
   1943 
   1944     ExprResult Expr1(ParseAssignmentExpression());
   1945     if (Expr1.isInvalid()) {
   1946       SkipUntil(tok::r_paren, StopAtSemi);
   1947       return Expr1;
   1948     }
   1949     if (ExpectAndConsume(tok::comma)) {
   1950       SkipUntil(tok::r_paren, StopAtSemi);
   1951       return ExprError();
   1952     }
   1953 
   1954     ExprResult Expr2(ParseAssignmentExpression());
   1955     if (Expr2.isInvalid()) {
   1956       SkipUntil(tok::r_paren, StopAtSemi);
   1957       return Expr2;
   1958     }
   1959     if (Tok.isNot(tok::r_paren)) {
   1960       Diag(Tok, diag::err_expected) << tok::r_paren;
   1961       return ExprError();
   1962     }
   1963     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
   1964                                   Expr2.get(), ConsumeParen());
   1965     break;
   1966   }
   1967   case tok::kw___builtin_astype: {
   1968     // The first argument is an expression to be converted, followed by a comma.
   1969     ExprResult Expr(ParseAssignmentExpression());
   1970     if (Expr.isInvalid()) {
   1971       SkipUntil(tok::r_paren, StopAtSemi);
   1972       return ExprError();
   1973     }
   1974 
   1975     if (ExpectAndConsume(tok::comma)) {
   1976       SkipUntil(tok::r_paren, StopAtSemi);
   1977       return ExprError();
   1978     }
   1979 
   1980     // Second argument is the type to bitcast to.
   1981     TypeResult DestTy = ParseTypeName();
   1982     if (DestTy.isInvalid())
   1983       return ExprError();
   1984 
   1985     // Attempt to consume the r-paren.
   1986     if (Tok.isNot(tok::r_paren)) {
   1987       Diag(Tok, diag::err_expected) << tok::r_paren;
   1988       SkipUntil(tok::r_paren, StopAtSemi);
   1989       return ExprError();
   1990     }
   1991 
   1992     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
   1993                                   ConsumeParen());
   1994     break;
   1995   }
   1996   case tok::kw___builtin_convertvector: {
   1997     // The first argument is an expression to be converted, followed by a comma.
   1998     ExprResult Expr(ParseAssignmentExpression());
   1999     if (Expr.isInvalid()) {
   2000       SkipUntil(tok::r_paren, StopAtSemi);
   2001       return ExprError();
   2002     }
   2003 
   2004     if (ExpectAndConsume(tok::comma)) {
   2005       SkipUntil(tok::r_paren, StopAtSemi);
   2006       return ExprError();
   2007     }
   2008 
   2009     // Second argument is the type to bitcast to.
   2010     TypeResult DestTy = ParseTypeName();
   2011     if (DestTy.isInvalid())
   2012       return ExprError();
   2013 
   2014     // Attempt to consume the r-paren.
   2015     if (Tok.isNot(tok::r_paren)) {
   2016       Diag(Tok, diag::err_expected) << tok::r_paren;
   2017       SkipUntil(tok::r_paren, StopAtSemi);
   2018       return ExprError();
   2019     }
   2020 
   2021     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
   2022                                          ConsumeParen());
   2023     break;
   2024   }
   2025   }
   2026 
   2027   if (Res.isInvalid())
   2028     return ExprError();
   2029 
   2030   // These can be followed by postfix-expr pieces because they are
   2031   // primary-expressions.
   2032   return ParsePostfixExpressionSuffix(Res.get());
   2033 }
   2034 
   2035 /// ParseParenExpression - This parses the unit that starts with a '(' token,
   2036 /// based on what is allowed by ExprType.  The actual thing parsed is returned
   2037 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
   2038 /// not the parsed cast-expression.
   2039 ///
   2040 /// \verbatim
   2041 ///       primary-expression: [C99 6.5.1]
   2042 ///         '(' expression ')'
   2043 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
   2044 ///       postfix-expression: [C99 6.5.2]
   2045 ///         '(' type-name ')' '{' initializer-list '}'
   2046 ///         '(' type-name ')' '{' initializer-list ',' '}'
   2047 ///       cast-expression: [C99 6.5.4]
   2048 ///         '(' type-name ')' cast-expression
   2049 /// [ARC]   bridged-cast-expression
   2050 /// [ARC] bridged-cast-expression:
   2051 ///         (__bridge type-name) cast-expression
   2052 ///         (__bridge_transfer type-name) cast-expression
   2053 ///         (__bridge_retained type-name) cast-expression
   2054 ///       fold-expression: [C++1z]
   2055 ///         '(' cast-expression fold-operator '...' ')'
   2056 ///         '(' '...' fold-operator cast-expression ')'
   2057 ///         '(' cast-expression fold-operator '...'
