Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     17 
     18 #include "RuntimeDyld.h"
     19 #include "llvm-c/ExecutionEngine.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/ValueHandle.h"
     24 #include "llvm/IR/ValueMap.h"
     25 #include "llvm/MC/MCCodeGenInfo.h"
     26 #include "llvm/Object/Binary.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/Mutex.h"
     29 #include "llvm/Target/TargetMachine.h"
     30 #include "llvm/Target/TargetOptions.h"
     31 #include <map>
     32 #include <string>
     33 #include <vector>
     34 
     35 namespace llvm {
     36 
     37 struct GenericValue;
     38 class Constant;
     39 class DataLayout;
     40 class ExecutionEngine;
     41 class Function;
     42 class GlobalVariable;
     43 class GlobalValue;
     44 class JITEventListener;
     45 class MachineCodeInfo;
     46 class MCJITMemoryManager;
     47 class MutexGuard;
     48 class ObjectCache;
     49 class RTDyldMemoryManager;
     50 class Triple;
     51 class Type;
     52 
     53 namespace object {
     54   class Archive;
     55   class ObjectFile;
     56 }
     57 
     58 /// \brief Helper class for helping synchronize access to the global address map
     59 /// table.  Access to this class should be serialized under a mutex.
     60 class ExecutionEngineState {
     61 public:
     62   typedef StringMap<uint64_t> GlobalAddressMapTy;
     63 
     64 private:
     65 
     66   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
     67   /// their actualized version...
     68   GlobalAddressMapTy GlobalAddressMap;
     69 
     70   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     71   /// used to convert raw addresses into the LLVM global value that is emitted
     72   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     73   /// is called at some point.
     74   std::map<uint64_t, std::string> GlobalAddressReverseMap;
     75 
     76 public:
     77 
     78   GlobalAddressMapTy &getGlobalAddressMap() {
     79     return GlobalAddressMap;
     80   }
     81 
     82   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
     83     return GlobalAddressReverseMap;
     84   }
     85 
     86   /// \brief Erase an entry from the mapping table.
     87   ///
     88   /// \returns The address that \p ToUnmap was happed to.
     89   uint64_t RemoveMapping(StringRef Name);
     90 };
     91 
     92 /// \brief Abstract interface for implementation execution of LLVM modules,
     93 /// designed to support both interpreter and just-in-time (JIT) compiler
     94 /// implementations.
     95 class ExecutionEngine {
     96   /// The state object holding the global address mapping, which must be
     97   /// accessed synchronously.
     98   //
     99   // FIXME: There is no particular need the entire map needs to be
    100   // synchronized.  Wouldn't a reader-writer design be better here?
    101   ExecutionEngineState EEState;
    102 
    103   /// The target data for the platform for which execution is being performed.
    104   const DataLayout *DL;
    105 
    106   /// Whether lazy JIT compilation is enabled.
    107   bool CompilingLazily;
    108 
    109   /// Whether JIT compilation of external global variables is allowed.
    110   bool GVCompilationDisabled;
    111 
    112   /// Whether the JIT should perform lookups of external symbols (e.g.,
    113   /// using dlsym).
    114   bool SymbolSearchingDisabled;
    115 
    116   /// Whether the JIT should verify IR modules during compilation.
    117   bool VerifyModules;
    118 
    119   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    120 
    121 protected:
    122   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    123   /// optimize for the case where there is only one module.
    124   SmallVector<std::unique_ptr<Module>, 1> Modules;
    125 
    126   void setDataLayout(const DataLayout *Val) { DL = Val; }
    127 
    128   /// getMemoryforGV - Allocate memory for a global variable.
    129   virtual char *getMemoryForGV(const GlobalVariable *GV);
    130 
    131   static ExecutionEngine *(*MCJITCtor)(
    132                                 std::unique_ptr<Module> M,
    133                                 std::string *ErrorStr,
    134                                 std::shared_ptr<MCJITMemoryManager> MM,
    135                                 std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
    136                                 std::unique_ptr<TargetMachine> TM);
    137 
    138   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
    139                                 std::string *ErrorStr,
    140                                 std::shared_ptr<MCJITMemoryManager> MM,
    141                                 std::shared_ptr<RuntimeDyld::SymbolResolver> SR,
    142                                 std::unique_ptr<TargetMachine> TM);
    143 
    144   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
    145                                         std::string *ErrorStr);
    146 
    147   /// LazyFunctionCreator - If an unknown function is needed, this function
    148   /// pointer is invoked to create it.  If this returns null, the JIT will
    149   /// abort.
