Home | History | Annotate | Download | only in enc
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Author: Jyrki Alakuijala (jyrki (at) google.com)
     11 //
     12 #ifdef HAVE_CONFIG_H
     13 #include "config.h"
     14 #endif
     15 
     16 #include <math.h>
     17 
     18 #include "./backward_references.h"
     19 #include "./histogram.h"
     20 #include "../dsp/lossless.h"
     21 #include "../utils/utils.h"
     22 
     23 #define MAX_COST 1.e38
     24 
     25 // Number of partitions for the three dominant (literal, red and blue) symbol
     26 // costs.
     27 #define NUM_PARTITIONS 4
     28 // The size of the bin-hash corresponding to the three dominant costs.
     29 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
     30 
     31 static void HistogramClear(VP8LHistogram* const p) {
     32   uint32_t* const literal = p->literal_;
     33   const int cache_bits = p->palette_code_bits_;
     34   const int histo_size = VP8LGetHistogramSize(cache_bits);
     35   memset(p, 0, histo_size);
     36   p->palette_code_bits_ = cache_bits;
     37   p->literal_ = literal;
     38 }
     39 
     40 static void HistogramCopy(const VP8LHistogram* const src,
     41                           VP8LHistogram* const dst) {
     42   uint32_t* const dst_literal = dst->literal_;
     43   const int dst_cache_bits = dst->palette_code_bits_;
     44   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
     45   assert(src->palette_code_bits_ == dst_cache_bits);
     46   memcpy(dst, src, histo_size);
     47   dst->literal_ = dst_literal;
     48 }
     49 
     50 int VP8LGetHistogramSize(int cache_bits) {
     51   const int literal_size = VP8LHistogramNumCodes(cache_bits);
     52   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
     53   assert(total_size <= (size_t)0x7fffffff);
     54   return (int)total_size;
     55 }
     56 
     57 void VP8LFreeHistogram(VP8LHistogram* const histo) {
     58   WebPSafeFree(histo);
     59 }
     60 
     61 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
     62   WebPSafeFree(histo);
     63 }
     64 
     65 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
     66                             VP8LHistogram* const histo) {
     67   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
     68   while (VP8LRefsCursorOk(&c)) {
     69     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
     70     VP8LRefsCursorNext(&c);
     71   }
     72 }
     73 
     74 void VP8LHistogramCreate(VP8LHistogram* const p,
     75                          const VP8LBackwardRefs* const refs,
     76                          int palette_code_bits) {
     77   if (palette_code_bits >= 0) {
     78     p->palette_code_bits_ = palette_code_bits;
     79   }
     80   HistogramClear(p);
     81   VP8LHistogramStoreRefs(refs, p);
     82 }
     83 
     84 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
     85   p->palette_code_bits_ = palette_code_bits;
     86   HistogramClear(p);
     87 }
     88 
     89 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
     90   VP8LHistogram* histo = NULL;
     91   const int total_size = VP8LGetHistogramSize(cache_bits);
     92   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
     93   if (memory == NULL) return NULL;
     94   histo = (VP8LHistogram*)memory;
     95   // literal_ won't necessary be aligned.
     96   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
     97   VP8LHistogramInit(histo, cache_bits);
     98   return histo;
     99 }
    100 
    101 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
    102   int i;
    103   VP8LHistogramSet* set;
    104   const size_t total_size = sizeof(*set)
    105                             + sizeof(*set->histograms) * size
    106                             + (size_t)VP8LGetHistogramSize(cache_bits) * size;
    107   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
    108   if (memory == NULL) return NULL;
    109 
    110   set = (VP8LHistogramSet*)memory;
    111   memory += sizeof(*set);
    112   set->histograms = (VP8LHistogram**)memory;
    113   memory += size * sizeof(*set->histograms);
    114   set->max_size = size;
    115   set->size = size;
    116   for (i = 0; i < size; ++i) {
    117     set->histograms[i] = (VP8LHistogram*)memory;
    118     // literal_ won't necessary be aligned.
