Home | History | Annotate | Download | only in TableGen
      1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits code for use by the "fast" instruction
     11 // selection algorithm. See the comments at the top of
     12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
     13 //
     14 // This file scans through the target's tablegen instruction-info files
     15 // and extracts instructions with obvious-looking patterns, and it emits
     16 // code to look up these instructions by type and operator.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "CodeGenDAGPatterns.h"
     21 #include "llvm/ADT/SmallString.h"
     22 #include "llvm/ADT/StringSwitch.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/TableGen/Error.h"
     26 #include "llvm/TableGen/Record.h"
     27 #include "llvm/TableGen/TableGenBackend.h"
     28 using namespace llvm;
     29 
     30 
     31 /// InstructionMemo - This class holds additional information about an
     32 /// instruction needed to emit code for it.
     33 ///
     34 namespace {
     35 struct InstructionMemo {
     36   std::string Name;
     37   const CodeGenRegisterClass *RC;
     38   std::string SubRegNo;
     39   std::vector<std::string>* PhysRegs;
     40   std::string PredicateCheck;
     41 };
     42 } // End anonymous namespace
     43 
     44 /// ImmPredicateSet - This uniques predicates (represented as a string) and
     45 /// gives them unique (small) integer ID's that start at 0.
     46 namespace {
     47 class ImmPredicateSet {
     48   DenseMap<TreePattern *, unsigned> ImmIDs;
     49   std::vector<TreePredicateFn> PredsByName;
     50 public:
     51 
     52   unsigned getIDFor(TreePredicateFn Pred) {
     53     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
     54     if (Entry == 0) {
     55       PredsByName.push_back(Pred);
     56       Entry = PredsByName.size();
     57     }
     58     return Entry-1;
     59   }
     60 
     61   const TreePredicateFn &getPredicate(unsigned i) {
     62     assert(i < PredsByName.size());
     63     return PredsByName[i];
     64   }
     65 
     66   typedef std::vector<TreePredicateFn>::const_iterator iterator;
     67   iterator begin() const { return PredsByName.begin(); }
     68   iterator end() const { return PredsByName.end(); }
     69 
     70 };
     71 } // End anonymous namespace
     72 
     73 /// OperandsSignature - This class holds a description of a list of operand
     74 /// types. It has utility methods for emitting text based on the operands.
     75 ///
     76 namespace {
     77 struct OperandsSignature {
     78   class OpKind {
     79     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
     80     char Repr;
     81   public:
     82 
     83     OpKind() : Repr(OK_Invalid) {}
     84 
     85     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
     86     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
     87 
     88     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
     89     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
     90     static OpKind getImm(unsigned V) {
     91       assert((unsigned)OK_Imm+V < 128 &&
     92              "Too many integer predicates for the 'Repr' char");
     93       OpKind K; K.Repr = OK_Imm+V; return K;
     94     }
     95 
     96     bool isReg() const { return Repr == OK_Reg; }
     97     bool isFP() const  { return Repr == OK_FP; }
     98     bool isImm() const { return Repr >= OK_Imm; }
     99 
    100     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
    101 
    102     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    103                              bool StripImmCodes) const {
    104       if (isReg())
    105         OS << 'r';
    106       else if (isFP())
    107         OS << 'f';
    108       else {
    109         OS << 'i';
    110         if (!StripImmCodes)
    111           if (unsigned Code = getImmCode())
    112             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
    113       }
    114     }
    115   };
    116 
    117 
    118   SmallVector<OpKind, 3> Operands;
    119 
    120   bool operator<(const OperandsSignature &O) const {
    121     return Operands < O.Operands;
    122   }
    123   bool operator==(const OperandsSignature &O) const {
    124     return Operands == O.Operands;
    125   }
    126 
    127   bool empty() const { return Operands.empty(); }
    128 
    129   bool hasAnyImmediateCodes() const {
    130     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    131       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
    132         return true;
    133     return false;
    134   }
    135 
    136   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
    137   /// to zero.