   2058 ///                 fold-operator cast-expression ')'
   2059 /// \endverbatim
   2060 ExprResult
   2061 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
   2062                              bool isTypeCast, ParsedType &CastTy,
   2063                              SourceLocation &RParenLoc) {
   2064   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
   2065   ColonProtectionRAIIObject ColonProtection(*this, false);
   2066   BalancedDelimiterTracker T(*this, tok::l_paren);
   2067   if (T.consumeOpen())
   2068     return ExprError();
   2069   SourceLocation OpenLoc = T.getOpenLocation();
   2070 
   2071   ExprResult Result(true);
   2072   bool isAmbiguousTypeId;
   2073   CastTy = ParsedType();
   2074 
   2075   if (Tok.is(tok::code_completion)) {
   2076     Actions.CodeCompleteOrdinaryName(getCurScope(),
   2077                  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
   2078                                             : Sema::PCC_Expression);
   2079     cutOffParsing();
   2080     return ExprError();
   2081   }
   2082 
   2083   // Diagnose use of bridge casts in non-arc mode.
   2084   bool BridgeCast = (getLangOpts().ObjC2 &&
   2085                      (Tok.is(tok::kw___bridge) ||
   2086                       Tok.is(tok::kw___bridge_transfer) ||
   2087                       Tok.is(tok::kw___bridge_retained) ||
   2088                       Tok.is(tok::kw___bridge_retain)));
   2089   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
   2090     if (!TryConsumeToken(tok::kw___bridge)) {
   2091       StringRef BridgeCastName = Tok.getName();
   2092       SourceLocation BridgeKeywordLoc = ConsumeToken();
   2093       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
   2094         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
   2095           << BridgeCastName
   2096           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
   2097     }
   2098     BridgeCast = false;
   2099   }
   2100 
   2101   // None of these cases should fall through with an invalid Result
   2102   // unless they've already reported an error.
   2103   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
   2104     Diag(Tok, diag::ext_gnu_statement_expr);
   2105 
   2106     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
   2107       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
   2108     } else {
   2109       Actions.ActOnStartStmtExpr();
   2110 
   2111       StmtResult Stmt(ParseCompoundStatement(true));
   2112       ExprType = CompoundStmt;
   2113 
   2114       // If the substmt parsed correctly, build the AST node.
   2115       if (!Stmt.isInvalid()) {
   2116         Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
   2117       } else {
   2118         Actions.ActOnStmtExprError();
   2119       }
   2120     }
   2121   } else if (ExprType >= CompoundLiteral && BridgeCast) {
   2122     tok::TokenKind tokenKind = Tok.getKind();
   2123     SourceLocation BridgeKeywordLoc = ConsumeToken();
   2124 
   2125     // Parse an Objective-C ARC ownership cast expression.
   2126     ObjCBridgeCastKind Kind;
   2127     if (tokenKind == tok::kw___bridge)
   2128       Kind = OBC_Bridge;
   2129     else if (tokenKind == tok::kw___bridge_transfer)
   2130       Kind = OBC_BridgeTransfer;
   2131     else if (tokenKind == tok::kw___bridge_retained)
   2132       Kind = OBC_BridgeRetained;
   2133     else {
   2134       // As a hopefully temporary workaround, allow __bridge_retain as
   2135       // a synonym for __bridge_retained, but only in system headers.
   2136       assert(tokenKind == tok::kw___bridge_retain);
   2137       Kind = OBC_BridgeRetained;
   2138       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
   2139         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
   2140           << FixItHint::CreateReplacement(BridgeKeywordLoc,
   2141                                           "__bridge_retained");
   2142     }
   2143 
   2144     TypeResult Ty = ParseTypeName();
   2145     T.consumeClose();
   2146     ColonProtection.restore();
   2147     RParenLoc = T.getCloseLocation();
   2148     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
   2149 
   2150     if (Ty.isInvalid() || SubExpr.isInvalid())
   2151       return ExprError();
   2152 
   2153     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
   2154                                         BridgeKeywordLoc, Ty.get(),
   2155                                         RParenLoc, SubExpr.get());
   2156   } else if (ExprType >= CompoundLiteral &&
   2157              isTypeIdInParens(isAmbiguousTypeId)) {
   2158 
   2159     // Otherwise, this is a compound literal expression or cast expression.
