Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mutex.h"
     18 
     19 #include <errno.h>
     20 #include <sys/time.h>
     21 
     22 #define ATRACE_TAG ATRACE_TAG_DALVIK
     23 #include "cutils/trace.h"
     24 
     25 #include "atomic.h"
     26 #include "base/logging.h"
     27 #include "base/time_utils.h"
     28 #include "base/value_object.h"
     29 #include "mutex-inl.h"
     30 #include "runtime.h"
     31 #include "scoped_thread_state_change.h"
     32 #include "thread-inl.h"
     33 
     34 namespace art {
     35 
     36 Mutex* Locks::abort_lock_ = nullptr;
     37 Mutex* Locks::alloc_tracker_lock_ = nullptr;
     38 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
     39 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
     40 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
     41 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
     42 Mutex* Locks::deoptimization_lock_ = nullptr;
     43 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
     44 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
     45 Mutex* Locks::intern_table_lock_ = nullptr;
     46 Mutex* Locks::jni_libraries_lock_ = nullptr;
     47 Mutex* Locks::logging_lock_ = nullptr;
     48 Mutex* Locks::mem_maps_lock_ = nullptr;
     49 Mutex* Locks::modify_ldt_lock_ = nullptr;
     50 ReaderWriterMutex* Locks::mutator_lock_ = nullptr;
     51 Mutex* Locks::profiler_lock_ = nullptr;
     52 Mutex* Locks::reference_processor_lock_ = nullptr;
     53 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
     54 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
     55 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
     56 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
     57 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
     58 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
     59 Mutex* Locks::thread_list_lock_ = nullptr;
     60 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
     61 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
     62 Mutex* Locks::trace_lock_ = nullptr;
     63 Mutex* Locks::unexpected_signal_lock_ = nullptr;
     64 
     65 struct AllMutexData {
     66   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
     67   Atomic<const BaseMutex*> all_mutexes_guard;
     68   // All created mutexes guarded by all_mutexes_guard_.
     69   std::set<BaseMutex*>* all_mutexes;
     70   AllMutexData() : all_mutexes(nullptr) {}
     71 };
     72 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
     73 
     74 #if ART_USE_FUTEXES
     75 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
     76   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
     77   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
     78   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
     79   if (result_ts->tv_nsec < 0) {
     80     result_ts->tv_sec--;
     81     result_ts->tv_nsec += one_sec;
     82   } else if (result_ts->tv_nsec > one_sec) {
     83     result_ts->tv_sec++;
     84     result_ts->tv_nsec -= one_sec;
     85   }
     86   return result_ts->tv_sec < 0;
     87 }
     88 #endif
     89 
     90 class ScopedAllMutexesLock FINAL {
     91  public:
     92   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
     93     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
     94       NanoSleep(100);
     95     }
     96   }
     97 
     98   ~ScopedAllMutexesLock() {
     99 #if !defined(__clang__)
    100     // TODO: remove this workaround target GCC/libc++/bionic bug "invalid failure memory model".
    101     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakSequentiallyConsistent(mutex_, 0)) {
    102 #else
    103     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
    104 #endif
    105       NanoSleep(100);
    106     }
    107   }
    108 
    109  private:
    110   const BaseMutex* const mutex_;
    111 };
    112 
    113 // Scoped class that generates events at the beginning and end of lock contention.
    114 class ScopedContentionRecorder FINAL : public ValueObject {
    115  public:
    116   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
    117       : mutex_(kLogLockContentions ? mutex : nullptr),
    118         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
    119         owner_tid_(kLogLockContentions ? owner_tid : 0),
    120         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
    121     if (ATRACE_ENABLED()) {
    122       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
    123                                      mutex->GetName(), owner_tid);
    124       ATRACE_BEGIN(msg.c_str());
    125     }
    126   }
    127 
    128   ~ScopedContentionRecorder() {
    129     ATRACE_END();
    130     if (kLogLockContentions) {
    131       uint64_t end_nano_time = NanoTime();
    132       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
    133     }
    134   }
    135 
    136  private:
    137   BaseMutex* const mutex_;
    138   const uint64_t blocked_tid_;
    139   const uint64_t owner_tid_;
    140   const uint64_t start_nano_time_;
    141 };
    142 
    143 BaseMutex::BaseMutex(const char* name, LockLevel level) : level_(level), name_(name) {
    144   if (kLogLockContentions) {
    145     ScopedAllMutexesLock mu(this);
    146     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
    147     if (*all_mutexes_ptr == nullptr) {
    148       // We leak the global set of all mutexes to avoid ordering issues in global variable
    149       // construction/destruction.