    138   OperandsSignature getWithoutImmCodes() const {
    139     OperandsSignature Result;
    140     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    141       if (!Operands[i].isImm())
    142         Result.Operands.push_back(Operands[i]);
    143       else
    144         Result.Operands.push_back(OpKind::getImm(0));
    145     return Result;
    146   }
    147 
    148   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
    149     bool EmittedAnything = false;
    150     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    151       if (!Operands[i].isImm()) continue;
    152 
    153       unsigned Code = Operands[i].getImmCode();
    154       if (Code == 0) continue;
    155 
    156       if (EmittedAnything)
    157         OS << " &&\n        ";
    158 
    159       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
    160 
    161       // Emit the type check.
    162       OS << "VT == "
    163          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
    164          << " && ";
    165 
    166 
    167       OS << PredFn.getFnName() << "(imm" << i <<')';
    168       EmittedAnything = true;
    169     }
    170   }
    171 
    172   /// initialize - Examine the given pattern and initialize the contents
    173   /// of the Operands array accordingly. Return true if all the operands
    174   /// are supported, false otherwise.
    175   ///
    176   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
    177                   MVT::SimpleValueType VT,
    178                   ImmPredicateSet &ImmediatePredicates,
    179                   const CodeGenRegisterClass *OrigDstRC) {
    180     if (InstPatNode->isLeaf())
    181       return false;
    182 
    183     if (InstPatNode->getOperator()->getName() == "imm") {
    184       Operands.push_back(OpKind::getImm(0));
    185       return true;
    186     }
    187 
    188     if (InstPatNode->getOperator()->getName() == "fpimm") {
    189       Operands.push_back(OpKind::getFP());
    190       return true;
    191     }
    192 
    193     const CodeGenRegisterClass *DstRC = nullptr;
    194 
    195     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    196       TreePatternNode *Op = InstPatNode->getChild(i);
    197 
    198       // Handle imm operands specially.
    199       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
    200         unsigned PredNo = 0;
    201         if (!Op->getPredicateFns().empty()) {
    202           TreePredicateFn PredFn = Op->getPredicateFns()[0];
    203           // If there is more than one predicate weighing in on this operand
    204           // then we don't handle it.  This doesn't typically happen for
    205           // immediates anyway.
    206           if (Op->getPredicateFns().size() > 1 ||
    207               !PredFn.isImmediatePattern())
    208             return false;
    209           // Ignore any instruction with 'FastIselShouldIgnore', these are
    210           // not needed and just bloat the fast instruction selector.  For
    211           // example, X86 doesn't need to generate code to match ADD16ri8 since
    212           // ADD16ri will do just fine.
    213           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
    214           if (Rec->getValueAsBit("FastIselShouldIgnore"))
    215             return false;
    216 
    217           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
    218         }
    219 
    220         // Handle unmatched immediate sizes here.
    221         //if (Op->getType(0) != VT)
    222         //  return false;
    223 
    224         Operands.push_back(OpKind::getImm(PredNo));
    225         continue;
    226       }
    227 
    228 
    229       // For now, filter out any operand with a predicate.
    230       // For now, filter out any operand with multiple values.
    231       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
    232         return false;
    233 
    234       if (!Op->isLeaf()) {
    235          if (Op->getOperator()->getName() == "fpimm") {
    236           Operands.push_back(OpKind::getFP());
    237           continue;
    238         }
    239         // For now, ignore other non-leaf nodes.
    240         return false;
    241       }
    242 
    243       assert(Op->hasTypeSet(0) && "Type infererence not done?");
    244 
    245       // For now, all the operands must have the same type (if they aren't
    246       // immediates).  Note that this causes us to reject variable sized shifts
    247       // on X86.
    248       if (Op->getType(0) != VT)
    249         return false;
    250 
    251       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
    252       if (!OpDI)
    253         return false;
    254       Record *OpLeafRec = OpDI->getDef();
    255 
    256       // For now, the only other thing we accept is register operands.
    257       const CodeGenRegisterClass *RC = nullptr;
    258       if (OpLeafRec->isSubClassOf("RegisterOperand"))
    259         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
    260       if (OpLeafRec->isSubClassOf("RegisterClass"))
    261         RC = &Target.getRegisterClass(OpLeafRec);
    262       else if (OpLeafRec->isSubClassOf("Register"))
    263         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
    264       else if (OpLeafRec->isSubClassOf("ValueType")) {
    265         RC = OrigDstRC;
    266       } else
    267         return false;
    268 
    269       // For now, this needs to be a register class of some sort.