   2160 
   2161     // In C++, if the type-id is ambiguous we disambiguate based on context.
   2162     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
   2163     // in which case we should treat it as type-id.
   2164     // if stopIfCastExpr is false, we need to determine the context past the
   2165     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
   2166     if (isAmbiguousTypeId && !stopIfCastExpr) {
   2167       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
   2168                                                         ColonProtection);
   2169       RParenLoc = T.getCloseLocation();
   2170       return res;
   2171     }
   2172 
   2173     // Parse the type declarator.
   2174     DeclSpec DS(AttrFactory);
   2175     ParseSpecifierQualifierList(DS);
   2176     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   2177     ParseDeclarator(DeclaratorInfo);
   2178 
   2179     // If our type is followed by an identifier and either ':' or ']', then
   2180     // this is probably an Objective-C message send where the leading '[' is
   2181     // missing. Recover as if that were the case.
   2182     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
   2183         !InMessageExpression && getLangOpts().ObjC1 &&
   2184         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
   2185       TypeResult Ty;
   2186       {
   2187         InMessageExpressionRAIIObject InMessage(*this, false);
   2188         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2189       }
   2190       Result = ParseObjCMessageExpressionBody(SourceLocation(),
   2191                                               SourceLocation(),
   2192                                               Ty.get(), nullptr);
   2193     } else {
   2194       // Match the ')'.
   2195       T.consumeClose();
   2196       ColonProtection.restore();
   2197       RParenLoc = T.getCloseLocation();
   2198       if (Tok.is(tok::l_brace)) {
   2199         ExprType = CompoundLiteral;
   2200         TypeResult Ty;
   2201         {
   2202           InMessageExpressionRAIIObject InMessage(*this, false);
   2203           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2204         }
   2205         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
   2206       }
   2207 
   2208       if (ExprType == CastExpr) {
   2209         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
   2210 
   2211         if (DeclaratorInfo.isInvalidType())
   2212           return ExprError();
   2213 
   2214         // Note that this doesn't parse the subsequent cast-expression, it just
   2215         // returns the parsed type to the callee.
   2216         if (stopIfCastExpr) {
   2217           TypeResult Ty;
   2218           {
   2219             InMessageExpressionRAIIObject InMessage(*this, false);
   2220             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2221           }
   2222           CastTy = Ty.get();
   2223           return ExprResult();
   2224         }
   2225 
   2226         // Reject the cast of super idiom in ObjC.
   2227         if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
   2228             Tok.getIdentifierInfo() == Ident_super &&
   2229             getCurScope()->isInObjcMethodScope() &&
   2230             GetLookAheadToken(1).isNot(tok::period)) {
   2231           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
   2232             << SourceRange(OpenLoc, RParenLoc);
   2233           return ExprError();
   2234         }
   2235 
   2236         // Parse the cast-expression that follows it next.
   2237         // TODO: For cast expression with CastTy.
   2238         Result = ParseCastExpression(/*isUnaryExpression=*/false,
   2239                                      /*isAddressOfOperand=*/false,
   2240                                      /*isTypeCast=*/IsTypeCast);
   2241         if (!Result.isInvalid()) {
   2242           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
   2243                                          DeclaratorInfo, CastTy,
   2244                                          RParenLoc, Result.get());
   2245         }
   2246         return Result;
   2247       }
   2248 
   2249       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
   2250       return ExprError();
   2251     }
   2252   } else if (Tok.is(tok::ellipsis) &&
   2253              isFoldOperator(NextToken().getKind())) {
   2254     return ParseFoldExpression(ExprResult(), T);
   2255   } else if (isTypeCast) {
   2256     // Parse the expression-list.
   2257     InMessageExpressionRAIIObject InMessage(*this, false);
   2258 
   2259     ExprVector ArgExprs;
   2260     CommaLocsTy CommaLocs;
   2261 
   2262     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
   2263       // FIXME: If we ever support comma expressions as operands to
   2264       // fold-expressions, we'll need to allow multiple ArgExprs here.