    150       *all_mutexes_ptr = new std::set<BaseMutex*>();
    151     }
    152     (*all_mutexes_ptr)->insert(this);
    153   }
    154 }
    155 
    156 BaseMutex::~BaseMutex() {
    157   if (kLogLockContentions) {
    158     ScopedAllMutexesLock mu(this);
    159     gAllMutexData->all_mutexes->erase(this);
    160   }
    161 }
    162 
    163 void BaseMutex::DumpAll(std::ostream& os) {
    164   if (kLogLockContentions) {
    165     os << "Mutex logging:\n";
    166     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
    167     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
    168     if (all_mutexes == nullptr) {
    169       // No mutexes have been created yet during at startup.
    170       return;
    171     }
    172     typedef std::set<BaseMutex*>::const_iterator It;
    173     os << "(Contended)\n";
    174     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    175       BaseMutex* mutex = *it;
    176       if (mutex->HasEverContended()) {
    177         mutex->Dump(os);
    178         os << "\n";
    179       }
    180     }
    181     os << "(Never contented)\n";
    182     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    183       BaseMutex* mutex = *it;
    184       if (!mutex->HasEverContended()) {
    185         mutex->Dump(os);
    186         os << "\n";
    187       }
    188     }
    189   }
    190 }
    191 
    192 void BaseMutex::CheckSafeToWait(Thread* self) {
    193   if (self == nullptr) {
    194     CheckUnattachedThread(level_);
    195     return;
    196   }
    197   if (kDebugLocking) {
    198     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
    199         << "Waiting on unacquired mutex: " << name_;
    200     bool bad_mutexes_held = false;
    201     for (int i = kLockLevelCount - 1; i >= 0; --i) {
    202       if (i != level_) {
    203         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
    204         // We expect waits to happen while holding the thread list suspend thread lock.
    205         if (held_mutex != nullptr) {
    206           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    207                      << "(level " << LockLevel(i) << ") while performing wait on "
    208                      << "\"" << name_ << "\" (level " << level_ << ")";
    209           bad_mutexes_held = true;
    210         }
    211       }
    212     }
    213     if (gAborting == 0) {  // Avoid recursive aborts.
    214       CHECK(!bad_mutexes_held);
    215     }
    216   }
    217 }
    218 
    219 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
    220   if (kLogLockContentions) {
    221     // Atomically add value to wait_time.
    222     wait_time.FetchAndAddSequentiallyConsistent(value);
    223   }
    224 }
    225 
    226 void BaseMutex::RecordContention(uint64_t blocked_tid,
    227                                  uint64_t owner_tid,
    228                                  uint64_t nano_time_blocked) {
    229   if (kLogLockContentions) {
    230     ContentionLogData* data = contention_log_data_;
    231     ++(data->contention_count);
    232     data->AddToWaitTime(nano_time_blocked);
    233     ContentionLogEntry* log = data->contention_log;
    234     // This code is intentionally racy as it is only used for diagnostics.
    235     uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
    236     if (log[slot].blocked_tid == blocked_tid &&
    237         log[slot].owner_tid == blocked_tid) {
    238       ++log[slot].count;
    239     } else {
    240       uint32_t new_slot;
    241       do {
    242         slot = data->cur_content_log_entry.LoadRelaxed();
    243         new_slot = (slot + 1) % kContentionLogSize;
    244       } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
    245       log[new_slot].blocked_tid = blocked_tid;
    246       log[new_slot].owner_tid = owner_tid;
    247       log[new_slot].count.StoreRelaxed(1);
    248     }
    249   }
    250 }
    251 
    252 void BaseMutex::DumpContention(std::ostream& os) const {
    253   if (kLogLockContentions) {
    254     const ContentionLogData* data = contention_log_data_;
    255     const ContentionLogEntry* log = data->contention_log;
    256     uint64_t wait_time = data->wait_time.LoadRelaxed();
    257     uint32_t contention_count = data->contention_count.LoadRelaxed();
    258     if (contention_count == 0) {
    259       os << "never contended";
    260     } else {
    261       os << "contended " << contention_count
    262          << " total wait of contender " << PrettyDuration(wait_time)