    119     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    120     VP8LHistogramInit(set->histograms[i], cache_bits);
    121     // There's no padding/alignment between successive histograms.
    122     memory += VP8LGetHistogramSize(cache_bits);
    123   }
    124   return set;
    125 }
    126 
    127 // -----------------------------------------------------------------------------
    128 
    129 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
    130                                      const PixOrCopy* const v) {
    131   if (PixOrCopyIsLiteral(v)) {
    132     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    133     ++histo->red_[PixOrCopyLiteral(v, 2)];
    134     ++histo->literal_[PixOrCopyLiteral(v, 1)];
    135     ++histo->blue_[PixOrCopyLiteral(v, 0)];
    136   } else if (PixOrCopyIsCacheIdx(v)) {
    137     const int literal_ix =
    138         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    139     ++histo->literal_[literal_ix];
    140   } else {
    141     int code, extra_bits;
    142     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
    143     ++histo->literal_[NUM_LITERAL_CODES + code];
    144     VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
    145     ++histo->distance_[code];
    146   }
    147 }
    148 
    149 static WEBP_INLINE double BitsEntropyRefine(int nonzeros, int sum, int max_val,
    150                                             double retval) {
    151   double mix;
    152   if (nonzeros < 5) {
    153     if (nonzeros <= 1) {
    154       return 0;
    155     }
    156     // Two symbols, they will be 0 and 1 in a Huffman code.
    157     // Let's mix in a bit of entropy to favor good clustering when
    158     // distributions of these are combined.
    159     if (nonzeros == 2) {
    160       return 0.99 * sum + 0.01 * retval;
    161     }
    162     // No matter what the entropy says, we cannot be better than min_limit
    163     // with Huffman coding. I am mixing a bit of entropy into the
    164     // min_limit since it produces much better (~0.5 %) compression results
    165     // perhaps because of better entropy clustering.
    166     if (nonzeros == 3) {
    167       mix = 0.95;
    168     } else {
    169       mix = 0.7;  // nonzeros == 4.
    170     }
    171   } else {
    172     mix = 0.627;
    173   }
    174 
    175   {
    176     double min_limit = 2 * sum - max_val;
    177     min_limit = mix * min_limit + (1.0 - mix) * retval;
    178     return (retval < min_limit) ? min_limit : retval;
    179   }
    180 }
    181 
    182 static double BitsEntropy(const uint32_t* const array, int n) {
    183   double retval = 0.;
    184   uint32_t sum = 0;
    185   int nonzeros = 0;
    186   uint32_t max_val = 0;
    187   int i;
    188   for (i = 0; i < n; ++i) {
    189     if (array[i] != 0) {
    190       sum += array[i];
    191       ++nonzeros;
    192       retval -= VP8LFastSLog2(array[i]);
    193       if (max_val < array[i]) {
    194         max_val = array[i];
    195       }
    196     }
    197   }
    198   retval += VP8LFastSLog2(sum);
    199   return BitsEntropyRefine(nonzeros, sum, max_val, retval);
    200 }
    201 
    202 static double BitsEntropyCombined(const uint32_t* const X,
    203                                   const uint32_t* const Y, int n) {
    204   double retval = 0.;
    205   int sum = 0;
    206   int nonzeros = 0;
    207   int max_val = 0;
    208   int i;
    209   for (i = 0; i < n; ++i) {
    210     const int xy = X[i] + Y[i];
    211     if (xy != 0) {
    212       sum += xy;
    213       ++nonzeros;
    214       retval -= VP8LFastSLog2(xy);
    215       if (max_val < xy) {
    216         max_val = xy;
    217       }
    218     }
    219   }
    220   retval += VP8LFastSLog2(sum);
    221   return BitsEntropyRefine(nonzeros, sum, max_val, retval);
    222 }
    223 
    224 static double InitialHuffmanCost(void) {
    225   // Small bias because Huffman code length is typically not stored in
    226   // full length.
