1 //===-- tsan_interface_atomic.cc ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 // ThreadSanitizer atomic operations are based on C++11/C1x standards. 15 // For background see C++11 standard. A slightly older, publicly 16 // available draft of the standard (not entirely up-to-date, but close enough 17 // for casual browsing) is available here: 18 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 19 // The following page contains more background information: 20 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 21 22 #include "sanitizer_common/sanitizer_placement_new.h" 23 #include "sanitizer_common/sanitizer_stacktrace.h" 24 #include "sanitizer_common/sanitizer_mutex.h" 25 #include "tsan_flags.h" 26 #include "tsan_rtl.h" 27 28 using namespace __tsan; // NOLINT 29 30 // These should match declarations from public tsan_interface_atomic.h header. 31 typedef unsigned char a8; 32 typedef unsigned short a16; // NOLINT 33 typedef unsigned int a32; 34 typedef unsigned long long a64; // NOLINT 35 #if !defined(SANITIZER_GO) && (defined(__SIZEOF_INT128__) \ 36 || (__clang_major__ * 100 + __clang_minor__ >= 302)) && !defined(__mips64) 37 __extension__ typedef __int128 a128; 38 # define __TSAN_HAS_INT128 1 39 #else 40 # define __TSAN_HAS_INT128 0 41 #endif 42 43 #if !defined(SANITIZER_GO) && __TSAN_HAS_INT128 44 // Protects emulation of 128-bit atomic operations. 45 static StaticSpinMutex mutex128; 46 #endif 47 48 // Part of ABI, do not change. 49 // http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup 50 typedef enum { 51 mo_relaxed, 52 mo_consume, 53 mo_acquire, 54 mo_release, 55 mo_acq_rel, 56 mo_seq_cst 57 } morder; 58 59 static bool IsLoadOrder(morder mo) { 60 return mo == mo_relaxed || mo == mo_consume 61 || mo == mo_acquire || mo == mo_seq_cst; 62 } 63 64 static bool IsStoreOrder(morder mo) { 65 return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst; 66 } 67 68 static bool IsReleaseOrder(morder mo) { 69 return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst; 70 } 71 72 static bool IsAcquireOrder(morder mo) { 73 return mo == mo_consume || mo == mo_acquire 74 || mo == mo_acq_rel || mo == mo_seq_cst; 75 } 76 77 static bool IsAcqRelOrder(morder mo) { 78 return mo == mo_acq_rel || mo == mo_seq_cst; 79 } 80 81 template<typename T> T func_xchg(volatile T *v, T op) { 82 T res = __sync_lock_test_and_set(v, op); 83 // __sync_lock_test_and_set does not contain full barrier. 84 __sync_synchronize(); 85 return res; 86 } 87 88 template<typename T> T func_add(volatile T *v, T op) { 89 return __sync_fetch_and_add(v, op); 90 } 91 92 template<typename T> T func_sub(volatile T *v, T op) { 93 return __sync_fetch_and_sub(v, op); 94 } 95 96 template<typename T> T func_and(volatile T *v, T op) { 97 return __sync_fetch_and_and(v, op); 98 } 99 100 template<typename T> T func_or(volatile T *v, T op) { 101 return __sync_fetch_and_or(v, op); 102 } 103 104 template<typename T> T func_xor(volatile T *v, T op) { 105 return __sync_fetch_and_xor(v, op); 106 } 107 108 template<typename T> T func_nand(volatile T *v, T op) { 109 // clang does not support __sync_fetch_and_nand. 110 T cmp = *v; 111 for (;;) { 112 T newv = ~(cmp & op); 113 T cur = __sync_val_compare_and_swap(v, cmp, newv); 114 if (cmp == cur) 115 return cmp; 116 cmp = cur; 117 } 118 } 119 120 template<typename T> T func_cas(volatile T *v, T cmp, T xch) { 121 return __sync_val_compare_and_swap(v, cmp, xch); 122 } 123 124 // clang does not support 128-bit atomic ops. 125 // Atomic ops are executed under tsan internal mutex, 126 // here we assume that the atomic variables are not accessed 127 // from non-instrumented code. 128 #if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !defined(SANITIZER_GO) \ 129 && __TSAN_HAS_INT128 130 a128 func_xchg(volatile a128 *v, a128 op) { 131 SpinMutexLock lock(&mutex128); 132 a128 cmp = *v; 133 *v = op; 134 return cmp; 135 } 136 137 a128 func_add(volatile a128 *v, a128 op) { 138 SpinMutexLock lock(&mutex128); 139 a128 cmp = *v; 140 *v = cmp + op; 141 return cmp; 142 } 143 144 a128 func_sub(volatile a128 *v, a128 op) { 145 SpinMutexLock lock(&mutex128); 146 a128 cmp = *v; 147 *v = cmp - op; 148 return cmp; 149 } 150 151 a128 func_and(volatile a128 *v, a128 op) { 152 SpinMutexLock lock(&mutex128); 153 a128 cmp = *v; 154 *v = cmp & op; 155 return cmp; 156 } 157 158 a128 func_or(volatile a128 *v, a128 op) { 159 SpinMutexLock lock(&mutex128); 160 a128 cmp = *v; 161 *v = cmp | op; 162 return cmp; 163 } 164 165 a128 func_xor(volatile a128 *v, a128 op) { 166 SpinMutexLock