    263          << " average " << PrettyDuration(wait_time / contention_count);
    264       SafeMap<uint64_t, size_t> most_common_blocker;
    265       SafeMap<uint64_t, size_t> most_common_blocked;
    266       for (size_t i = 0; i < kContentionLogSize; ++i) {
    267         uint64_t blocked_tid = log[i].blocked_tid;
    268         uint64_t owner_tid = log[i].owner_tid;
    269         uint32_t count = log[i].count.LoadRelaxed();
    270         if (count > 0) {
    271           auto it = most_common_blocked.find(blocked_tid);
    272           if (it != most_common_blocked.end()) {
    273             most_common_blocked.Overwrite(blocked_tid, it->second + count);
    274           } else {
    275             most_common_blocked.Put(blocked_tid, count);
    276           }
    277           it = most_common_blocker.find(owner_tid);
    278           if (it != most_common_blocker.end()) {
    279             most_common_blocker.Overwrite(owner_tid, it->second + count);
    280           } else {
    281             most_common_blocker.Put(owner_tid, count);
    282           }
    283         }
    284       }
    285       uint64_t max_tid = 0;
    286       size_t max_tid_count = 0;
    287       for (const auto& pair : most_common_blocked) {
    288         if (pair.second > max_tid_count) {
    289           max_tid = pair.first;
    290           max_tid_count = pair.second;
    291         }
    292       }
    293       if (max_tid != 0) {
    294         os << " sample shows most blocked tid=" << max_tid;
    295       }
    296       max_tid = 0;
    297       max_tid_count = 0;
    298       for (const auto& pair : most_common_blocker) {
    299         if (pair.second > max_tid_count) {
    300           max_tid = pair.first;
    301           max_tid_count = pair.second;
    302         }
    303       }
    304       if (max_tid != 0) {
    305         os << " sample shows tid=" << max_tid << " owning during this time";
    306       }
    307     }
    308   }
    309 }
    310 
    311 
    312 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
    313     : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
    314 #if ART_USE_FUTEXES
    315   DCHECK_EQ(0, state_.LoadRelaxed());
    316   DCHECK_EQ(0, num_contenders_.LoadRelaxed());
    317 #else
    318   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
    319 #endif
    320   exclusive_owner_ = 0;
    321 }
    322 
    323 // Helper to ignore the lock requirement.
    324 static bool IsShuttingDown() NO_THREAD_SAFETY_ANALYSIS {
    325   Runtime* runtime = Runtime::Current();
    326   return runtime == nullptr || runtime->IsShuttingDownLocked();
    327 }
    328 
    329 Mutex::~Mutex() {
    330   bool shutting_down = IsShuttingDown();
    331 #if ART_USE_FUTEXES
    332   if (state_.LoadRelaxed() != 0) {
    333     LOG(shutting_down ? WARNING : FATAL) << "destroying mutex with owner: " << exclusive_owner_;
    334   } else {
    335     if (exclusive_owner_ != 0) {
    336       LOG(shutting_down ? WARNING : FATAL) << "unexpectedly found an owner on unlocked mutex "
    337                                            << name_;
    338     }
    339     if (num_contenders_.LoadSequentiallyConsistent() != 0) {
    340       LOG(shutting_down ? WARNING : FATAL) << "unexpectedly found a contender on mutex " << name_;
    341     }
    342   }
    343 #else
    344   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    345   // may still be using locks.
    346   int rc = pthread_mutex_destroy(&mutex_);
    347   if (rc != 0) {
    348     errno = rc;
    349     // TODO: should we just not log at all if shutting down? this could be the logging mutex!
    350     MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    351     PLOG(shutting_down ? WARNING : FATAL) << "pthread_mutex_destroy failed for " << name_;
    352   }
    353 #endif
    354 }
    355 
    356 void Mutex::ExclusiveLock(Thread* self) {
    357   DCHECK(self == nullptr || self == Thread::Current());
    358   if (kDebugLocking && !recursive_) {
    359     AssertNotHeld(self);
    360   }
    361   if (!recursive_ || !IsExclusiveHeld(self)) {
    362 #if ART_USE_FUTEXES
    363     bool done = false;
    364     do {
    365       int32_t cur_state = state_.LoadRelaxed();
    366       if (LIKELY(cur_state == 0)) {
    367         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    368         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    369       } else {
    370         // Failed to acquire, hang up.