    227   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
    228   static const double kSmallBias = 9.1;
    229   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
    230 }
    231 
    232 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
    233 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
    234   double retval = InitialHuffmanCost();
    235   retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
    236   retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
    237   retval += 1.796875 * stats->streaks[0][0];
    238   retval += 3.28125 * stats->streaks[1][0];
    239   return retval;
    240 }
    241 
    242 // Trampolines
    243 static double HuffmanCost(const uint32_t* const population, int length) {
    244   const VP8LStreaks stats = VP8LHuffmanCostCount(population, length);
    245   return FinalHuffmanCost(&stats);
    246 }
    247 
    248 static double HuffmanCostCombined(const uint32_t* const X,
    249                                   const uint32_t* const Y, int length) {
    250   const VP8LStreaks stats = VP8LHuffmanCostCombinedCount(X, Y, length);
    251   return FinalHuffmanCost(&stats);
    252 }
    253 
    254 // Aggregated costs
    255 static double PopulationCost(const uint32_t* const population, int length) {
    256   return BitsEntropy(population, length) + HuffmanCost(population, length);
    257 }
    258 
    259 static double GetCombinedEntropy(const uint32_t* const X,
    260                                  const uint32_t* const Y, int length) {
    261   return BitsEntropyCombined(X, Y, length) + HuffmanCostCombined(X, Y, length);
    262 }
    263 
    264 // Estimates the Entropy + Huffman + other block overhead size cost.
    265 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
    266   return
    267       PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_))
    268       + PopulationCost(p->red_, NUM_LITERAL_CODES)
    269       + PopulationCost(p->blue_, NUM_LITERAL_CODES)
    270       + PopulationCost(p->alpha_, NUM_LITERAL_CODES)
    271       + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
    272       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
    273       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
    274 }
    275 
    276 double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
    277   return
    278       BitsEntropy(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_))
    279       + BitsEntropy(p->red_, NUM_LITERAL_CODES)
    280       + BitsEntropy(p->blue_, NUM_LITERAL_CODES)
    281       + BitsEntropy(p->alpha_, NUM_LITERAL_CODES)
    282       + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
    283       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
    284       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
    285 }
    286 
    287 // -----------------------------------------------------------------------------
    288 // Various histogram combine/cost-eval functions
    289 
    290 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
    291                                        const VP8LHistogram* const b,
    292                                        double cost_threshold,
    293                                        double* cost) {
    294   const int palette_code_bits = a->palette_code_bits_;
    295   assert(a->palette_code_bits_ == b->palette_code_bits_);
    296   *cost += GetCombinedEntropy(a->literal_, b->literal_,
    297                               VP8LHistogramNumCodes(palette_code_bits));
    298   *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
    299                                  b->literal_ + NUM_LITERAL_CODES,
    300                                  NUM_LENGTH_CODES);
    301   if (*cost > cost_threshold) return 0;
    302 
    303   *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
    304   if (*cost > cost_threshold) return 0;
    305 
    306   *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
    307   if (*cost > cost_threshold) return 0;
    308 
    309   *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
    310   if (*cost > cost_threshold) return 0;
    311 
    312   *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
    313   *cost += VP8LExtraCostCombined(a->distance_, b->distance_,
    314                                  NUM_DISTANCE_CODES);
    315   if (*cost > cost_threshold) return 0;
    316 
    317   return 1;
    318 }
    319 
    320 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
    321 // to the threshold value 'cost_threshold'. The score returned is
    322 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
    323 // Since the previous score passed is 'cost_threshold', we only need to compare
    324 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
    325 // early.
    326 static double HistogramAddEval(const VP8LHistogram* const a,
    327                                const VP8LHistogram* const b,
    328                                VP8LHistogram* const out,
    329                                double cost_threshold) {
    330   double cost = 0;
    331   const double sum_cost = a->bit_cost_ + b->bit_cost_;
    332   cost_threshold += sum_cost;
    333 
    334   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
    335     VP8LHistogramAdd(a, b, out);
    336     out->bit_cost_ = cost;
    337     out->palette_code_bits_ = a->palette_code_bits_;
    338   }
    339 
    340   return cost - sum_cost;
    341 }
    342 
    343 // Same as HistogramAddEval(), except that the resulting histogram
    344 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
    345 // the term C(b) which is constant over all the evaluations.