    150   void *(*LazyFunctionCreator)(const std::string &);
    151 
    152   /// getMangledName - Get mangled name.
    153   std::string getMangledName(const GlobalValue *GV);
    154 
    155 public:
    156   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
    157   /// be held while changing the internal state of any of those classes.
    158   sys::Mutex lock;
    159 
    160   //===--------------------------------------------------------------------===//
    161   //  ExecutionEngine Startup
    162   //===--------------------------------------------------------------------===//
    163 
    164   virtual ~ExecutionEngine();
    165 
    166   /// Add a Module to the list of modules that we can JIT from.
    167   virtual void addModule(std::unique_ptr<Module> M) {
    168     Modules.push_back(std::move(M));
    169   }
    170 
    171   /// addObjectFile - Add an ObjectFile to the execution engine.
    172   ///
    173   /// This method is only supported by MCJIT.  MCJIT will immediately load the
    174   /// object into memory and adds its symbols to the list used to resolve
    175   /// external symbols while preparing other objects for execution.
    176   ///
    177   /// Objects added using this function will not be made executable until
    178   /// needed by another object.
    179   ///
    180   /// MCJIT will take ownership of the ObjectFile.
    181   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
    182   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
    183 
    184   /// addArchive - Add an Archive to the execution engine.
    185   ///
    186   /// This method is only supported by MCJIT.  MCJIT will use the archive to
    187   /// resolve external symbols in objects it is loading.  If a symbol is found
    188   /// in the Archive the contained object file will be extracted (in memory)
    189   /// and loaded for possible execution.
    190   virtual void addArchive(object::OwningBinary<object::Archive> A);
    191 
    192   //===--------------------------------------------------------------------===//
    193 
    194   const DataLayout *getDataLayout() const { return DL; }
    195 
    196   /// removeModule - Remove a Module from the list of modules.  Returns true if
    197   /// M is found.
    198   virtual bool removeModule(Module *M);
    199 
    200   /// FindFunctionNamed - Search all of the active modules to find the one that
    201   /// defines FnName.  This is very slow operation and shouldn't be used for
    202   /// general code.
    203   virtual Function *FindFunctionNamed(const char *FnName);
    204 
    205   /// runFunction - Execute the specified function with the specified arguments,
    206   /// and return the result.
    207   virtual GenericValue runFunction(Function *F,
    208                                 const std::vector<GenericValue> &ArgValues) = 0;
    209 
    210   /// getPointerToNamedFunction - This method returns the address of the
    211   /// specified function by using the dlsym function call.  As such it is only
    212   /// useful for resolving library symbols, not code generated symbols.
    213   ///
    214   /// If AbortOnFailure is false and no function with the given name is
    215   /// found, this function silently returns a null pointer. Otherwise,
    216   /// it prints a message to stderr and aborts.
    217   ///
    218   /// This function is deprecated for the MCJIT execution engine.
    219   virtual void *getPointerToNamedFunction(StringRef Name,
    220                                           bool AbortOnFailure = true) = 0;
    221 
    222   /// mapSectionAddress - map a section to its target address space value.
    223   /// Map the address of a JIT section as returned from the memory manager
    224   /// to the address in the target process as the running code will see it.
    225   /// This is the address which will be used for relocation resolution.
    226   virtual void mapSectionAddress(const void *LocalAddress,
    227                                  uint64_t TargetAddress) {
    228     llvm_unreachable("Re-mapping of section addresses not supported with this "
    229                      "EE!");
    230   }
    231 
    232   /// generateCodeForModule - Run code generation for the specified module and
    233   /// load it into memory.
    234   ///
    235   /// When this function has completed, all code and data for the specified
    236   /// module, and any module on which this module depends, will be generated
    237   /// and loaded into memory, but relocations will not yet have been applied
    238   /// and all memory will be readable and writable but not executable.
    239   ///
    240   /// This function is primarily useful when generating code for an external
    241   /// target, allowing the client an opportunity to remap section addresses
    242   /// before relocations are applied.  Clients that intend to execute code
    243   /// locally can use the getFunctionAddress call, which will generate code
    244   /// and apply final preparations all in one step.
    245   ///
    246   /// This method has no effect for the interpeter.
    247   virtual void generateCodeForModule(Module *M) {}
    248 
    249   /// finalizeObject - ensure the module is fully processed and is usable.
    250   ///
    251   /// It is the user-level function for completing the process of making the
    252   /// object usable for execution.  It should be called after sections within an
    253   /// object have been relocated using mapSectionAddress.  When this method is
    254   /// called the MCJIT execution engine will reapply relocations for a loaded
    255   /// object.  This method has no effect for the interpeter.