    371         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    372         num_contenders_++;
    373         if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
    374           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    375           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    376           if ((errno != EAGAIN) && (errno != EINTR)) {
    377             PLOG(FATAL) << "futex wait failed for " << name_;
    378           }
    379         }
    380         num_contenders_--;
    381       }
    382     } while (!done);
    383     DCHECK_EQ(state_.LoadRelaxed(), 1);
    384 #else
    385     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
    386 #endif
    387     DCHECK_EQ(exclusive_owner_, 0U);
    388     exclusive_owner_ = SafeGetTid(self);
    389     RegisterAsLocked(self);
    390   }
    391   recursion_count_++;
    392   if (kDebugLocking) {
    393     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    394         << name_ << " " << recursion_count_;
    395     AssertHeld(self);
    396   }
    397 }
    398 
    399 bool Mutex::ExclusiveTryLock(Thread* self) {
    400   DCHECK(self == nullptr || self == Thread::Current());
    401   if (kDebugLocking && !recursive_) {
    402     AssertNotHeld(self);
    403   }
    404   if (!recursive_ || !IsExclusiveHeld(self)) {
    405 #if ART_USE_FUTEXES
    406     bool done = false;
    407     do {
    408       int32_t cur_state = state_.LoadRelaxed();
    409       if (cur_state == 0) {
    410         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    411         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    412       } else {
    413         return false;
    414       }
    415     } while (!done);
    416     DCHECK_EQ(state_.LoadRelaxed(), 1);
    417 #else
    418     int result = pthread_mutex_trylock(&mutex_);
    419     if (result == EBUSY) {
    420       return false;
    421     }
    422     if (result != 0) {
    423       errno = result;
    424       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    425     }
    426 #endif
    427     DCHECK_EQ(exclusive_owner_, 0U);
    428     exclusive_owner_ = SafeGetTid(self);
    429     RegisterAsLocked(self);
    430   }
    431   recursion_count_++;
    432   if (kDebugLocking) {
    433     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    434         << name_ << " " << recursion_count_;
    435     AssertHeld(self);
    436   }
    437   return true;
    438 }
    439 
    440 void Mutex::ExclusiveUnlock(Thread* self) {
    441   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
    442     std::string name1 = "<null>";
    443     std::string name2 = "<null>";
    444     if (self != nullptr) {
    445       self->GetThreadName(name1);
    446     }
    447     if (Thread::Current() != nullptr) {
    448       Thread::Current()->GetThreadName(name2);
    449     }
    450     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
    451                << " Thread::Current()=" << name2;
    452   }
    453   AssertHeld(self);
    454   DCHECK_NE(exclusive_owner_, 0U);
    455   recursion_count_--;
    456   if (!recursive_ || recursion_count_ == 0) {
    457     if (kDebugLocking) {
    458       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
    459           << name_ << " " << recursion_count_;
    460     }
    461     RegisterAsUnlocked(self);
    462 #if ART_USE_FUTEXES
    463     bool done = false;
    464     do {
    465       int32_t cur_state = state_.LoadRelaxed();
    466       if (LIKELY(cur_state == 1)) {
    467         // We're no longer the owner.
    468         exclusive_owner_ = 0;
    469         // Change state to 0 and impose load/store ordering appropriate for lock release.
    470         // Note, the relaxed loads below musn't reorder before the CompareExchange.
    471         // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    472         // a status bit into the state on contention.
    473         done =  state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
    474         if (LIKELY(done)) {  // Spurious fail?
    475           // Wake a contender.
    476           if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    477             futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    478           }
    479         }
    480       } else {
    481         // Logging acquires the logging lock, avoid infinite recursion in that case.
    482         if (this != Locks::logging_lock_) {
    483           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
    484         } else {
    485           LogMessage::LogLine(__FILE__, __LINE__, INTERNAL_FATAL,
    486                               StringPrintf("Unexpected state_ %d in unlock for %s",
    487                                            cur_state, name_).c_str());
    488           _exit(1);
    489         }
    490       }
    491     } while (!done);
    492 #else
    493     exclusive_owner_ = 0;
    494     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
    495 #endif
    496   }
    497 }
    498 
    499 void Mutex::Dump(std::ostream& os) const {
    500   os << (recursive_ ? "recursive " : "non-recursive ")
    501       << name_
    502       << " level=" << static_cast<int>(level_)
    503       << " rec=" << recursion_count_
    504       << " owner=" << GetExclusiveOwnerTid() << " ";
    505   DumpContention(os);
    506 }
    507 
    508 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
    509   mu.Dump(os);
    510   return os;
    511 }
    512 
    513 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
    514     : BaseMutex(name, level)
    515 #if ART_USE_FUTEXES
    516     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
    517 #endif
    518 {  // NOLINT(whitespace/braces)
    519 #if !ART_USE_FUTEXES
    520   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
    521 #endif
    522   exclusive_owner_ = 0;
    523 }
    524 
    525 ReaderWriterMutex::~ReaderWriterMutex() {
    526 #if ART_USE_FUTEXES
    527   CHECK_EQ(state_.LoadRelaxed(), 0);
    528   CHECK_EQ(exclusive_owner_, 0U);
    529   CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
    530   CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
    531 #else
    532   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    533   // may still be using locks.
    534   int rc = pthread_rwlock_destroy(&rwlock_);
    535   if (rc != 0) {
    536     errno = rc;
    537     // TODO: should we just not log at all if shutting down? this could be the logging mutex!
