Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_ATOMIC_H_
     18 #define ART_RUNTIME_ATOMIC_H_
     19 
     20 #include <stdint.h>
     21 #include <atomic>
     22 #include <limits>
     23 #include <vector>
     24 
     25 #include "base/logging.h"
     26 #include "base/macros.h"
     27 
     28 namespace art {
     29 
     30 class Mutex;
     31 
     32 // QuasiAtomic encapsulates two separate facilities that we are
     33 // trying to move away from:  "quasiatomic" 64 bit operations
     34 // and custom memory fences.  For the time being, they remain
     35 // exposed.  Clients should be converted to use either class Atomic
     36 // below whenever possible, and should eventually use C++11 atomics.
     37 // The two facilities that do not have a good C++11 analog are
     38 // ThreadFenceForConstructor and Atomic::*JavaData.
     39 //
     40 // NOTE: Two "quasiatomic" operations on the exact same memory address
     41 // are guaranteed to operate atomically with respect to each other,
     42 // but no guarantees are made about quasiatomic operations mixed with
     43 // non-quasiatomic operations on the same address, nor about
     44 // quasiatomic operations that are performed on partially-overlapping
     45 // memory.
     46 class QuasiAtomic {
     47 #if defined(__mips__) && !defined(__LP64__)
     48   static constexpr bool kNeedSwapMutexes = true;
     49 #elif defined(__mips__) && defined(__LP64__)
     50   // TODO - mips64 still need this for Cas64 ???
     51   static constexpr bool kNeedSwapMutexes = true;
     52 #else
     53   static constexpr bool kNeedSwapMutexes = false;
     54 #endif
     55 
     56  public:
     57   static void Startup();
     58 
     59   static void Shutdown();
     60 
     61   // Reads the 64-bit value at "addr" without tearing.
     62   static int64_t Read64(volatile const int64_t* addr) {
     63     if (!kNeedSwapMutexes) {
     64       int64_t value;
     65 #if defined(__LP64__)
     66       value = *addr;
     67 #else
     68 #if defined(__arm__)
     69 #if defined(__ARM_FEATURE_LPAE)
     70       // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
     71       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
     72         "ldrd     %0, %H0, %1"
     73         : "=r" (value)
     74         : "m" (*addr));
     75 #else
     76       // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
     77       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
     78         "ldrexd     %0, %H0, %1"
     79         : "=r" (value)
     80         : "Q" (*addr));
     81 #endif
     82 #elif defined(__i386__)
     83   __asm__ __volatile__(
     84       "movq     %1, %0\n"
     85       : "=x" (value)
     86       : "m" (*addr));
     87 #else
     88       LOG(FATAL) << "Unsupported architecture";
     89 #endif
     90 #endif  // defined(__LP64__)
     91       return value;
     92     } else {
     93       return SwapMutexRead64(addr);
     94     }
     95   }
     96 
     97   // Writes to the 64-bit value at "addr" without tearing.
     98   static void Write64(volatile int64_t* addr, int64_t value) {
     99     if (!kNeedSwapMutexes) {
    100 #if defined(__LP64__)
    101       *addr = value;
    102 #else
    103 #if defined(__arm__)
    104 #if defined(__ARM_FEATURE_LPAE)
    105     // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
    106     __asm__ __volatile__("@ QuasiAtomic::Write64\n"
    107       "strd     %1, %H1, %0"
    108       : "=m"(*addr)
    109       : "r" (value));
    110 #else
    111     // The write is done as a swap so that the cache-line is in the exclusive state for the store.
    112     int64_t prev;
    113     int status;
    114     do {
    115       __asm__ __volatile__("@ QuasiAtomic::Write64\n"
    116         "ldrexd     %0, %H0, %2\n"
    117         "strexd     %1, %3, %H3, %2"
    118         : "=&r" (prev), "=&r" (status), "+Q"(*addr)
    119         : "r" (value)
    120         : "cc");
    121       } while (UNLIKELY(status != 0));
    122 #endif
    123 #elif defined(__i386__)
    124       __asm__ __volatile__(
    125         "movq     %1, %0"
    126         : "=m" (*addr)
    127         : "x" (value));
    128 #else
    129       LOG(FATAL) << "Unsupported architecture";
    130 #endif
    131 #endif  // defined(__LP64__)
    132     } else {
    133       SwapMutexWrite64(addr, value);
    134     }
    135   }
    136 
    137   // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
    138   // and return true. Otherwise, don't swap, and return false.
    139   // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
    140   // semantics (assuming all other accesses use a mutex if this one does).
    141   // This has "strong" semantics; if it fails then it is guaranteed that
    142   // at some point during the execution of Cas64, *addr was not equal to
    143   // old_value.