    346 static double HistogramAddThresh(const VP8LHistogram* const a,
    347                                  const VP8LHistogram* const b,
    348                                  double cost_threshold) {
    349   double cost = -a->bit_cost_;
    350   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
    351   return cost;
    352 }
    353 
    354 // -----------------------------------------------------------------------------
    355 
    356 // The structure to keep track of cost range for the three dominant entropy
    357 // symbols.
    358 // TODO(skal): Evaluate if float can be used here instead of double for
    359 // representing the entropy costs.
    360 typedef struct {
    361   double literal_max_;
    362   double literal_min_;
    363   double red_max_;
    364   double red_min_;
    365   double blue_max_;
    366   double blue_min_;
    367 } DominantCostRange;
    368 
    369 static void DominantCostRangeInit(DominantCostRange* const c) {
    370   c->literal_max_ = 0.;
    371   c->literal_min_ = MAX_COST;
    372   c->red_max_ = 0.;
    373   c->red_min_ = MAX_COST;
    374   c->blue_max_ = 0.;
    375   c->blue_min_ = MAX_COST;
    376 }
    377 
    378 static void UpdateDominantCostRange(
    379     const VP8LHistogram* const h, DominantCostRange* const c) {
    380   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
    381   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
    382   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
    383   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
    384   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
    385   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
    386 }
    387 
    388 static void UpdateHistogramCost(VP8LHistogram* const h) {
    389   const double alpha_cost = PopulationCost(h->alpha_, NUM_LITERAL_CODES);
    390   const double distance_cost =
    391       PopulationCost(h->distance_, NUM_DISTANCE_CODES) +
    392       VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
    393   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
    394   h->literal_cost_ = PopulationCost(h->literal_, num_codes) +
    395                      VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
    396                                    NUM_LENGTH_CODES);
    397   h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES);
    398   h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES);
    399   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
    400                  alpha_cost + distance_cost;
    401 }
    402 
    403 static int GetBinIdForEntropy(double min, double max, double val) {
    404   const double range = max - min + 1e-6;
    405   const double delta = val - min;
    406   return (int)(NUM_PARTITIONS * delta / range);
    407 }
    408 
    409 // TODO(vikasa): Evaluate, if there's any correlation between red & blue.
    410 static int GetHistoBinIndex(
    411     const VP8LHistogram* const h, const DominantCostRange* const c) {
    412   const int bin_id =
    413       GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) +
    414       NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_,
    415                                           h->red_cost_) +
    416       NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_,
    417                                                            c->literal_max_,
    418                                                            h->literal_cost_);
    419   assert(bin_id < BIN_SIZE);
    420   return bin_id;
    421 }
    422 
    423 // Construct the histograms from backward references.
    424 static void HistogramBuild(
    425     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
    426     VP8LHistogramSet* const image_histo) {
    427   int x = 0, y = 0;
    428   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
    429   VP8LHistogram** const histograms = image_histo->histograms;
    430   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
    431   assert(histo_bits > 0);
    432   // Construct the Histo from a given backward references.
    433   while (VP8LRefsCursorOk(&c)) {
    434     const PixOrCopy* const v = c.cur_pos;
    435     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    436     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
    437     x += PixOrCopyLength(v);
    438     while (x >= xsize) {
    439       x -= xsize;
    440       ++y;
    441     }
    442     VP8LRefsCursorNext(&c);
    443   }
    444 }
    445 
    446 // Copies the histograms and computes its bit_cost.
    447 static void HistogramCopyAndAnalyze(
    448     VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
    449   int i;
    450   const int histo_size = orig_histo->size;
    451   VP8LHistogram** const orig_histograms = orig_histo->histograms;
    452   VP8LHistogram** const histograms = image_histo->histograms;
    453   for (i = 0; i < histo_size; ++i) {
    454     VP8LHistogram* const histo = orig_histograms[i];
    455     UpdateHistogramCost(histo);
    456     // Copy histograms from orig_histo[] to image_histo[].