   2265       if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
   2266           NextToken().is(tok::ellipsis))
   2267         return ParseFoldExpression(Result, T);
   2268 
   2269       ExprType = SimpleExpr;
   2270       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
   2271                                           ArgExprs);
   2272     }
   2273   } else {
   2274     InMessageExpressionRAIIObject InMessage(*this, false);
   2275 
   2276     Result = ParseExpression(MaybeTypeCast);
   2277     ExprType = SimpleExpr;
   2278 
   2279     if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
   2280       return ParseFoldExpression(Result, T);
   2281 
   2282     // Don't build a paren expression unless we actually match a ')'.
   2283     if (!Result.isInvalid() && Tok.is(tok::r_paren))
   2284       Result =
   2285           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
   2286   }
   2287 
   2288   // Match the ')'.
   2289   if (Result.isInvalid()) {
   2290     SkipUntil(tok::r_paren, StopAtSemi);
   2291     return ExprError();
   2292   }
   2293 
   2294   T.consumeClose();
   2295   RParenLoc = T.getCloseLocation();
   2296   return Result;
   2297 }
   2298 
   2299 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
   2300 /// and we are at the left brace.
   2301 ///
   2302 /// \verbatim
   2303 ///       postfix-expression: [C99 6.5.2]
   2304 ///         '(' type-name ')' '{' initializer-list '}'
   2305 ///         '(' type-name ')' '{' initializer-list ',' '}'
   2306 /// \endverbatim
   2307 ExprResult
   2308 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
   2309                                        SourceLocation LParenLoc,
   2310                                        SourceLocation RParenLoc) {
   2311   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
   2312   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
   2313     Diag(LParenLoc, diag::ext_c99_compound_literal);
   2314   ExprResult Result = ParseInitializer();
   2315   if (!Result.isInvalid() && Ty)
   2316     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
   2317   return Result;
   2318 }
   2319 
   2320 /// ParseStringLiteralExpression - This handles the various token types that
   2321 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
   2322 /// translation phase #6].
   2323 ///
   2324 /// \verbatim
   2325 ///       primary-expression: [C99 6.5.1]
   2326 ///         string-literal
   2327 /// \verbatim
   2328 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
   2329   assert(isTokenStringLiteral() && "Not a string literal!");
   2330 
   2331   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
   2332   // considered to be strings for concatenation purposes.
   2333   SmallVector<Token, 4> StringToks;
   2334 
   2335   do {
   2336     StringToks.push_back(Tok);
   2337     ConsumeStringToken();
   2338   } while (isTokenStringLiteral());
   2339 
   2340   // Pass the set of string tokens, ready for concatenation, to the actions.
   2341   return Actions.ActOnStringLiteral(StringToks,
   2342                                     AllowUserDefinedLiteral ? getCurScope()
   2343                                                             : nullptr);
   2344 }
   2345 
   2346 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
   2347 /// [C11 6.5.1.1].
   2348 ///
   2349 /// \verbatim
   2350 ///    generic-selection:
   2351 ///           _Generic ( assignment-expression , generic-assoc-list )
   2352 ///    generic-assoc-list:
   2353 ///           generic-association
   2354 ///           generic-assoc-list , generic-association
   2355 ///    generic-association:
   2356 ///           type-name : assignment-expression
   2357 ///           default : assignment-expression
   2358 /// \endverbatim
   2359 ExprResult Parser::ParseGenericSelectionExpression() {
   2360   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
   2361   SourceLocation KeyLoc = ConsumeToken();
   2362 
   2363   if (!getLangOpts().C11)
   2364     Diag(KeyLoc, diag::ext_c11_generic_selection);
   2365 
   2366   BalancedDelimiterTracker T(*this, tok::l_paren);
   2367   if (T.expectAndConsume())
   2368     return ExprError();
   2369 
   2370   ExprResult ControllingExpr;
   2371   {
   2372     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
   2373     // not evaluated."
   2374     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   2375     ControllingExpr =
   2376         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
   2377     if (ControllingExpr.isInvalid()) {
   2378       SkipUntil(tok::r_paren, StopAtSemi);
   2379       return ExprError();
   2380     }
   2381   }
   2382 
   2383   if (ExpectAndConsume(tok::comma)) {
   2384     SkipUntil(tok::r_paren, StopAtSemi);
   2385     return ExprError();
   2386   }
   2387 
   2388   SourceLocation DefaultLoc;
   2389   TypeVector Types;
   2390   ExprVector Exprs;
   2391   do {
   2392     ParsedType Ty;
   2393     if (Tok.is(tok::kw_default)) {
   2394       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
   2395       // generic association."