    256   virtual void finalizeObject() {}
    257 
    258   /// runStaticConstructorsDestructors - This method is used to execute all of
    259   /// the static constructors or destructors for a program.
    260   ///
    261   /// \param isDtors - Run the destructors instead of constructors.
    262   virtual void runStaticConstructorsDestructors(bool isDtors);
    263 
    264   /// This method is used to execute all of the static constructors or
    265   /// destructors for a particular module.
    266   ///
    267   /// \param isDtors - Run the destructors instead of constructors.
    268   void runStaticConstructorsDestructors(Module &module, bool isDtors);
    269 
    270 
    271   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    272   /// handle the common task of starting up main with the specified argc, argv,
    273   /// and envp parameters.
    274   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    275                         const char * const * envp);
    276 
    277 
    278   /// addGlobalMapping - Tell the execution engine that the specified global is
    279   /// at the specified location.  This is used internally as functions are JIT'd
    280   /// and as global variables are laid out in memory.  It can and should also be
    281   /// used by clients of the EE that want to have an LLVM global overlay
    282   /// existing data in memory.  Mappings are automatically removed when their
    283   /// GlobalValue is destroyed.
    284   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    285   void addGlobalMapping(StringRef Name, uint64_t Addr);
    286 
    287   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    288   /// for use in dynamic compilation scenarios to move globals.
    289   void clearAllGlobalMappings();
    290 
    291   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    292   /// particular module, because it has been removed from the JIT.
    293   void clearGlobalMappingsFromModule(Module *M);
    294 
    295   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    296   /// address.  This updates both maps as required.  If "Addr" is null, the
    297   /// entry for the global is removed from the mappings.  This returns the old
    298   /// value of the pointer, or null if it was not in the map.
    299   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
    300   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
    301 
    302   /// getAddressToGlobalIfAvailable - This returns the address of the specified
    303   /// global symbol.
    304   uint64_t getAddressToGlobalIfAvailable(StringRef S);
    305 
    306   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    307   /// global value if it is has already been codegen'd, otherwise it returns
    308   /// null.
    309   void *getPointerToGlobalIfAvailable(StringRef S);
    310   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    311 
    312   /// getPointerToGlobal - This returns the address of the specified global
    313   /// value. This may involve code generation if it's a function.
    314   ///
    315   /// This function is deprecated for the MCJIT execution engine.  Use
    316   /// getGlobalValueAddress instead.
    317   void *getPointerToGlobal(const GlobalValue *GV);
    318 
    319   /// getPointerToFunction - The different EE's represent function bodies in
    320   /// different ways.  They should each implement this to say what a function
    321   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    322   /// remove its global mapping and free any machine code.  Be sure no threads
    323   /// are running inside F when that happens.
    324   ///
    325   /// This function is deprecated for the MCJIT execution engine.  Use
    326   /// getFunctionAddress instead.
    327   virtual void *getPointerToFunction(Function *F) = 0;
    328 
    329   /// getPointerToFunctionOrStub - If the specified function has been
    330   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    331   /// a stub to implement lazy compilation if available.  See
    332   /// getPointerToFunction for the requirements on destroying F.
    333   ///
    334   /// This function is deprecated for the MCJIT execution engine.  Use
    335   /// getFunctionAddress instead.
    336   virtual void *getPointerToFunctionOrStub(Function *F) {
    337     // Default implementation, just codegen the function.
    338     return getPointerToFunction(F);
    339   }
    340 
    341   /// getGlobalValueAddress - Return the address of the specified global
    342   /// value. This may involve code generation.
    343   ///
    344   /// This function should not be called with the interpreter engine.
    345   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
    346     // Default implementation for the interpreter.  MCJIT will override this.
    347     // JIT and interpreter clients should use getPointerToGlobal instead.
    348     return 0;
    349   }
    350 
    351   /// getFunctionAddress - Return the address of the specified function.
    352   /// This may involve code generation.
    353   virtual uint64_t getFunctionAddress(const std::string &Name) {
    354     // Default implementation for the interpreter.  MCJIT will override this.
    355     // Interpreter clients should use getPointerToFunction instead.
    356     return 0;
    357   }
    358 
    359   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    360   /// at the specified address.
    361   ///
    362   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    363 
    364   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    365   /// Ptr is the address of the memory at which to store Val, cast to
    366   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    367   /// address at which to store Val.