    538     MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    539     Runtime* runtime = Runtime::Current();
    540     bool shutting_down = runtime == nullptr || runtime->IsShuttingDownLocked();
    541     PLOG(shutting_down ? WARNING : FATAL) << "pthread_rwlock_destroy failed for " << name_;
    542   }
    543 #endif
    544 }
    545 
    546 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
    547   DCHECK(self == nullptr || self == Thread::Current());
    548   AssertNotExclusiveHeld(self);
    549 #if ART_USE_FUTEXES
    550   bool done = false;
    551   do {
    552     int32_t cur_state = state_.LoadRelaxed();
    553     if (LIKELY(cur_state == 0)) {
    554       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    555       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
    556     } else {
    557       // Failed to acquire, hang up.
    558       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    559       ++num_pending_writers_;
    560       if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    561         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    562         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    563         if ((errno != EAGAIN) && (errno != EINTR)) {
    564           PLOG(FATAL) << "futex wait failed for " << name_;
    565         }
    566       }
    567       --num_pending_writers_;
    568     }
    569   } while (!done);
    570   DCHECK_EQ(state_.LoadRelaxed(), -1);
    571 #else
    572   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
    573 #endif
    574   DCHECK_EQ(exclusive_owner_, 0U);
    575   exclusive_owner_ = SafeGetTid(self);
    576   RegisterAsLocked(self);
    577   AssertExclusiveHeld(self);
    578 }
    579 
    580 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
    581   DCHECK(self == nullptr || self == Thread::Current());
    582   AssertExclusiveHeld(self);
    583   RegisterAsUnlocked(self);
    584   DCHECK_NE(exclusive_owner_, 0U);
    585 #if ART_USE_FUTEXES
    586   bool done = false;
    587   do {
    588     int32_t cur_state = state_.LoadRelaxed();
    589     if (LIKELY(cur_state == -1)) {
    590       // We're no longer the owner.
    591       exclusive_owner_ = 0;
    592       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
    593       // Note, the relaxed loads below musn't reorder before the CompareExchange.
    594       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    595       // a status bit into the state on contention.
    596       done =  state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
    597       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
    598         // Wake any waiters.
    599         if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    600                      num_pending_writers_.LoadRelaxed() > 0)) {
    601           futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    602         }
    603       }
    604     } else {
    605       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
    606     }
    607   } while (!done);
    608 #else
    609   exclusive_owner_ = 0;
    610   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
    611 #endif
    612 }
    613 
    614 #if HAVE_TIMED_RWLOCK
    615 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
    616   DCHECK(self == nullptr || self == Thread::Current());
    617 #if ART_USE_FUTEXES
    618   bool done = false;
    619   timespec end_abs_ts;
    620   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
    621   do {
    622     int32_t cur_state = state_.LoadRelaxed();
    623     if (cur_state == 0) {
    624       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    625       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
    626     } else {
    627       // Failed to acquire, hang up.
    628       timespec now_abs_ts;
    629       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
    630       timespec rel_ts;
    631       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
    632         return false;  // Timed out.
    633       }
    634       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    635       ++num_pending_writers_;
    636       if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
    637         if (errno == ETIMEDOUT) {
    638           --num_pending_writers_;
    639           return false;  // Timed out.
    640         } else if ((errno != EAGAIN) && (errno != EINTR)) {
    641           // EAGAIN and EINTR both indicate a spurious failure,
    642           // recompute the relative time out from now and try again.
    643           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
    644           PLOG(FATAL) << "timed futex wait failed for " << name_;
    645         }
    646       }
    647       --num_pending_writers_;
    648     }
    649   } while (!done);
    650 #else
    651   timespec ts;
    652   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
    653   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
    654   if (result == ETIMEDOUT) {
    655     return false;
    656   }
    657   if (result != 0) {
    658     errno = result;
    659     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
    660   }
    661 #endif
    662   exclusive_owner_ = SafeGetTid(self);
    663   RegisterAsLocked(self);
    664   AssertSharedHeld(self);
    665   return true;
    666 }
    667 #endif
    668 
    669 #if ART_USE_FUTEXES
    670 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
    671   // Owner holds it exclusively, hang up.
    672   ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
    673   ++num_pending_readers_;
    674   if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    675     if (errno != EAGAIN) {
    676       PLOG(FATAL) << "futex wait failed for " << name_;
    677     }
    678   }
    679   --num_pending_readers_;
    680 }
    681 #endif
    682 
    683 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
    684   DCHECK(self == nullptr || self == Thread::Current());
    685 #if ART_USE_FUTEXES
    686   bool done = false;
    687   do {
    688     int32_t cur_state = state_.LoadRelaxed();
    689     if (cur_state >= 0) {
    690       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
    691       done =  state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
    692     } else {
    693       // Owner holds it exclusively.