lock(&mutex128); 167 a128 cmp = *v; 168 *v = cmp ^ op; 169 return cmp; 170 } 171 172 a128 func_nand(volatile a128 *v, a128 op) { 173 SpinMutexLock lock(&mutex128); 174 a128 cmp = *v; 175 *v = ~(cmp & op); 176 return cmp; 177 } 178 179 a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) { 180 SpinMutexLock lock(&mutex128); 181 a128 cur = *v; 182 if (cur == cmp) 183 *v = xch; 184 return cur; 185 } 186 #endif 187 188 template<typename T> 189 static int SizeLog() { 190 if (sizeof(T) <= 1) 191 return kSizeLog1; 192 else if (sizeof(T) <= 2) 193 return kSizeLog2; 194 else if (sizeof(T) <= 4) 195 return kSizeLog4; 196 else 197 return kSizeLog8; 198 // For 16-byte atomics we also use 8-byte memory access, 199 // this leads to false negatives only in very obscure cases. 200 } 201 202 #ifndef SANITIZER_GO 203 static atomic_uint8_t *to_atomic(const volatile a8 *a) { 204 return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a)); 205 } 206 207 static atomic_uint16_t *to_atomic(const volatile a16 *a) { 208 return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a)); 209 } 210 #endif 211 212 static atomic_uint32_t *to_atomic(const volatile a32 *a) { 213 return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a)); 214 } 215 216 static atomic_uint64_t *to_atomic(const volatile a64 *a) { 217 return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a)); 218 } 219 220 static memory_order to_mo(morder mo) { 221 switch (mo) { 222 case mo_relaxed: return memory_order_relaxed; 223 case mo_consume: return memory_order_consume; 224 case mo_acquire: return memory_order_acquire; 225 case mo_release: return memory_order_release; 226 case mo_acq_rel: return memory_order_acq_rel; 227 case mo_seq_cst: return memory_order_seq_cst; 228 } 229 CHECK(0); 230 return memory_order_seq_cst; 231 } 232 233 template<typename T> 234 static T NoTsanAtomicLoad(const volatile T *a, morder mo) { 235 return atomic_load(to_atomic(a), to_mo(mo)); 236 } 237 238 #if __TSAN_HAS_INT128 && !defined(SANITIZER_GO) 239 static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) { 240 SpinMutexLock lock(&mutex128); 241 return *a; 242 } 243 #endif 244 245 template<typename T> 246 static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, 247 morder mo) { 248 CHECK(IsLoadOrder(mo)); 249 // This fast-path is critical for performance. 250 // Assume the access is atomic. 251 if (!IsAcquireOrder(mo)) { 252 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>()); 253 return NoTsanAtomicLoad(a, mo); 254 } 255 SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, false); 256 AcquireImpl(thr, pc, &s->clock); 257 T v = NoTsanAtomicLoad(a, mo); 258 s->mtx.ReadUnlock(); 259 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>()); 260 return v; 261 } 262 263 template<typename T> 264 static void NoTsanAtomicStore(volatile T *a, T v, morder mo) { 265 atomic_store(to_atomic(a), v, to_mo(mo)); 266 } 267 268 #if __TSAN_HAS_INT128 && !defined(SANITIZER_GO) 269 static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) { 270 SpinMutexLock lock(&mutex128); 271 *a = v; 272 } 273 #endif 274 275 template<typename T> 276 static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v, 277 morder mo) { 278 CHECK(IsStoreOrder(mo)); 279 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); 280 // This fast-path is critical for performance. 281 // Assume the access is atomic. 282 // Strictly saying even relaxed store cuts off release sequence, 283 // so must reset the clock. 284 if (!IsReleaseOrder(mo)) { 285 NoTsanAtomicStore(a, v, mo); 286 return; 287 } 288 __sync_synchronize(); 289 SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true); 290 thr->fast_state.IncrementEpoch(); 291 // Can't increment epoch w/o writing to the trace as well. 292 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); 293 ReleaseImpl(thr, pc, &s->clock); 294 NoTsanAtomicStore(a, v, mo); 295 s->mtx.Unlock(); 296 } 297 298 template<typename T, T (*F)(volatile T *v, T op)> 299 static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) { 300 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); 301 SyncVar *s = 0; 302 if (mo != mo_relaxed) { 303 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true); 304 thr->fast_state.IncrementEpoch(); 305 // Can't increment epoch w/o writing to the trace as well. 306 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); 307 if (IsAcqRelOrder(mo)) 308 AcquireReleaseImpl(thr, pc, &s->clock); 309 else if (IsReleaseOrder(mo)) 310 ReleaseImpl(thr, pc, &s->clock); 311 else if (IsAcquireOrder(mo)) 