    368   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    369                           Type *Ty);
    370 
    371   void InitializeMemory(const Constant *Init, void *Addr);
    372 
    373   /// getOrEmitGlobalVariable - Return the address of the specified global
    374   /// variable, possibly emitting it to memory if needed.  This is used by the
    375   /// Emitter.
    376   ///
    377   /// This function is deprecated for the MCJIT execution engine.  Use
    378   /// getGlobalValueAddress instead.
    379   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    380     return getPointerToGlobal((const GlobalValue *)GV);
    381   }
    382 
    383   /// Registers a listener to be called back on various events within
    384   /// the JIT.  See JITEventListener.h for more details.  Does not
    385   /// take ownership of the argument.  The argument may be NULL, in
    386   /// which case these functions do nothing.
    387   virtual void RegisterJITEventListener(JITEventListener *) {}
    388   virtual void UnregisterJITEventListener(JITEventListener *) {}
    389 
    390   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
    391   /// not changed.  Supported by MCJIT but not the interpreter.
    392   virtual void setObjectCache(ObjectCache *) {
    393     llvm_unreachable("No support for an object cache");
    394   }
    395 
    396   /// setProcessAllSections (MCJIT Only): By default, only sections that are
    397   /// "required for execution" are passed to the RTDyldMemoryManager, and other
    398   /// sections are discarded. Passing 'true' to this method will cause
    399   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
    400   /// of whether they are "required to execute" in the usual sense.
    401   ///
    402   /// Rationale: Some MCJIT clients want to be able to inspect metadata
    403   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
    404   /// performance. Passing these sections to the memory manager allows the
    405   /// client to make policy about the relevant sections, rather than having
    406   /// MCJIT do it.
    407   virtual void setProcessAllSections(bool ProcessAllSections) {
    408     llvm_unreachable("No support for ProcessAllSections option");
    409   }
    410 
    411   /// Return the target machine (if available).
    412   virtual TargetMachine *getTargetMachine() { return nullptr; }
    413 
    414   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    415   /// JIT will eagerly compile every function reachable from the argument to
    416   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    417   /// compile the one function and emit stubs to compile the rest when they're
    418   /// first called.  If lazy compilation is turned off again while some lazy
    419   /// stubs are still around, and one of those stubs is called, the program will
    420   /// abort.
    421   ///
    422   /// In order to safely compile lazily in a threaded program, the user must
    423   /// ensure that 1) only one thread at a time can call any particular lazy
    424   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    425   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    426   /// lazy stub.  See http://llvm.org/PR5184 for details.
    427   void DisableLazyCompilation(bool Disabled = true) {
    428     CompilingLazily = !Disabled;
    429   }
    430   bool isCompilingLazily() const {
    431     return CompilingLazily;
    432   }
    433 
    434   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    435   /// allocate space and populate a GlobalVariable that is not internal to
    436   /// the module.
    437   void DisableGVCompilation(bool Disabled = true) {
    438     GVCompilationDisabled = Disabled;
    439   }
    440   bool isGVCompilationDisabled() const {
    441     return GVCompilationDisabled;
    442   }
    443 
    444   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    445   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    446   /// resolve symbols in a custom way.
    447   void DisableSymbolSearching(bool Disabled = true) {
    448     SymbolSearchingDisabled = Disabled;
    449   }
    450   bool isSymbolSearchingDisabled() const {
    451     return SymbolSearchingDisabled;
    452   }
    453 
    454   /// Enable/Disable IR module verification.
    455   ///
    456   /// Note: Module verification is enabled by default in Debug builds, and
    457   /// disabled by default in Release. Use this method to override the default.
    458   void setVerifyModules(bool Verify) {
    459     VerifyModules = Verify;
    460   }
    461   bool getVerifyModules() const {
    462     return VerifyModules;
    463   }
    464 
    465   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    466   /// specified function pointer is invoked to create it.  If it returns null,
    467   /// the JIT will abort.
    468   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
    469     LazyFunctionCreator = P;
    470   }
    471 
    472 protected:
    473   ExecutionEngine() {}
    474   explicit ExecutionEngine(std::unique_ptr<Module> M);
    475 
    476   void emitGlobals();
    477 
    478   void EmitGlobalVariable(const GlobalVariable *GV);
    479 
    480   GenericValue getConstantValue(const Constant *C);
    481   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    482                            Type *Ty);
    483 };
    484 
    485 namespace EngineKind {
    486   // These are actually bitmasks that get or-ed together.
    487   enum Kind {
    488     JIT         = 0x1,
    489     Interpreter = 0x2
    490   };
    491   const static Kind Either = (Kind)(JIT | Interpreter);
    492 }
    493 
    494 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
    495 /// chaining the various set* methods, and terminating it with a .create()
    496 /// call.