    694       return false;
    695     }
    696   } while (!done);
    697 #else
    698   int result = pthread_rwlock_tryrdlock(&rwlock_);
    699   if (result == EBUSY) {
    700     return false;
    701   }
    702   if (result != 0) {
    703     errno = result;
    704     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    705   }
    706 #endif
    707   RegisterAsLocked(self);
    708   AssertSharedHeld(self);
    709   return true;
    710 }
    711 
    712 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
    713   DCHECK(self == nullptr || self == Thread::Current());
    714   bool result;
    715   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
    716     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
    717   } else {
    718     result = (self->GetHeldMutex(level_) == this);
    719   }
    720   return result;
    721 }
    722 
    723 void ReaderWriterMutex::Dump(std::ostream& os) const {
    724   os << name_
    725       << " level=" << static_cast<int>(level_)
    726       << " owner=" << GetExclusiveOwnerTid()
    727 #if ART_USE_FUTEXES
    728       << " state=" << state_.LoadSequentiallyConsistent()
    729       << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
    730       << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
    731 #endif
    732       << " ";
    733   DumpContention(os);
    734 }
    735 
    736 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
    737   mu.Dump(os);
    738   return os;
    739 }
    740 
    741 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
    742     : name_(name), guard_(guard) {
    743 #if ART_USE_FUTEXES
    744   DCHECK_EQ(0, sequence_.LoadRelaxed());
    745   num_waiters_ = 0;
    746 #else
    747   pthread_condattr_t cond_attrs;
    748   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
    749 #if !defined(__APPLE__)
    750   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
    751   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
    752 #endif
    753   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
    754 #endif
    755 }
    756 
    757 ConditionVariable::~ConditionVariable() {
    758 #if ART_USE_FUTEXES
    759   if (num_waiters_!= 0) {
    760     Runtime* runtime = Runtime::Current();
    761     bool shutting_down = runtime == nullptr || runtime->IsShuttingDown(Thread::Current());
    762     LOG(shutting_down ? WARNING : FATAL) << "ConditionVariable::~ConditionVariable for " << name_
    763         << " called with " << num_waiters_ << " waiters.";
    764   }
    765 #else
    766   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    767   // may still be using condition variables.
    768   int rc = pthread_cond_destroy(&cond_);
    769   if (rc != 0) {
    770     errno = rc;
    771     MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    772     Runtime* runtime = Runtime::Current();
    773     bool shutting_down = (runtime == nullptr) || runtime->IsShuttingDownLocked();
    774     PLOG(shutting_down ? WARNING : FATAL) << "pthread_cond_destroy failed for " << name_;
    775   }
    776 #endif
    777 }
    778 
    779 void ConditionVariable::Broadcast(Thread* self) {
    780   DCHECK(self == nullptr || self == Thread::Current());
    781   // TODO: enable below, there's a race in thread creation that causes false failures currently.
    782   // guard_.AssertExclusiveHeld(self);
    783   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
    784 #if ART_USE_FUTEXES
    785   if (num_waiters_ > 0) {
    786     sequence_++;  // Indicate the broadcast occurred.
    787     bool done = false;
    788     do {
    789       int32_t cur_sequence = sequence_.LoadRelaxed();
    790       // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
    791       // mutex unlocks will awaken the requeued waiter thread.
    792       done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
    793                    reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
    794                    guard_.state_.Address(), cur_sequence) != -1;
    795       if (!done) {
    796         if (errno != EAGAIN) {
    797           PLOG(FATAL) << "futex cmp requeue failed for " << name_;
    798         }
    799       }
    800     } while (!done);
    801   }
    802 #else
    803   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
    804 #endif
    805 }
    806 
    807 void ConditionVariable::Signal(Thread* self) {
    808   DCHECK(self == nullptr || self == Thread::Current());
    809   guard_.AssertExclusiveHeld(self);
    810 #if ART_USE_FUTEXES
    811   if (num_waiters_ > 0) {
    812     sequence_++;  // Indicate a signal occurred.
    813     // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
    814     // to avoid this, however, requeueing can only move all waiters.
    815     int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    816     // Check something was woken or else we changed sequence_ before they had chance to wait.
    817     CHECK((num_woken == 0) || (num_woken == 1));
    818   }
    819 #else
    820   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
    821 #endif
    822 }
    823 
    824 void ConditionVariable::Wait(Thread* self) {
    825   guard_.CheckSafeToWait(self);
    826   WaitHoldingLocks(self);
    827 }
    828 
    829 void ConditionVariable::WaitHoldingLocks(Thread* self) {
    830   DCHECK(self == nullptr || self == Thread::Current());
    831   guard_.AssertExclusiveHeld(self);
    832   unsigned int old_recursion_count = guard_.recursion_count_;
    833 #if ART_USE_FUTEXES
    834   num_waiters_++;
    835   // Ensure the Mutex is contended so that requeued threads are awoken.