    270       if (!RC)
    271         return false;
    272 
    273       // For now, all the operands must have the same register class or be
    274       // a strict subclass of the destination.
    275       if (DstRC) {
    276         if (DstRC != RC && !DstRC->hasSubClass(RC))
    277           return false;
    278       } else
    279         DstRC = RC;
    280       Operands.push_back(OpKind::getReg());
    281     }
    282     return true;
    283   }
    284 
    285   void PrintParameters(raw_ostream &OS) const {
    286     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    287       if (Operands[i].isReg()) {
    288         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
    289       } else if (Operands[i].isImm()) {
    290         OS << "uint64_t imm" << i;
    291       } else if (Operands[i].isFP()) {
    292         OS << "const ConstantFP *f" << i;
    293       } else {
    294         llvm_unreachable("Unknown operand kind!");
    295       }
    296       if (i + 1 != e)
    297         OS << ", ";
    298     }
    299   }
    300 
    301   void PrintArguments(raw_ostream &OS,
    302                       const std::vector<std::string> &PR) const {
    303     assert(PR.size() == Operands.size());
    304     bool PrintedArg = false;
    305     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    306       if (PR[i] != "")
    307         // Implicit physical register operand.
    308         continue;
    309 
    310       if (PrintedArg)
    311         OS << ", ";
    312       if (Operands[i].isReg()) {
    313         OS << "Op" << i << ", Op" << i << "IsKill";
    314         PrintedArg = true;
    315       } else if (Operands[i].isImm()) {
    316         OS << "imm" << i;
    317         PrintedArg = true;
    318       } else if (Operands[i].isFP()) {
    319         OS << "f" << i;
    320         PrintedArg = true;
    321       } else {
    322         llvm_unreachable("Unknown operand kind!");
    323       }
    324     }
    325   }
    326 
    327   void PrintArguments(raw_ostream &OS) const {
    328     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    329       if (Operands[i].isReg()) {
    330         OS << "Op" << i << ", Op" << i << "IsKill";
    331       } else if (Operands[i].isImm()) {
    332         OS << "imm" << i;
    333       } else if (Operands[i].isFP()) {
    334         OS << "f" << i;
    335       } else {
    336         llvm_unreachable("Unknown operand kind!");
    337       }
    338       if (i + 1 != e)
    339         OS << ", ";
    340     }
    341   }
    342 
    343 
    344   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
    345                            ImmPredicateSet &ImmPredicates,
    346                            bool StripImmCodes = false) const {
    347     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    348       if (PR[i] != "")
    349         // Implicit physical register operand. e.g. Instruction::Mul expect to
    350         // select to a binary op. On x86, mul may take a single operand with
    351         // the other operand being implicit. We must emit something that looks
    352         // like a binary instruction except for the very inner fastEmitInst_*
    353         // call.
    354         continue;
    355       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    356     }
    357   }
    358 
    359   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    360                            bool StripImmCodes = false) const {
    361     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    362       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    363   }
    364 };
    365 } // End anonymous namespace
    366 
    367 namespace {
    368 class FastISelMap {
    369   // A multimap is needed instead of a "plain" map because the key is
    370   // the instruction's complexity (an int) and they are not unique.