    497 class EngineBuilder {
    498 private:
    499   std::unique_ptr<Module> M;
    500   EngineKind::Kind WhichEngine;
    501   std::string *ErrorStr;
    502   CodeGenOpt::Level OptLevel;
    503   std::shared_ptr<MCJITMemoryManager> MemMgr;
    504   std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver;
    505   TargetOptions Options;
    506   Reloc::Model RelocModel;
    507   CodeModel::Model CMModel;
    508   std::string MArch;
    509   std::string MCPU;
    510   SmallVector<std::string, 4> MAttrs;
    511   bool VerifyModules;
    512   bool UseOrcMCJITReplacement;
    513 
    514 public:
    515   /// Default constructor for EngineBuilder.
    516   EngineBuilder();
    517 
    518   /// Constructor for EngineBuilder.
    519   EngineBuilder(std::unique_ptr<Module> M);
    520 
    521   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
    522   ~EngineBuilder();
    523 
    524   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    525   /// or whichever engine works.  This option defaults to EngineKind::Either.
    526   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    527     WhichEngine = w;
    528     return *this;
    529   }
    530 
    531   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
    532   /// clients to customize their memory allocation policies for the MCJIT. This
    533   /// is only appropriate for the MCJIT; setting this and configuring the builder
    534   /// to create anything other than MCJIT will cause a runtime error. If create()
    535   /// is called and is successful, the created engine takes ownership of the
    536   /// memory manager. This option defaults to NULL.
    537   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
    538 
    539   EngineBuilder&
    540   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
    541 
    542   EngineBuilder&
    543   setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
    544 
    545   /// setErrorStr - Set the error string to write to on error.  This option
    546   /// defaults to NULL.
    547   EngineBuilder &setErrorStr(std::string *e) {
    548     ErrorStr = e;
    549     return *this;
    550   }
    551 
    552   /// setOptLevel - Set the optimization level for the JIT.  This option
    553   /// defaults to CodeGenOpt::Default.
    554   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    555     OptLevel = l;
    556     return *this;
    557   }
    558 
    559   /// setTargetOptions - Set the target options that the ExecutionEngine
    560   /// target is using. Defaults to TargetOptions().
    561   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
    562     Options = Opts;
    563     return *this;
    564   }
    565 
    566   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    567   /// target is using. Defaults to target specific default "Reloc::Default".
    568   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    569     RelocModel = RM;
    570     return *this;
    571   }
    572 
    573   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    574   /// data is using. Defaults to target specific default
    575   /// "CodeModel::JITDefault".
    576   EngineBuilder &setCodeModel(CodeModel::Model M) {
    577     CMModel = M;
    578     return *this;
    579   }
    580 
    581   /// setMArch - Override the architecture set by the Module's triple.
    582   EngineBuilder &setMArch(StringRef march) {
    583     MArch.assign(march.begin(), march.end());
    584     return *this;
    585   }
    586 
    587   /// setMCPU - Target a specific cpu type.
    588   EngineBuilder &setMCPU(StringRef mcpu) {
    589     MCPU.assign(mcpu.begin(), mcpu.end());
    590     return *this;
    591   }
    592 
    593   /// setVerifyModules - Set whether the JIT implementation should verify
    594   /// IR modules during compilation.
    595   EngineBuilder &setVerifyModules(bool Verify) {
    596     VerifyModules = Verify;
    597     return *this;
    598   }
    599 
    600   /// setMAttrs - Set cpu-specific attributes.
    601   template<typename StringSequence>
    602   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    603     MAttrs.clear();
    604     MAttrs.append(mattrs.begin(), mattrs.end());
    605     return *this;
    606   }
    607 
    608   // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default.
    609   void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
    610     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
    611   }
    612 
    613   TargetMachine *selectTarget();
    614 
    615   /// selectTarget - Pick a target either via -march or by guessing the native
    616   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    617   TargetMachine *selectTarget(const Triple &TargetTriple,
    618                               StringRef MArch,
    619                               StringRef MCPU,
    620                               const SmallVectorImpl<std::string>& MAttrs);
    621 
    622   ExecutionEngine *create() {
    623     return create(selectTarget());
    624   }
    625 
    626   ExecutionEngine *create(TargetMachine *TM);
    627 };
    628 
    629 // Create wrappers for C Binding types (see CBindingWrapping.h).
    630 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
    631 
    632 } // End llvm namespace
    633 
    634 #endif
    635