    457     HistogramCopy(histo, histograms[i]);
    458   }
    459 }
    460 
    461 // Partition histograms to different entropy bins for three dominant (literal,
    462 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
    463 static void HistogramAnalyzeEntropyBin(
    464     VP8LHistogramSet* const image_histo, int16_t* const bin_map) {
    465   int i;
    466   VP8LHistogram** const histograms = image_histo->histograms;
    467   const int histo_size = image_histo->size;
    468   const int bin_depth = histo_size + 1;
    469   DominantCostRange cost_range;
    470   DominantCostRangeInit(&cost_range);
    471 
    472   // Analyze the dominant (literal, red and blue) entropy costs.
    473   for (i = 0; i < histo_size; ++i) {
    474     VP8LHistogram* const histo = histograms[i];
    475     UpdateDominantCostRange(histo, &cost_range);
    476   }
    477 
    478   // bin-hash histograms on three of the dominant (literal, red and blue)
    479   // symbol costs.
    480   for (i = 0; i < histo_size; ++i) {
    481     int num_histos;
    482     VP8LHistogram* const histo = histograms[i];
    483     const int16_t bin_id = (int16_t)GetHistoBinIndex(histo, &cost_range);
    484     const int bin_offset = bin_id * bin_depth;
    485     // bin_map[n][0] for every bin 'n' maintains the counter for the number of
    486     // histograms in that bin.
    487     // Get and increment the num_histos in that bin.
    488     num_histos = ++bin_map[bin_offset];
    489     assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
    490     // Add histogram i'th index at num_histos (last) position in the bin_map.
    491     bin_map[bin_offset + num_histos] = i;
    492   }
    493 }
    494 
    495 // Compact the histogram set by moving the valid one left in the set to the
    496 // head and moving the ones that have been merged to other histograms towards
    497 // the end.
    498 // TODO(vikasa): Evaluate if this method can be avoided by altering the code
    499 // logic of HistogramCombineEntropyBin main loop.
    500 static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
    501   int start = 0;
    502   int end = image_histo->size - 1;
    503   VP8LHistogram** const histograms = image_histo->histograms;
    504   while (start < end) {
    505     while (start <= end && histograms[start] != NULL &&
    506            histograms[start]->bit_cost_ != 0.) {
    507       ++start;
    508     }
    509     while (start <= end && histograms[end]->bit_cost_ == 0.) {
    510       histograms[end] = NULL;
    511       --end;
    512     }
    513     if (start < end) {
    514       assert(histograms[start] != NULL);
    515       assert(histograms[end] != NULL);
    516       HistogramCopy(histograms[end], histograms[start]);
    517       histograms[end] = NULL;
    518       --end;
    519     }
    520   }
    521   image_histo->size = end + 1;
    522 }
    523 
    524 static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
    525                                        VP8LHistogram* const histos,
    526                                        int16_t* const bin_map, int bin_depth,
    527                                        double combine_cost_factor) {
    528   int bin_id;
    529   VP8LHistogram* cur_combo = histos;
    530   VP8LHistogram** const histograms = image_histo->histograms;
    531 
    532   for (bin_id = 0; bin_id < BIN_SIZE; ++bin_id) {
    533     const int bin_offset = bin_id * bin_depth;
    534     const int num_histos = bin_map[bin_offset];
    535     const int idx1 = bin_map[bin_offset + 1];
    536     int n;
    537     for (n = 2; n <= num_histos; ++n) {
    538       const int idx2 = bin_map[bin_offset + n];
    539       const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
    540       if (bit_cost_idx2 > 0.) {
    541         const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
    542         const double curr_cost_diff =
    543             HistogramAddEval(histograms[idx1], histograms[idx2],
    544                              cur_combo, bit_cost_thresh);
    545         if (curr_cost_diff < bit_cost_thresh) {
    546           HistogramCopy(cur_combo, histograms[idx1]);
    547           histograms[idx2]->bit_cost_ = 0.;
    548         }
    549       }
    550     }
    551   }
    552   HistogramCompactBins(image_histo);
    553 }
    554 
    555 static uint32_t MyRand(uint32_t *seed) {
    556   *seed *= 16807U;
    557   if (*seed == 0) {
    558     *seed = 1;
    559   }
    560   return *seed;
    561 }
    562 
    563 static void HistogramCombine(VP8LHistogramSet* const image_histo,
    564                              VP8LHistogramSet* const histos, int quality) {
    565   int iter;
    566   uint32_t seed = 0;
    567   int tries_with_no_success = 0;
    568   int image_histo_size = image_histo->size;
    569   const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
    570   const int outer_iters = image_histo_size * iter_mult;
    571   const int num_pairs = image_histo_size / 2;
    572   const int num_tries_no_success = outer_iters / 2;
    573   const int min_cluster_size = 2;
    574   VP8LHistogram** const histograms = image_histo->histograms;
    575   VP8LHistogram* cur_combo = histos->histograms[0];   // trial histogram
    576   VP8LHistogram* best_combo = histos->histograms[1];  // best histogram so far
    577 
    578   // Collapse similar histograms in 'image_histo'.