   2396       if (!DefaultLoc.isInvalid()) {
   2397         Diag(Tok, diag::err_duplicate_default_assoc);
   2398         Diag(DefaultLoc, diag::note_previous_default_assoc);
   2399         SkipUntil(tok::r_paren, StopAtSemi);
   2400         return ExprError();
   2401       }
   2402       DefaultLoc = ConsumeToken();
   2403       Ty = ParsedType();
   2404     } else {
   2405       ColonProtectionRAIIObject X(*this);
   2406       TypeResult TR = ParseTypeName();
   2407       if (TR.isInvalid()) {
   2408         SkipUntil(tok::r_paren, StopAtSemi);
   2409         return ExprError();
   2410       }
   2411       Ty = TR.get();
   2412     }
   2413     Types.push_back(Ty);
   2414 
   2415     if (ExpectAndConsume(tok::colon)) {
   2416       SkipUntil(tok::r_paren, StopAtSemi);
   2417       return ExprError();
   2418     }
   2419 
   2420     // FIXME: These expressions should be parsed in a potentially potentially
   2421     // evaluated context.
   2422     ExprResult ER(
   2423         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
   2424     if (ER.isInvalid()) {
   2425       SkipUntil(tok::r_paren, StopAtSemi);
   2426       return ExprError();
   2427     }
   2428     Exprs.push_back(ER.get());
   2429   } while (TryConsumeToken(tok::comma));
   2430 
   2431   T.consumeClose();
   2432   if (T.getCloseLocation().isInvalid())
   2433     return ExprError();
   2434 
   2435   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
   2436                                            T.getCloseLocation(),
   2437                                            ControllingExpr.get(),
   2438                                            Types, Exprs);
   2439 }
   2440 
   2441 /// \brief Parse A C++1z fold-expression after the opening paren and optional
   2442 /// left-hand-side expression.
   2443 ///
   2444 /// \verbatim
   2445 ///   fold-expression:
   2446 ///       ( cast-expression fold-operator ... )
   2447 ///       ( ... fold-operator cast-expression )
   2448 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
   2449 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
   2450                                        BalancedDelimiterTracker &T) {
   2451   if (LHS.isInvalid()) {
   2452     T.skipToEnd();
   2453     return true;
   2454   }
   2455 
   2456   tok::TokenKind Kind = tok::unknown;
   2457   SourceLocation FirstOpLoc;
   2458   if (LHS.isUsable()) {
   2459     Kind = Tok.getKind();
   2460     assert(isFoldOperator(Kind) && "missing fold-operator");
   2461     FirstOpLoc = ConsumeToken();
   2462   }
   2463 
   2464   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
   2465   SourceLocation EllipsisLoc = ConsumeToken();
   2466 
   2467   ExprResult RHS;
   2468   if (Tok.isNot(tok::r_paren)) {
   2469     if (!isFoldOperator(Tok.getKind()))
   2470       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
   2471 
   2472     if (Kind != tok::unknown && Tok.getKind() != Kind)
   2473       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
   2474         << SourceRange(FirstOpLoc);
   2475     Kind = Tok.getKind();
   2476     ConsumeToken();
   2477 
   2478     RHS = ParseExpression();
   2479     if (RHS.isInvalid()) {
   2480       T.skipToEnd();
   2481       return true;
   2482     }
   2483   }
   2484 
   2485   Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
   2486                         ? diag::warn_cxx14_compat_fold_expression
   2487                         : diag::ext_fold_expression);
   2488 
   2489   T.consumeClose();
   2490   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
   2491                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
   2492 }
   2493 
   2494 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
   2495 ///
   2496 /// \verbatim
   2497 ///       argument-expression-list:
   2498 ///         assignment-expression
   2499 ///         argument-expression-list , assignment-expression
   2500 ///
   2501 /// [C++] expression-list:
   2502 /// [C++]   assignment-expression
   2503 /// [C++]   expression-list , assignment-expression
   2504 ///
   2505 /// [C++0x] expression-list:
   2506 /// [C++0x]   initializer-list
   2507 ///
   2508 /// [C++0x] initializer-list
   2509 /// [C++0x]   initializer-clause ...[opt]
   2510 /// [C++0x]   initializer-list , initializer-clause ...[opt]
   2511 ///
   2512 /// [C++0x] initializer-clause:
   2513 /// [C++0x]   assignment-expression
   2514 /// [C++0x]   braced-init-list
   2515 /// \endverbatim
   2516 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