    371   typedef std::multimap<int, InstructionMemo> PredMap;
    372   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
    373   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
    374   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
    375   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
    376             OperandsOpcodeTypeRetPredMap;
    377 
    378   OperandsOpcodeTypeRetPredMap SimplePatterns;
    379 
    380   // This is used to check that there are no duplicate predicates
    381   typedef std::multimap<std::string, bool> PredCheckMap;
    382   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
    383   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
    384   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
    385   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
    386             OperandsOpcodeTypeRetPredCheckMap;
    387 
    388   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
    389 
    390   std::map<OperandsSignature, std::vector<OperandsSignature> >
    391     SignaturesWithConstantForms;
    392 
    393   std::string InstNS;
    394   ImmPredicateSet ImmediatePredicates;
    395 public:
    396   explicit FastISelMap(std::string InstNS);
    397 
    398   void collectPatterns(CodeGenDAGPatterns &CGP);
    399   void printImmediatePredicates(raw_ostream &OS);
    400   void printFunctionDefinitions(raw_ostream &OS);
    401 private:
    402   void emitInstructionCode(raw_ostream &OS,
    403                            const OperandsSignature &Operands,
    404                            const PredMap &PM,
    405                            const std::string &RetVTName);
    406 };
    407 } // End anonymous namespace
    408 
    409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
    410   return CGP.getSDNodeInfo(Op).getEnumName();
    411 }
    412 
    413 static std::string getLegalCName(std::string OpName) {
    414   std::string::size_type pos = OpName.find("::");
    415   if (pos != std::string::npos)
    416     OpName.replace(pos, 2, "_");
    417   return OpName;
    418 }
    419 
    420 FastISelMap::FastISelMap(std::string instns)
    421   : InstNS(instns) {
    422 }
    423 
    424 static std::string PhyRegForNode(TreePatternNode *Op,
    425                                  const CodeGenTarget &Target) {
    426   std::string PhysReg;
    427 
    428   if (!Op->isLeaf())
    429     return PhysReg;
    430 
    431   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
    432   if (!OpLeafRec->isSubClassOf("Register"))
    433     return PhysReg;
    434 
    435   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
    436                ->getValue();
    437   PhysReg += "::";
    438   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
    439   return PhysReg;
    440 }
    441 
    442 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
    443   const CodeGenTarget &Target = CGP.getTargetInfo();
    444 
    445   // Determine the target's namespace name.
    446   InstNS = Target.getInstNamespace() + "::";
    447   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    448 
    449   // Scan through all the patterns and record the simple ones.
    450   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
    451        E = CGP.ptm_end(); I != E; ++I) {
    452     const PatternToMatch &Pattern = *I;
    453 
    454     // For now, just look at Instructions, so that we don't have to worry
    455     // about emitting multiple instructions for a pattern.
    456     TreePatternNode *Dst = Pattern.getDstPattern();
    457     if (Dst->isLeaf()) continue;
    458     Record *Op = Dst->getOperator();
    459     if (!Op->isSubClassOf("Instruction"))
    460       continue;
    461     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    462     if (II.Operands.empty())
    463       continue;
    464 
    465     // For now, ignore multi-instruction patterns.
    466     bool MultiInsts = false;
    467     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
    468       TreePatternNode *ChildOp = Dst->getChild(i);
    469       if (ChildOp->isLeaf())
    470         continue;
    471       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
    472         MultiInsts = true;
    473         break;
    474       }
    475     }
    476     if (MultiInsts)
    477       continue;
    478 
    479     // For now, ignore instructions where the first operand is not an
    480     // output register.
    481     const CodeGenRegisterClass *DstRC = nullptr;
    482     std::string SubRegNo;
    483     if (Op->getName() != "EXTRACT_SUBREG") {
    484       Record *Op0Rec = II.Operands[0].Rec;
    485       if (Op0Rec->isSubClassOf("RegisterOperand"))
    486         Op0Rec = Op0Rec->getValueAsDef("RegClass");
    487       if (!Op0Rec->isSubClassOf("RegisterClass"))
    488         continue;
    489       DstRC = &Target.getRegisterClass(Op0Rec);
    490       if (!DstRC)
    491         continue;
    492     } else {
    493       // If this isn't a leaf, then continue since the register classes are
    494       // a bit too complicated for now.
    495       if (!Dst->getChild(1)->isLeaf()) continue;
    496 
    497       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
    498       if (SR)
    499         SubRegNo = getQualifiedName(SR->getDef());
    500       else
    501         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    502     }
    503 
    504     // Inspect the pattern.
    505     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    506     if (!InstPatNode) continue;
    507     if (InstPatNode->isLeaf()) continue;
    508 
    509     // Ignore multiple result nodes for now.
    510     if (InstPatNode->getNumTypes() > 1) continue;
    511 
    512     Record *InstPatOp = InstPatNode->getOperator();
    513     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    514     MVT::SimpleValueType RetVT = MVT::isVoid;
    515     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
    516     MVT::SimpleValueType VT = RetVT;
    517     if (InstPatNode->getNumChildren()) {
    518       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
    519       VT = InstPatNode->getChild(0)->getType(0);
    520     }
    521 
    522     // For now, filter out any instructions with predicates.