    579   for (iter = 0;
    580        iter < outer_iters && image_histo_size >= min_cluster_size;
    581        ++iter) {
    582     double best_cost_diff = 0.;
    583     int best_idx1 = -1, best_idx2 = 1;
    584     int j;
    585     const int num_tries =
    586         (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
    587     seed += iter;
    588     for (j = 0; j < num_tries; ++j) {
    589       double curr_cost_diff;
    590       // Choose two histograms at random and try to combine them.
    591       const uint32_t idx1 = MyRand(&seed) % image_histo_size;
    592       const uint32_t tmp = (j & 7) + 1;
    593       const uint32_t diff =
    594           (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
    595       const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
    596       if (idx1 == idx2) {
    597         continue;
    598       }
    599 
    600       // Calculate cost reduction on combining.
    601       curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
    602                                         cur_combo, best_cost_diff);
    603       if (curr_cost_diff < best_cost_diff) {    // found a better pair?
    604         {     // swap cur/best combo histograms
    605           VP8LHistogram* const tmp_histo = cur_combo;
    606           cur_combo = best_combo;
    607           best_combo = tmp_histo;
    608         }
    609         best_cost_diff = curr_cost_diff;
    610         best_idx1 = idx1;
    611         best_idx2 = idx2;
    612       }
    613     }
    614 
    615     if (best_idx1 >= 0) {
    616       HistogramCopy(best_combo, histograms[best_idx1]);
    617       // swap best_idx2 slot with last one (which is now unused)
    618       --image_histo_size;
    619       if (best_idx2 != image_histo_size) {
    620         HistogramCopy(histograms[image_histo_size], histograms[best_idx2]);
    621         histograms[image_histo_size] = NULL;
    622       }
    623       tries_with_no_success = 0;
    624     }
    625     if (++tries_with_no_success >= num_tries_no_success) {
    626       break;
    627     }
    628   }
    629   image_histo->size = image_histo_size;
    630 }
    631 
    632 // -----------------------------------------------------------------------------
    633 // Histogram refinement
    634 
    635 // Find the best 'out' histogram for each of the 'in' histograms.
    636 // Note: we assume that out[]->bit_cost_ is already up-to-date.
    637 static void HistogramRemap(const VP8LHistogramSet* const orig_histo,
    638                            const VP8LHistogramSet* const image_histo,
    639                            uint16_t* const symbols) {
    640   int i;
    641   VP8LHistogram** const orig_histograms = orig_histo->histograms;
    642   VP8LHistogram** const histograms = image_histo->histograms;
    643   for (i = 0; i < orig_histo->size; ++i) {
    644     int best_out = 0;
    645     double best_bits =
    646         HistogramAddThresh(histograms[0], orig_histograms[i], MAX_COST);
    647     int k;
    648     for (k = 1; k < image_histo->size; ++k) {
    649       const double cur_bits =
    650           HistogramAddThresh(histograms[k], orig_histograms[i], best_bits);
    651       if (cur_bits < best_bits) {
    652         best_bits = cur_bits;
    653         best_out = k;
    654       }
    655     }
    656     symbols[i] = best_out;
    657   }
    658 
    659   // Recompute each out based on raw and symbols.