   2517                                  SmallVectorImpl<SourceLocation> &CommaLocs,
   2518                                  std::function<void()> Completer) {
   2519   bool SawError = false;
   2520   while (1) {
   2521     if (Tok.is(tok::code_completion)) {
   2522       if (Completer)
   2523         Completer();
   2524       else
   2525         Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
   2526       cutOffParsing();
   2527       return true;
   2528     }
   2529 
   2530     ExprResult Expr;
   2531     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   2532       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   2533       Expr = ParseBraceInitializer();
   2534     } else
   2535       Expr = ParseAssignmentExpression();
   2536 
   2537     if (Tok.is(tok::ellipsis))
   2538       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
   2539     if (Expr.isInvalid()) {
   2540       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
   2541       SawError = true;
   2542     } else {
   2543       Exprs.push_back(Expr.get());
   2544     }
   2545 
   2546     if (Tok.isNot(tok::comma))
   2547       break;
   2548     // Move to the next argument, remember where the comma was.
   2549     CommaLocs.push_back(ConsumeToken());
   2550   }
   2551   if (SawError) {
   2552     // Ensure typos get diagnosed when errors were encountered while parsing the
   2553     // expression list.
   2554     for (auto &E : Exprs) {
   2555       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
   2556       if (Expr.isUsable()) E = Expr.get();
   2557     }
   2558   }
   2559   return SawError;
   2560 }
   2561 
   2562 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
   2563 /// used for misc language extensions.
   2564 ///
   2565 /// \verbatim
   2566 ///       simple-expression-list:
   2567 ///         assignment-expression
   2568 ///         simple-expression-list , assignment-expression
   2569 /// \endverbatim
   2570 bool
   2571 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
   2572                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
   2573   while (1) {
   2574     ExprResult Expr = ParseAssignmentExpression();
   2575     if (Expr.isInvalid())
   2576       return true;
   2577 
   2578     Exprs.push_back(Expr.get());
   2579 
   2580     if (Tok.isNot(tok::comma))
   2581       return false;
   2582 
   2583     // Move to the next argument, remember where the comma was.
   2584     CommaLocs.push_back(ConsumeToken());
   2585   }
   2586 }
   2587 
   2588 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
   2589 ///
   2590 /// \verbatim
   2591 /// [clang] block-id:
   2592 /// [clang]   specifier-qualifier-list block-declarator
   2593 /// \endverbatim
   2594 void Parser::ParseBlockId(SourceLocation CaretLoc) {
   2595   if (Tok.is(tok::code_completion)) {
   2596     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
   2597     return cutOffParsing();
   2598   }
   2599 
   2600   // Parse the specifier-qualifier-list piece.
   2601   DeclSpec DS(AttrFactory);
   2602   ParseSpecifierQualifierList(DS);
   2603 
   2604   // Parse the block-declarator.
   2605   Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
   2606   ParseDeclarator(DeclaratorInfo);
   2607 
   2608   // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
   2609   DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
   2610 
   2611   MaybeParseGNUAttributes(DeclaratorInfo);
   2612 
   2613   // Inform sema that we are starting a block.
   2614   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
   2615 }
   2616 
   2617 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
   2618 /// like ^(int x){ return x+1; }
   2619 ///
   2620 /// \verbatim
   2621 ///         block-literal:
   2622 /// [clang]   '^' block-args[opt] compound-statement
   2623 /// [clang]   '^' block-id compound-statement
   2624 /// [clang] block-args:
   2625 /// [clang]   '(' parameter-list ')'
   2626 /// \endverbatim
   2627 ExprResult Parser::ParseBlockLiteralExpression() {
   2628   assert(Tok.is(tok::caret) && "block literal starts with ^");
   2629   SourceLocation CaretLoc = ConsumeToken();
   2630 
   2631   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
   2632                                 "block literal parsing");
   2633 
   2634   // Enter a scope to hold everything within the block.  This includes the
   2635   // argument decls, decls within the compound expression, etc.  This also
   2636   // allows determining whether a variable reference inside the block is
   2637   // within or outside of the block.