    523     if (!InstPatNode->getPredicateFns().empty())
    524       continue;
    525 
    526     // Check all the operands.
    527     OperandsSignature Operands;
    528     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
    529                              DstRC))
    530       continue;
    531 
    532     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
    533     if (InstPatNode->getOperator()->getName() == "imm" ||
    534         InstPatNode->getOperator()->getName() == "fpimm")
    535       PhysRegInputs->push_back("");
    536     else {
    537       // Compute the PhysRegs used by the given pattern, and check that
    538       // the mapping from the src to dst patterns is simple.
    539       bool FoundNonSimplePattern = false;
    540       unsigned DstIndex = 0;
    541       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    542         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
    543         if (PhysReg.empty()) {
    544           if (DstIndex >= Dst->getNumChildren() ||
    545               Dst->getChild(DstIndex)->getName() !=
    546               InstPatNode->getChild(i)->getName()) {
    547             FoundNonSimplePattern = true;
    548             break;
    549           }
    550           ++DstIndex;
    551         }
    552 
    553         PhysRegInputs->push_back(PhysReg);
    554       }
    555 
    556       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
    557         FoundNonSimplePattern = true;
    558 
    559       if (FoundNonSimplePattern)
    560         continue;
    561     }
    562 
    563     // Check if the operands match one of the patterns handled by FastISel.
    564     std::string ManglingSuffix;
    565     raw_string_ostream SuffixOS(ManglingSuffix);
    566     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
    567     SuffixOS.flush();
    568     if (!StringSwitch<bool>(ManglingSuffix)
    569         .Cases("", "r", "rr", "ri", "rf", true)
    570         .Cases("rri", "i", "f", true)
    571         .Default(false))
    572       continue;
    573 
    574     // Get the predicate that guards this pattern.
    575     std::string PredicateCheck = Pattern.getPredicateCheck();
    576 
    577     // Ok, we found a pattern that we can handle. Remember it.
    578     InstructionMemo Memo = {
    579       Pattern.getDstPattern()->getOperator()->getName(),
    580       DstRC,
    581       SubRegNo,
    582       PhysRegInputs,
    583       PredicateCheck
    584     };
    585 
    586     int complexity = Pattern.getPatternComplexity(CGP);
    587 
    588     if (SimplePatternsCheck[Operands][OpcodeName][VT]
    589          [RetVT].count(PredicateCheck)) {
    590       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
    591                     "Duplicate predicate in FastISel table!");
    592     }
    593     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
    594             std::make_pair(PredicateCheck, true));
    595 
    596        // Note: Instructions with the same complexity will appear in the order
    597           // that they are encountered.
    598     SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
    599       std::make_pair(complexity, Memo));
    600 
    601     // If any of the operands were immediates with predicates on them, strip
    602     // them down to a signature that doesn't have predicates so that we can
    603     // associate them with the stripped predicate version.
    604     if (Operands.hasAnyImmediateCodes()) {
    605       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
    606         .push_back(Operands);
    607     }
    608   }
    609 }
    610 
    611 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
    612   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
    613     return;
    614 
    615   OS << "\n// FastEmit Immediate Predicate functions.\n";
    616   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
    617        E = ImmediatePredicates.end(); I != E; ++I) {
    618     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
    619     OS << I->getImmediatePredicateCode() << "\n}\n";
    620   }
    621 
    622   OS << "\n\n";
    623 }
    624 
    625 void FastISelMap::emitInstructionCode(raw_ostream &OS,
    626                                       const OperandsSignature &Operands,
    627                                       const PredMap &PM,
    628                                       const std::string &RetVTName) {
    629   // Emit code for each possible instruction. There may be
    630   // multiple if there are subtarget concerns.  A reverse iterator
    631   // is used to produce the ones with highest complexity first.
    632 
    633   bool OneHadNoPredicate = false;
    634   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
    635        PI != PE; ++PI) {
    636     const InstructionMemo &Memo = PI->second;
    637     std::string PredicateCheck = Memo.PredicateCheck;
    638 
    639     if (PredicateCheck.empty()) {
    640       assert(!OneHadNoPredicate &&
    641              "Multiple instructions match and more than one had "
    642              "no predicate!");
    643       OneHadNoPredicate = true;
    644     } else {
    645       if (OneHadNoPredicate) {
    646         // FIXME: This should be a PrintError once the x86 target
    647         // fixes PR21575.