    660   for (i = 0; i < image_histo->size; ++i) {
    661     HistogramClear(histograms[i]);
    662   }
    663 
    664   for (i = 0; i < orig_histo->size; ++i) {
    665     const int idx = symbols[i];
    666     VP8LHistogramAdd(orig_histograms[i], histograms[idx], histograms[idx]);
    667   }
    668 }
    669 
    670 static double GetCombineCostFactor(int histo_size, int quality) {
    671   double combine_cost_factor = 0.16;
    672   if (histo_size > 256) combine_cost_factor /= 2.;
    673   if (histo_size > 512) combine_cost_factor /= 2.;
    674   if (histo_size > 1024) combine_cost_factor /= 2.;
    675   if (quality <= 50) combine_cost_factor /= 2.;
    676   return combine_cost_factor;
    677 }
    678 
    679 int VP8LGetHistoImageSymbols(int xsize, int ysize,
    680                              const VP8LBackwardRefs* const refs,
    681                              int quality, int histo_bits, int cache_bits,
    682                              VP8LHistogramSet* const image_histo,
    683                              uint16_t* const histogram_symbols) {
    684   int ok = 0;
    685   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
    686   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
    687   const int image_histo_raw_size = histo_xsize * histo_ysize;
    688 
    689   // The bin_map for every bin follows following semantics:
    690   // bin_map[n][0] = num_histo; // The number of histograms in that bin.
    691   // bin_map[n][1] = index of first histogram in that bin;
    692   // bin_map[n][num_histo] = index of last histogram in that bin;
    693   // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = un-used indices.
    694   const int bin_depth = image_histo_raw_size + 1;
    695   int16_t* bin_map = NULL;
    696   VP8LHistogramSet* const histos = VP8LAllocateHistogramSet(2, cache_bits);
    697   VP8LHistogramSet* const orig_histo =
    698       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
    699 
    700   if (orig_histo == NULL || histos == NULL) {
    701     goto Error;
    702   }
    703 
    704   // Don't attempt linear bin-partition heuristic for:
    705   // histograms of small sizes, as bin_map will be very sparse and;
    706   // Higher qualities (> 90), to preserve the compression gains at those
    707   // quality settings.
    708   if (orig_histo->size > 2 * BIN_SIZE && quality < 90) {
    709     const int bin_map_size = bin_depth * BIN_SIZE;
    710     bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
    711     if (bin_map == NULL) goto Error;
    712   }
    713 
    714   // Construct the histograms from backward references.
    715   HistogramBuild(xsize, histo_bits, refs, orig_histo);
    716   // Copies the histograms and computes its bit_cost.
    717   HistogramCopyAndAnalyze(orig_histo, image_histo);
    718 
    719   if (bin_map != NULL) {
    720     const double combine_cost_factor =
    721         GetCombineCostFactor(image_histo_raw_size, quality);
    722     HistogramAnalyzeEntropyBin(orig_histo, bin_map);
    723     // Collapse histograms with similar entropy.
    724     HistogramCombineEntropyBin(image_histo, histos->histograms[0],
    725                                bin_map, bin_depth, combine_cost_factor);
    726   }
    727 
    728   // Collapse similar histograms by random histogram-pair compares.
    729   HistogramCombine(image_histo, histos, quality);
    730 
    731   // Find the optimal map from original histograms to the final ones.
    732   HistogramRemap(orig_histo, image_histo, histogram_symbols);
    733 
    734   ok = 1;
    735 
    736  Error:
    737   WebPSafeFree(bin_map);
    738   VP8LFreeHistogramSet(orig_histo);
    739   VP8LFreeHistogramSet(histos);
    740   return ok;
    741 }
    742