Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86 specific subclass of TargetMachine.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86TargetMachine.h"
     15 #include "X86.h"
     16 #include "X86TargetObjectFile.h"
     17 #include "X86TargetTransformInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/LegacyPassManager.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Support/FormattedStream.h"
     23 #include "llvm/Support/TargetRegistry.h"
     24 #include "llvm/Target/TargetOptions.h"
     25 using namespace llvm;
     26 
     27 extern "C" void LLVMInitializeX86Target() {
     28   // Register the target.
     29   RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
     30   RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
     31 }
     32 
     33 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
     34   if (TT.isOSBinFormatMachO()) {
     35     if (TT.getArch() == Triple::x86_64)
     36       return make_unique<X86_64MachoTargetObjectFile>();
     37     return make_unique<TargetLoweringObjectFileMachO>();
     38   }
     39 
     40   if (TT.isOSLinux() || TT.isOSNaCl())
     41     return make_unique<X86LinuxNaClTargetObjectFile>();
     42   if (TT.isOSBinFormatELF())
     43     return make_unique<X86ELFTargetObjectFile>();
     44   if (TT.isKnownWindowsMSVCEnvironment())
     45     return make_unique<X86WindowsTargetObjectFile>();
     46   if (TT.isOSBinFormatCOFF())
     47     return make_unique<TargetLoweringObjectFileCOFF>();
     48   llvm_unreachable("unknown subtarget type");
     49 }
     50 
     51 static std::string computeDataLayout(const Triple &TT) {
     52   // X86 is little endian
     53   std::string Ret = "e";
     54 
     55   Ret += DataLayout::getManglingComponent(TT);
     56   // X86 and x32 have 32 bit pointers.
     57   if ((TT.isArch64Bit() &&
     58        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
     59       !TT.isArch64Bit())
     60     Ret += "-p:32:32";
     61 
     62   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
     63   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
     64     Ret += "-i64:64";
     65   else
     66     Ret += "-f64:32:64";
     67 
     68   // Some ABIs align long double to 128 bits, others to 32.
     69   if (TT.isOSNaCl())
     70     ; // No f80
     71   else if (TT.isArch64Bit() || TT.isOSDarwin())
     72     Ret += "-f80:128";
     73   else
     74     Ret += "-f80:32";
     75 
     76   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
     77   if (TT.isArch64Bit())
     78     Ret += "-n8:16:32:64";
     79   else
     80     Ret += "-n8:16:32";
     81 
     82   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
     83   if (!TT.isArch64Bit() && TT.isOSWindows())
     84     Ret += "-S32";
     85   else
     86     Ret += "-S128";
     87 
     88   return Ret;
     89 }
     90 
     91 /// X86TargetMachine ctor - Create an X86 target.
     92 ///
     93 X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
     94                                    StringRef FS, const TargetOptions &Options,
     95                                    Reloc::Model RM, CodeModel::Model CM,
     96                                    CodeGenOpt::Level OL)
     97     : LLVMTargetMachine(T, computeDataLayout(Triple(TT)), TT, CPU, FS, Options,
     98                         RM, CM, OL),
     99       TLOF(createTLOF(Triple(getTargetTriple()))),
    100       Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
    101   // default to hard float ABI
    102   if (Options.FloatABIType == FloatABI::Default)
    103     this->Options.FloatABIType = FloatABI::Hard;
    104 
    105   // Windows stack unwinder gets confused when execution flow "falls through"
    106   // after a call to 'noreturn' function.
    107   // To prevent that, we emit a trap for 'unreachable' IR instructions.
    108   // (which on X86, happens to be the 'ud2' instruction)
    109   if (Subtarget.isTargetWin64())
    110     this->Options.TrapUnreachable = true;
    111 
    112   initAsmInfo();
    113 }
    114 
    115 X86TargetMachine::~X86TargetMachine() {}
    116 
    117 const X86Subtarget *
    118 X86TargetMachine::getSubtargetImpl(const Function &F) const {
    119   Attribute CPUAttr = F.getFnAttribute("target-cpu");
    120   Attribute FSAttr = F.getFnAttribute("target-features");
    121 
    122   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
    123                         ? CPUAttr.getValueAsString().str()
    124                         : TargetCPU;
    125   std::string FS = !FSAttr.hasAttribute(Attribute::None)
    126                        ? FSAttr.getValueAsString().str()
    127                        : TargetFS;
    128 
    129   // FIXME: This is related to the code below to reset the target options,
    130   // we need to know whether or not the soft float flag is set on the
    131   // function before we can generate a subtarget. We also need to use
    132   // it as a key for the subtarget since that can be the only difference
    133   // between two functions.