    836   guard_.num_contenders_++;
    837   guard_.recursion_count_ = 1;
    838   int32_t cur_sequence = sequence_.LoadRelaxed();
    839   guard_.ExclusiveUnlock(self);
    840   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
    841     // Futex failed, check it is an expected error.
    842     // EAGAIN == EWOULDBLK, so we let the caller try again.
    843     // EINTR implies a signal was sent to this thread.
    844     if ((errno != EINTR) && (errno != EAGAIN)) {
    845       PLOG(FATAL) << "futex wait failed for " << name_;
    846     }
    847   }
    848   guard_.ExclusiveLock(self);
    849   CHECK_GE(num_waiters_, 0);
    850   num_waiters_--;
    851   // We awoke and so no longer require awakes from the guard_'s unlock.
    852   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    853   guard_.num_contenders_--;
    854 #else
    855   uint64_t old_owner = guard_.exclusive_owner_;
    856   guard_.exclusive_owner_ = 0;
    857   guard_.recursion_count_ = 0;
    858   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
    859   guard_.exclusive_owner_ = old_owner;
    860 #endif
    861   guard_.recursion_count_ = old_recursion_count;
    862 }
    863 
    864 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
    865   DCHECK(self == nullptr || self == Thread::Current());
    866   bool timed_out = false;
    867   guard_.AssertExclusiveHeld(self);
    868   guard_.CheckSafeToWait(self);
    869   unsigned int old_recursion_count = guard_.recursion_count_;
    870 #if ART_USE_FUTEXES
    871   timespec rel_ts;
    872   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
    873   num_waiters_++;
    874   // Ensure the Mutex is contended so that requeued threads are awoken.
    875   guard_.num_contenders_++;
    876   guard_.recursion_count_ = 1;
    877   int32_t cur_sequence = sequence_.LoadRelaxed();
    878   guard_.ExclusiveUnlock(self);
    879   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
    880     if (errno == ETIMEDOUT) {
    881       // Timed out we're done.
    882       timed_out = true;
    883     } else if ((errno == EAGAIN) || (errno == EINTR)) {
    884       // A signal or ConditionVariable::Signal/Broadcast has come in.
    885     } else {
    886       PLOG(FATAL) << "timed futex wait failed for " << name_;
    887     }
    888   }
    889   guard_.ExclusiveLock(self);
    890   CHECK_GE(num_waiters_, 0);
    891   num_waiters_--;
    892   // We awoke and so no longer require awakes from the guard_'s unlock.
    893   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    894   guard_.num_contenders_--;
    895 #else
    896 #if !defined(__APPLE__)
    897   int clock = CLOCK_MONOTONIC;
    898 #else
    899   int clock = CLOCK_REALTIME;
    900 #endif
    901   uint64_t old_owner = guard_.exclusive_owner_;
    902   guard_.exclusive_owner_ = 0;
    903   guard_.recursion_count_ = 0;
    904   timespec ts;
    905   InitTimeSpec(true, clock, ms, ns, &ts);
    906   int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
    907   if (rc == ETIMEDOUT) {
    908     timed_out = true;
    909   } else if (rc != 0) {
    910     errno = rc;
    911     PLOG(FATAL) << "TimedWait failed for " << name_;
    912   }
    913   guard_.exclusive_owner_ = old_owner;
    914 #endif
    915   guard_.recursion_count_ = old_recursion_count;
    916   return timed_out;
    917 }
    918 
    919 void Locks::Init() {
    920   if (logging_lock_ != nullptr) {
    921     // Already initialized.
    922     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
    923       DCHECK(modify_ldt_lock_ != nullptr);
    924     } else {
    925       DCHECK(modify_ldt_lock_ == nullptr);
    926     }
    927     DCHECK(abort_lock_ != nullptr);
    928     DCHECK(alloc_tracker_lock_ != nullptr);
    929     DCHECK(allocated_monitor_ids_lock_ != nullptr);
    930     DCHECK(allocated_thread_ids_lock_ != nullptr);
    931     DCHECK(breakpoint_lock_ != nullptr);
    932     DCHECK(classlinker_classes_lock_ != nullptr);
    933     DCHECK(deoptimization_lock_ != nullptr);
    934     DCHECK(heap_bitmap_lock_ != nullptr);
    935     DCHECK(intern_table_lock_ != nullptr);
    936     DCHECK(jni_libraries_lock_ != nullptr);
    937     DCHECK(logging_lock_ != nullptr);
    938     DCHECK(mutator_lock_ != nullptr);
    939     DCHECK(profiler_lock_ != nullptr);
    940     DCHECK(thread_list_lock_ != nullptr);
    941     DCHECK(thread_suspend_count_lock_ != nullptr);
    942     DCHECK(trace_lock_ != nullptr);
    943     DCHECK(unexpected_signal_lock_ != nullptr);
    944   } else {
    945     // Create global locks in level order from highest lock level to lowest.