    648         PrintWarning("Multiple instructions match and one with no "
    649                      "predicate came before one with a predicate!  "
    650                      "name:" + Memo.Name + "  predicate: " +
    651                      PredicateCheck);
    652       }
    653       OS << "  if (" + PredicateCheck + ") {\n";
    654       OS << "  ";
    655     }
    656 
    657     for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
    658       if ((*Memo.PhysRegs)[i] != "")
    659         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
    660            << "TII.get(TargetOpcode::COPY), "
    661            << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
    662     }
    663 
    664     OS << "  return fastEmitInst_";
    665     if (Memo.SubRegNo.empty()) {
    666       Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
    667      ImmediatePredicates, true);
    668       OS << "(" << InstNS << Memo.Name << ", ";
    669       OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
    670       if (!Operands.empty())
    671         OS << ", ";
    672       Operands.PrintArguments(OS, *Memo.PhysRegs);
    673       OS << ");\n";
    674     } else {
    675       OS << "extractsubreg(" << RetVTName
    676          << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
    677     }
    678 
    679     if (!PredicateCheck.empty()) {
    680       OS << "  }\n";
    681     }
    682   }
    683   // Return 0 if all of the possibilities had predicates but none
    684   // were satisfied.
    685   if (!OneHadNoPredicate)
    686     OS << "  return 0;\n";
    687   OS << "}\n";
    688   OS << "\n";
    689 }
    690 
    691 
    692 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
    693   // Now emit code for all the patterns that we collected.
    694   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
    695        OE = SimplePatterns.end(); OI != OE; ++OI) {
    696     const OperandsSignature &Operands = OI->first;
    697     const OpcodeTypeRetPredMap &OTM = OI->second;
    698 
    699     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    700          I != E; ++I) {
    701       const std::string &Opcode = I->first;
    702       const TypeRetPredMap &TM = I->second;
    703 
    704       OS << "// FastEmit functions for " << Opcode << ".\n";
    705       OS << "\n";
    706 
    707       // Emit one function for each opcode,type pair.
    708       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    709            TI != TE; ++TI) {
    710         MVT::SimpleValueType VT = TI->first;
    711         const RetPredMap &RM = TI->second;
    712         if (RM.size() != 1) {
    713           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    714                RI != RE; ++RI) {
    715             MVT::SimpleValueType RetVT = RI->first;
    716             const PredMap &PM = RI->second;
    717 
    718             OS << "unsigned fastEmit_"
    719                << getLegalCName(Opcode)
    720                << "_" << getLegalCName(getName(VT))
    721                << "_" << getLegalCName(getName(RetVT)) << "_";
    722             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    723             OS << "(";
    724             Operands.PrintParameters(OS);
    725             OS << ") {\n";
    726 
    727             emitInstructionCode(OS, Operands, PM, getName(RetVT));
    728           }
    729 
    730           // Emit one function for the type that demultiplexes on return type.
    731           OS << "unsigned fastEmit_"
    732              << getLegalCName(Opcode) << "_"
    733              << getLegalCName(getName(VT)) << "_";
    734           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    735           OS << "(MVT RetVT";
    736           if (!Operands.empty())
    737             OS << ", ";
    738           Operands.PrintParameters(OS);
    739           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
    740           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    741                RI != RE; ++RI) {
    742             MVT::SimpleValueType RetVT = RI->first;
    743             OS << "  case " << getName(RetVT) << ": return fastEmit_"
    744                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
    745                << "_" << getLegalCName(getName(RetVT)) << "_";
    746             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    747             OS << "(";
    748             Operands.PrintArguments(OS);
    749             OS << ");\n";
    750           }
    751           OS << "  default: return 0;\n}\n}\n\n";
    752 
    753         } else {
    754           // Non-variadic return type.