   2638   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
   2639                               Scope::DeclScope);
   2640 
   2641   // Inform sema that we are starting a block.
   2642   Actions.ActOnBlockStart(CaretLoc, getCurScope());
   2643 
   2644   // Parse the return type if present.
   2645   DeclSpec DS(AttrFactory);
   2646   Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
   2647   // FIXME: Since the return type isn't actually parsed, it can't be used to
   2648   // fill ParamInfo with an initial valid range, so do it manually.
   2649   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
   2650 
   2651   // If this block has arguments, parse them.  There is no ambiguity here with
   2652   // the expression case, because the expression case requires a parameter list.
   2653   if (Tok.is(tok::l_paren)) {
   2654     ParseParenDeclarator(ParamInfo);
   2655     // Parse the pieces after the identifier as if we had "int(...)".
   2656     // SetIdentifier sets the source range end, but in this case we're past
   2657     // that location.
   2658     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
   2659     ParamInfo.SetIdentifier(nullptr, CaretLoc);
   2660     ParamInfo.SetRangeEnd(Tmp);
   2661     if (ParamInfo.isInvalidType()) {
   2662       // If there was an error parsing the arguments, they may have
   2663       // tried to use ^(x+y) which requires an argument list.  Just
   2664       // skip the whole block literal.
   2665       Actions.ActOnBlockError(CaretLoc, getCurScope());
   2666       return ExprError();
   2667     }
   2668 
   2669     MaybeParseGNUAttributes(ParamInfo);
   2670 
   2671     // Inform sema that we are starting a block.
   2672     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
   2673   } else if (!Tok.is(tok::l_brace)) {
   2674     ParseBlockId(CaretLoc);
   2675   } else {
   2676     // Otherwise, pretend we saw (void).
   2677     ParsedAttributes attrs(AttrFactory);
   2678     SourceLocation NoLoc;
   2679     ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
   2680                                              /*IsAmbiguous=*/false,
   2681                                              /*RParenLoc=*/NoLoc,
   2682                                              /*ArgInfo=*/nullptr,
   2683                                              /*NumArgs=*/0,
   2684                                              /*EllipsisLoc=*/NoLoc,
   2685                                              /*RParenLoc=*/NoLoc,
   2686                                              /*TypeQuals=*/0,
   2687                                              /*RefQualifierIsLvalueRef=*/true,
   2688                                              /*RefQualifierLoc=*/NoLoc,
   2689                                              /*ConstQualifierLoc=*/NoLoc,
   2690                                              /*VolatileQualifierLoc=*/NoLoc,
   2691                                              /*RestrictQualifierLoc=*/NoLoc,
   2692                                              /*MutableLoc=*/NoLoc,
   2693                                              EST_None,
   2694                                              /*ESpecLoc=*/NoLoc,
   2695                                              /*Exceptions=*/nullptr,
   2696                                              /*ExceptionRanges=*/nullptr,
   2697                                              /*NumExceptions=*/0,
   2698                                              /*NoexceptExpr=*/nullptr,
   2699                                              /*ExceptionSpecTokens=*/nullptr,
   2700                                              CaretLoc, CaretLoc,
   2701                                              ParamInfo),
   2702                           attrs, CaretLoc);
   2703 
   2704     MaybeParseGNUAttributes(ParamInfo);
   2705 
   2706     // Inform sema that we are starting a block.
   2707     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
   2708   }
   2709 
   2710 
   2711   ExprResult Result(true);
   2712   if (!Tok.is(tok::l_brace)) {
   2713     // Saw something like: ^expr
   2714     Diag(Tok, diag::err_expected_expression);
   2715     Actions.ActOnBlockError(CaretLoc, getCurScope());
   2716     return ExprError();
   2717   }
   2718 
   2719   StmtResult Stmt(ParseCompoundStatementBody());
   2720   BlockScope.Exit();
   2721   if (!Stmt.isInvalid())
   2722     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
   2723   else
   2724     Actions.ActOnBlockError(CaretLoc, getCurScope());
   2725   return Result;
   2726 }
   2727 
   2728 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
   2729 ///
   2730 ///         '__objc_yes'
   2731 ///         '__objc_no'
   2732 ExprResult Parser::ParseObjCBoolLiteral() {
   2733   tok::TokenKind Kind = Tok.getKind();
   2734   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
   2735 }
   2736