    946     LockLevel current_lock_level = kInstrumentEntrypointsLock;
    947     DCHECK(instrument_entrypoints_lock_ == nullptr);
    948     instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
    949 
    950     #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
    951       if (new_level >= current_lock_level) { \
    952         /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
    953         fprintf(stderr, "New local level %d is not less than current level %d\n", \
    954                 new_level, current_lock_level); \
    955         exit(1); \
    956       } \
    957       current_lock_level = new_level;
    958 
    959     UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
    960     DCHECK(mutator_lock_ == nullptr);
    961     mutator_lock_ = new ReaderWriterMutex("mutator lock", current_lock_level);
    962 
    963     UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
    964     DCHECK(heap_bitmap_lock_ == nullptr);
    965     heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
    966 
    967     UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
    968     DCHECK(trace_lock_ == nullptr);
    969     trace_lock_ = new Mutex("trace lock", current_lock_level);
    970 
    971     UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
    972     DCHECK(runtime_shutdown_lock_ == nullptr);
    973     runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
    974 
    975     UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
    976     DCHECK(profiler_lock_ == nullptr);
    977     profiler_lock_ = new Mutex("profiler lock", current_lock_level);
    978 
    979     UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
    980     DCHECK(deoptimization_lock_ == nullptr);
    981     deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
    982 
    983     UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
    984     DCHECK(alloc_tracker_lock_ == nullptr);
    985     alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
    986 
    987     UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
    988     DCHECK(thread_list_lock_ == nullptr);
    989     thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
    990 
    991     UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
    992     DCHECK(jni_libraries_lock_ == nullptr);
    993     jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
    994 
    995     UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
    996     DCHECK(breakpoint_lock_ == nullptr);
    997     breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
    998 
    999     UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
   1000     DCHECK(classlinker_classes_lock_ == nullptr);
   1001     classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
   1002                                                       current_lock_level);
   1003 
   1004     UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
   1005     DCHECK(allocated_monitor_ids_lock_ == nullptr);
   1006     allocated_monitor_ids_lock_ =  new Mutex("allocated monitor ids lock", current_lock_level);
   1007 
   1008     UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
   1009     DCHECK(allocated_thread_ids_lock_ == nullptr);
   1010     allocated_thread_ids_lock_ =  new Mutex("allocated thread ids lock", current_lock_level);
   1011 
   1012     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
   1013       UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
   1014       DCHECK(modify_ldt_lock_ == nullptr);
   1015       modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
   1016     }
   1017 
   1018     UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
   1019     DCHECK(intern_table_lock_ == nullptr);
   1020     intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
   1021 
   1022     UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
   1023     DCHECK(reference_processor_lock_ == nullptr);
   1024     reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
   1025 
   1026     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
   1027     DCHECK(reference_queue_cleared_references_lock_ == nullptr);
   1028     reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1029 
   1030     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
   1031     DCHECK(reference_queue_weak_references_lock_ == nullptr);
   1032     reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1033 
   1034     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
   1035     DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
   1036     reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
   1037 
   1038     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
   1039     DCHECK(reference_queue_phantom_references_lock_ == nullptr);
   1040     reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
   1041 
   1042     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
   1043     DCHECK(reference_queue_soft_references_lock_ == nullptr);
   1044     reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
   1045 
   1046     UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
   1047     DCHECK(abort_lock_ == nullptr);
   1048     abort_lock_ = new Mutex("abort lock", current_lock_level, true);
   1049 
   1050     UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
   1051     DCHECK(thread_suspend_count_lock_ == nullptr);
   1052     thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
   1053 
   1054     UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
   1055     DCHECK(unexpected_signal_lock_ == nullptr);
   1056     unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
   1057 
   1058     UPDATE_CURRENT_LOCK_LEVEL(kMemMapsLock);
   1059     DCHECK(mem_maps_lock_ == nullptr);
   1060     mem_maps_lock_ = new Mutex("mem maps lock", current_lock_level);
   1061 
   1062     UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
   1063     DCHECK(logging_lock_ == nullptr);
   1064     logging_lock_ = new Mutex("logging lock", current_lock_level, true);
   1065 
   1066     #undef UPDATE_CURRENT_LOCK_LEVEL
   1067 
   1068     InitConditions();
   1069   }
   1070 }
   1071 
   1072 void Locks::InitConditions() {
   1073   thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
   1074 }
   1075 
   1076 }  // namespace art
   1077