Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "calling_convention_x86.h"
     18 
     19 #include "base/logging.h"
     20 #include "handle_scope-inl.h"
     21 #include "utils/x86/managed_register_x86.h"
     22 
     23 namespace art {
     24 namespace x86 {
     25 
     26 // Calling convention
     27 
     28 ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
     29   return X86ManagedRegister::FromCpuRegister(ECX);
     30 }
     31 
     32 ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() {
     33   return X86ManagedRegister::FromCpuRegister(ECX);
     34 }
     35 
     36 ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
     37   return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
     38 }
     39 
     40 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
     41   if (shorty[0] == 'F' || shorty[0] == 'D') {
     42     if (jni) {
     43       return X86ManagedRegister::FromX87Register(ST0);
     44     } else {
     45       return X86ManagedRegister::FromXmmRegister(XMM0);
     46     }
     47   } else if (shorty[0] == 'J') {
     48     return X86ManagedRegister::FromRegisterPair(EAX_EDX);
     49   } else if (shorty[0] == 'V') {
     50     return ManagedRegister::NoRegister();
     51   } else {
     52     return X86ManagedRegister::FromCpuRegister(EAX);
     53   }
     54 }
     55 
     56 ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
     57   return ReturnRegisterForShorty(GetShorty(), false);
     58 }
     59 
     60 ManagedRegister X86JniCallingConvention::ReturnRegister() {
     61   return ReturnRegisterForShorty(GetShorty(), true);
     62 }
     63 
     64 ManagedRegister X86JniCallingConvention::IntReturnRegister() {
     65   return X86ManagedRegister::FromCpuRegister(EAX);
     66 }
     67 
     68 // Managed runtime calling convention
     69 
     70 ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
     71   return X86ManagedRegister::FromCpuRegister(EAX);
     72 }
     73 
     74 bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
     75   return false;  // Everything is passed by stack
     76 }
     77 
     78 bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
     79   // We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
     80   return true;
     81 }
     82 
     83 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
     84   ManagedRegister res = ManagedRegister::NoRegister();
     85   if (!IsCurrentParamAFloatOrDouble()) {
     86     switch (gpr_arg_count_) {
     87       case 0:
     88         res = X86ManagedRegister::FromCpuRegister(ECX);
     89         break;
     90       case 1:
     91         res = X86ManagedRegister::FromCpuRegister(EDX);
     92         break;
     93       case 2:
     94         // Don't split a long between the last register and the stack.
     95         if (IsCurrentParamALong()) {
     96           return ManagedRegister::NoRegister();
     97         }
     98         res = X86ManagedRegister::FromCpuRegister(EBX);
     99         break;
    100     }
    101   } else if (itr_float_and_doubles_ < 4) {
    102     // First four float parameters are passed via XMM0..XMM3
    103     res = X86ManagedRegister::FromXmmRegister(
    104                                  static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
    105   }
    106   return res;
    107 }
    108 
    109 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
    110   ManagedRegister res = ManagedRegister::NoRegister();
    111   DCHECK(IsCurrentParamALong());
    112   switch (gpr_arg_count_) {
    113     case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
    114     case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
    115   }
    116   return res;
    117 }
    118 
    119 FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
    120   return FrameOffset(displacement_.Int32Value() +   // displacement
    121                      kFramePointerSize +                 // Method*
    122                      (itr_slots_ * kFramePointerSize));  // offset into in args
    123 }
    124 
    125 const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
    126   // We spill the argument registers on X86 to free them up for scratch use, we then assume
    127   // all arguments are on the stack.
    128   if (entry_spills_.size() == 0) {
    129     ResetIterator(FrameOffset(0));
    130     while (HasNext()) {
    131       ManagedRegister in_reg = CurrentParamRegister();
    132       bool is_long = IsCurrentParamALong();
    133       if (!in_reg.IsNoRegister()) {
    134         int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
    135         int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
    136         ManagedRegisterSpill spill(in_reg, size, spill_offset);
    137         entry_spills_.push_back(spill);
    138         if (is_long) {
    139           // special case, as we need a second register here.
    140           in_reg = CurrentParamHighLongRegister();
    141           DCHECK(!in_reg.IsNoRegister());
    142           // We have to spill the second half of the long.
    143           ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
    144           entry_spills_.push_back(spill2);
    145         }
    146 
    147         // Keep track of the number of GPRs allocated.
    148         if (!IsCurrentParamAFloatOrDouble()) {
    149           if (is_long) {
    150             // Long was allocated in 2 registers.
    151             gpr_arg_count_ += 2;
    152           } else {
    153             gpr_arg_count_++;
    154           }
    155         }
    156       } else if (is_long) {
    157         // We need to skip the unused last register, which is empty.
    158         // If we are already out of registers, this is harmless.
    159         gpr_arg_count_ += 2;
    160       }
    161       Next();
    162     }
    163   }
    164   return entry_spills_;
    165 }
    166 
    167 // JNI calling convention
    168 
    169 X86JniCallingConvention::X86JniCallingConvention(bool is_static, bool is_synchronized,
    170                                                  const char* shorty)
    171     : JniCallingConvention(is_static, is_synchronized, shorty, kFramePointerSize) {
    172   callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EBP));
    173   callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(ESI));
    174   callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EDI));
    175 }
    176 
    177 uint32_t X86JniCallingConvention::CoreSpillMask() const {
    178   return 1 << EBP | 1 << ESI | 1 << EDI | 1 << kNumberOfCpuRegisters;
    179 }
    180 
    181 size_t X86JniCallingConvention::FrameSize() {
    182   // Method*, return address and callee save area size, local reference segment state
    183   size_t frame_data_size = kX86PointerSize +
    184       (2 + CalleeSaveRegisters().size()) * kFramePointerSize;
    185   // References plus 2 words for HandleScope header
    186   size_t handle_scope_size = HandleScope::SizeOf(kFramePointerSize, ReferenceCount());
    187   // Plus return value spill area size
    188   return RoundUp(frame_data_size + handle_scope_size + SizeOfReturnValue(), kStackAlignment);
    189 }
    190 
    191 size_t X86JniCallingConvention::OutArgSize() {
    192   return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
    193 }
    194 
    195 bool X86JniCallingConvention::IsCurrentParamInRegister() {
    196   return false;  // Everything is passed by stack.
    197 }
    198 
    199 bool X86JniCallingConvention::IsCurrentParamOnStack() {
    200   return true;  // Everything is passed by stack.
    201 }
    202 
    203 ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
    204   LOG(FATAL) << "Should not reach here";
    205   return ManagedRegister::NoRegister();
    206 }
    207 
    208 FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
    209   return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
    210 }
    211 
    212 size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() {
    213   size_t static_args = IsStatic() ? 1 : 0;  // count jclass
    214   // regular argument parameters and this
    215   size_t param_args = NumArgs() + NumLongOrDoubleArgs();
    216   // count JNIEnv* and return pc (pushed after Method*)
    217   size_t total_args = static_args + param_args + 2;
    218   return total_args;
    219 }
    220 
    221 }  // namespace x86
    222 }  // namespace art
    223