    755           OS << "unsigned fastEmit_"
    756              << getLegalCName(Opcode) << "_"
    757              << getLegalCName(getName(VT)) << "_";
    758           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    759           OS << "(MVT RetVT";
    760           if (!Operands.empty())
    761             OS << ", ";
    762           Operands.PrintParameters(OS);
    763           OS << ") {\n";
    764 
    765           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
    766              << ")\n    return 0;\n";
    767 
    768           const PredMap &PM = RM.begin()->second;
    769 
    770           emitInstructionCode(OS, Operands, PM, "RetVT");
    771         }
    772       }
    773 
    774       // Emit one function for the opcode that demultiplexes based on the type.
    775       OS << "unsigned fastEmit_"
    776          << getLegalCName(Opcode) << "_";
    777       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    778       OS << "(MVT VT, MVT RetVT";
    779       if (!Operands.empty())
    780         OS << ", ";
    781       Operands.PrintParameters(OS);
    782       OS << ") {\n";
    783       OS << "  switch (VT.SimpleTy) {\n";
    784       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    785            TI != TE; ++TI) {
    786         MVT::SimpleValueType VT = TI->first;
    787         std::string TypeName = getName(VT);
    788         OS << "  case " << TypeName << ": return fastEmit_"
    789            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
    790         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    791         OS << "(RetVT";
    792         if (!Operands.empty())
    793           OS << ", ";
    794         Operands.PrintArguments(OS);
    795         OS << ");\n";
    796       }
    797       OS << "  default: return 0;\n";
    798       OS << "  }\n";
    799       OS << "}\n";
    800       OS << "\n";
    801     }
    802 
    803     OS << "// Top-level FastEmit function.\n";
    804     OS << "\n";
    805 
    806     // Emit one function for the operand signature that demultiplexes based
    807     // on opcode and type.
    808     OS << "unsigned fastEmit_";
    809     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    810     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
    811     if (!Operands.empty())
    812       OS << ", ";
    813     Operands.PrintParameters(OS);
    814     OS << ") ";
    815     if (!Operands.hasAnyImmediateCodes())
    816       OS << "override ";
    817     OS << "{\n";
    818 
    819     // If there are any forms of this signature available that operate on
    820     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
    821     // 64-bit operand), check them first.
    822 
    823     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
    824       = SignaturesWithConstantForms.find(Operands);
    825     if (MI != SignaturesWithConstantForms.end()) {
    826       // Unique any duplicates out of the list.
    827       std::sort(MI->second.begin(), MI->second.end());
    828       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
    829                        MI->second.end());
    830 
    831       // Check each in order it was seen.  It would be nice to have a good
    832       // relative ordering between them, but we're not going for optimality
    833       // here.
    834       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
    835         OS << "  if (";
    836         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
    837         OS << ")\n    if (unsigned Reg = fastEmit_";
    838         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
    839         OS << "(VT, RetVT, Opcode";
    840         if (!MI->second[i].empty())
    841           OS << ", ";
    842         MI->second[i].PrintArguments(OS);
    843         OS << "))\n      return Reg;\n\n";
    844       }
    845 
    846       // Done with this, remove it.
    847       SignaturesWithConstantForms.erase(MI);
    848     }
    849 
    850     OS << "  switch (Opcode) {\n";
    851     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    852          I != E; ++I) {
    853       const std::string &Opcode = I->first;
    854 
    855       OS << "  case " << Opcode << ": return fastEmit_"
    856          << getLegalCName(Opcode) << "_";
    857       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    858       OS << "(VT, RetVT";
    859       if (!Operands.empty())
    860         OS << ", ";
    861       Operands.PrintArguments(OS);
    862       OS << ");\n";
    863     }
    864     OS << "  default: return 0;\n";
    865     OS << "  }\n";
    866     OS << "}\n";
    867     OS << "\n";
    868   }
    869 
    870   // TODO: SignaturesWithConstantForms should be empty here.
    871 }
    872 
    873 namespace llvm {
    874 
    875 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
    876   CodeGenDAGPatterns CGP(RK);
    877   const CodeGenTarget &Target = CGP.getTargetInfo();
    878   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
    879                        Target.getName() + " target", OS);
    880 
    881   // Determine the target's namespace name.
    882   std::string InstNS = Target.getInstNamespace() + "::";
    883   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    884 
    885   FastISelMap F(InstNS);
    886   F.collectPatterns(CGP);
    887   F.printImmediatePredicates(OS);
    888   F.printFunctionDefinitions(OS);
    889 }
    890 
    891 } // End llvm namespace
    892