    134   Attribute SFAttr = F.getFnAttribute("use-soft-float");
    135   bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
    136                        ? SFAttr.getValueAsString() == "true"
    137                        : Options.UseSoftFloat;
    138 
    139   auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
    140                                                : "use-soft-float=false")];
    141   if (!I) {
    142     // This needs to be done before we create a new subtarget since any
    143     // creation will depend on the TM and the code generation flags on the
    144     // function that reside in TargetOptions.
    145     resetTargetOptions(F);
    146     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
    147                                         Options.StackAlignmentOverride);
    148   }
    149   return I.get();
    150 }
    151 
    152 //===----------------------------------------------------------------------===//
    153 // Command line options for x86
    154 //===----------------------------------------------------------------------===//
    155 static cl::opt<bool>
    156 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
    157   cl::desc("Minimize AVX to SSE transition penalty"),
    158   cl::init(true));
    159 
    160 //===----------------------------------------------------------------------===//
    161 // X86 TTI query.
    162 //===----------------------------------------------------------------------===//
    163 
    164 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
    165   return TargetIRAnalysis(
    166       [this](Function &F) { return TargetTransformInfo(X86TTIImpl(this, F)); });
    167 }
    168 
    169 
    170 //===----------------------------------------------------------------------===//
    171 // Pass Pipeline Configuration
    172 //===----------------------------------------------------------------------===//
    173 
    174 namespace {
    175 /// X86 Code Generator Pass Configuration Options.
    176 class X86PassConfig : public TargetPassConfig {
    177 public:
    178   X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
    179     : TargetPassConfig(TM, PM) {}
    180 
    181   X86TargetMachine &getX86TargetMachine() const {
    182     return getTM<X86TargetMachine>();
    183   }
    184 
    185   void addIRPasses() override;
    186   bool addInstSelector() override;
    187   bool addILPOpts() override;
    188   void addPreRegAlloc() override;
    189   void addPostRegAlloc() override;
    190   void addPreEmitPass() override;
    191 };
    192 } // namespace
    193 
    194 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
    195   return new X86PassConfig(this, PM);
    196 }
    197 
    198 void X86PassConfig::addIRPasses() {
    199   addPass(createAtomicExpandPass(&getX86TargetMachine()));
    200 
    201   TargetPassConfig::addIRPasses();
    202 }
    203 
    204 bool X86PassConfig::addInstSelector() {
    205   // Install an instruction selector.
    206   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
    207 
    208   // For ELF, cleanup any local-dynamic TLS accesses.
    209   if (Triple(TM->getTargetTriple()).isOSBinFormatELF() &&
    210       getOptLevel() != CodeGenOpt::None)
    211     addPass(createCleanupLocalDynamicTLSPass());
    212 
    213   addPass(createX86GlobalBaseRegPass());
    214 
    215   return false;
    216 }
    217 
    218 bool X86PassConfig::addILPOpts() {
    219   addPass(&EarlyIfConverterID);
    220   return true;
    221 }
    222 
    223 void X86PassConfig::addPreRegAlloc() {
    224   addPass(createX86CallFrameOptimization());
    225 }
    226 
    227 void X86PassConfig::addPostRegAlloc() {
    228   addPass(createX86FloatingPointStackifierPass());
    229 }
    230 
    231 void X86PassConfig::addPreEmitPass() {
    232   if (getOptLevel() != CodeGenOpt::None)
    233     addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
    234 
    235   if (UseVZeroUpper)
    236     addPass(createX86IssueVZeroUpperPass());
    237 
    238   if (getOptLevel() != CodeGenOpt::None) {
    239     addPass(createX86PadShortFunctions());
    240     addPass(createX86FixupLEAs());
    241   }
    242 }
    243