    144   static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
    145     if (!kNeedSwapMutexes) {
    146       return __sync_bool_compare_and_swap(addr, old_value, new_value);
    147     } else {
    148       return SwapMutexCas64(old_value, new_value, addr);
    149     }
    150   }
    151 
    152   // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
    153   static bool LongAtomicsUseMutexes() {
    154     return kNeedSwapMutexes;
    155   }
    156 
    157   static void ThreadFenceAcquire() {
    158     std::atomic_thread_fence(std::memory_order_acquire);
    159   }
    160 
    161   static void ThreadFenceRelease() {
    162     std::atomic_thread_fence(std::memory_order_release);
    163   }
    164 
    165   static void ThreadFenceForConstructor() {
    166     #if defined(__aarch64__)
    167       __asm__ __volatile__("dmb ishst" : : : "memory");
    168     #else
    169       std::atomic_thread_fence(std::memory_order_release);
    170     #endif
    171   }
    172 
    173   static void ThreadFenceSequentiallyConsistent() {
    174     std::atomic_thread_fence(std::memory_order_seq_cst);
    175   }
    176 
    177  private:
    178   static Mutex* GetSwapMutex(const volatile int64_t* addr);
    179   static int64_t SwapMutexRead64(volatile const int64_t* addr);
    180   static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
    181   static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
    182 
    183   // We stripe across a bunch of different mutexes to reduce contention.
    184   static constexpr size_t kSwapMutexCount = 32;
    185   static std::vector<Mutex*>* gSwapMutexes;
    186 
    187   DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
    188 };
    189 
    190 template<typename T>
    191 class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
    192  public:
    193   Atomic<T>() : std::atomic<T>(0) { }
    194 
    195   explicit Atomic<T>(T value) : std::atomic<T>(value) { }
    196 
    197   // Load from memory without ordering or synchronization constraints.
    198   T LoadRelaxed() const {
    199     return this->load(std::memory_order_relaxed);
    200   }
    201 
    202   // Word tearing allowed, but may race.
    203   // TODO: Optimize?
    204   // There has been some discussion of eventually disallowing word
    205   // tearing for Java data loads.
    206   T LoadJavaData() const {
    207     return this->load(std::memory_order_relaxed);
    208   }
    209 
    210   // Load from memory with a total ordering.
    211   // Corresponds exactly to a Java volatile load.
    212   T LoadSequentiallyConsistent() const {
    213     return this->load(std::memory_order_seq_cst);
    214   }
    215 
    216   // Store to memory without ordering or synchronization constraints.
    217   void StoreRelaxed(T desired) {
    218     this->store(desired, std::memory_order_relaxed);
    219   }
    220 
    221   // Word tearing allowed, but may race.
    222   void StoreJavaData(T desired) {
    223     this->store(desired, std::memory_order_relaxed);
    224   }
    225 
    226   // Store to memory with release ordering.
    227   void StoreRelease(T desired) {
    228     this->store(desired, std::memory_order_release);
    229   }
    230 
    231   // Store to memory with a total ordering.
    232   void StoreSequentiallyConsistent(T desired) {
    233     this->store(desired, std::memory_order_seq_cst);
    234   }
    235 
    236   // Atomically replace the value with desired value if it matches the expected value.
    237   // Participates in total ordering of atomic operations.
    238   bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
    239     return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
    240   }
    241 
    242   // The same, except it may fail spuriously.
    243   bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
    244     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
    245   }
    246 
    247   // Atomically replace the value with desired value if it matches the expected value. Doesn't
    248   // imply ordering or synchronization constraints.
    249   bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
    250     return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
    251   }
    252 
    253   // The same, except it may fail spuriously.
    254   bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
    255     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
    256   }
    257 
    258   // Atomically replace the value with desired value if it matches the expected value. Prior writes
    259   // made to other memory locations by the thread that did the release become visible in this
    260   // thread.
    261   bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
    262     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
    263   }
    264 
    265   // Atomically replace the value with desired value if it matches the expected value. prior writes
    266   // to other memory locations become visible to the threads that do a consume or an acquire on the
    267   // same location.
    268   bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
    269     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
    270   }
    271 
    272   T FetchAndAddSequentiallyConsistent(const T value) {
    273     return this->fetch_add(value, std::memory_order_seq_cst);  // Return old_value.
    274   }
    275 
    276   T FetchAndSubSequentiallyConsistent(const T value) {
    277     return this->fetch_sub(value, std::memory_order_seq_cst);  // Return old value.
    278   }
    279 
    280   T FetchAndOrSequentiallyConsistent(const T value) {
    281     return this->fetch_or(value, std::memory_order_seq_cst);  // Return old_value.
    282   }
    283 
    284   T FetchAndAndSequentiallyConsistent(const T value) {
    285     return this->fetch_and(value, std::memory_order_seq_cst);  // Return old_value.
    286   }
    287 
    288   volatile T* Address() {
    289     return reinterpret_cast<T*>(this);
    290   }
    291 
    292   static T MaxValue() {
    293     return std::numeric_limits<T>::max();
    294   }
    295 };
    296 
    297 typedef Atomic<int32_t> AtomicInteger;
    298 
    299 static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
    300 static_assert(alignof(AtomicInteger) == alignof(int32_t),
    301               "AtomicInteger alignment differs from that of underlyingtype");
    302 static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");
    303 
    304 // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
    305 // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
    306 // aligned.
    307 #if defined(__LP64__)
    308   static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
    309                 "Atomic<int64> alignment differs from that of underlying type");
    310 #endif
    311 
    312 }  // namespace art
    313 
    314 #endif  // ART_RUNTIME_ATOMIC_H_
    315