312 AcquireImpl(thr, pc, &s->clock); 313 } 314 v = F(a, v); 315 if (s) 316 s->mtx.Unlock(); 317 return v; 318 } 319 320 template<typename T> 321 static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) { 322 return func_xchg(a, v); 323 } 324 325 template<typename T> 326 static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) { 327 return func_add(a, v); 328 } 329 330 template<typename T> 331 static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) { 332 return func_sub(a, v); 333 } 334 335 template<typename T> 336 static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) { 337 return func_and(a, v); 338 } 339 340 template<typename T> 341 static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) { 342 return func_or(a, v); 343 } 344 345 template<typename T> 346 static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) { 347 return func_xor(a, v); 348 } 349 350 template<typename T> 351 static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) { 352 return func_nand(a, v); 353 } 354 355 template<typename T> 356 static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v, 357 morder mo) { 358 return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo); 359 } 360 361 template<typename T> 362 static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v, 363 morder mo) { 364 return AtomicRMW<T, func_add>(thr, pc, a, v, mo); 365 } 366 367 template<typename T> 368 static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v, 369 morder mo) { 370 return AtomicRMW<T, func_sub>(thr, pc, a, v, mo); 371 } 372 373 template<typename T> 374 static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v, 375 morder mo) { 376 return AtomicRMW<T, func_and>(thr, pc, a, v, mo); 377 } 378 379 template<typename T> 380 static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v, 381 morder mo) { 382 return AtomicRMW<T, func_or>(thr, pc, a, v, mo); 383 } 384 385 template<typename T> 386 static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v, 387 morder mo) { 388 return AtomicRMW<T, func_xor>(thr, pc, a, v, mo); 389 } 390 391 template<typename T> 392 static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v, 393 morder mo) { 394 return AtomicRMW<T, func_nand>(thr, pc, a, v, mo); 395 } 396 397 template<typename T> 398 static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) { 399 return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo)); 400 } 401 402 #if __TSAN_HAS_INT128 403 static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v, 404 morder mo, morder fmo) { 405 a128 old = *c; 406 a128 cur = func_cas(a, old, v); 407 if (cur == old) 408 return true; 409 *c = cur; 410 return false; 411 } 412 #endif 413 414 template<typename T> 415 static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) { 416 NoTsanAtomicCAS(a, &c, v, mo, fmo); 417 return c; 418 } 419 420 template<typename T> 421 static bool AtomicCAS(ThreadState *thr, uptr pc, 422 volatile T *a, T *c, T v, morder mo, morder fmo) { 423 (void)fmo; // Unused because llvm does not pass it yet. 424 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); 425 SyncVar *s = 0; 426 bool write_lock = mo != mo_acquire && mo != mo_consume; 427 if (mo != mo_relaxed) { 428 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock); 429 thr->fast_state.IncrementEpoch(); 430 // Can't increment epoch w/o writing to the trace as well. 431 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); 432 if (IsAcqRelOrder(mo)) 433 AcquireReleaseImpl(thr, pc, &s->clock); 434 else if (IsReleaseOrder(mo)) 435 ReleaseImpl(thr, pc, &s->clock); 436 else if (IsAcquireOrder(mo)) 437 AcquireImpl(thr, pc, &s->clock); 438 } 439 T cc = *c; 440 T pr = func_cas(a, cc, v); 441 if (s) { 442 if (write_lock) 443 s->mtx.Unlock(); 444 else 445 s->mtx.ReadUnlock(); 446 } 447 if (pr == cc) 448 return true; 449 *c = pr; 450 return false; 451 } 452 453 template<typename T> 454 static T AtomicCAS(ThreadState *thr, uptr pc, 455 volatile T *a, T c, T v, morder mo, morder fmo) { 456 AtomicCAS(thr, pc, a, &c, v, mo, fmo); 457 return c; 458 } 459 460 #ifndef SANITIZER_GO 461 static void NoTsanAtomicFence(morder mo) { 462 __sync_synchronize(); 463 } 464 465 static void AtomicFence(ThreadState *thr, uptr pc, morder mo) { 466 // FIXME(dvyukov): not implemented. 467 __sync_synchronize(); 468 } 469 #endif 470 471 // Interface functions follow. 472 #ifndef SANITIZER_GO 473 474 // C/C++ 475 476 #define SCOPED_ATOMIC(func, ...) \ 477 const uptr callpc = (uptr)__builtin_return_address(0); \ 478 uptr pc = StackTrace::GetCurrentPc(); \ 479 mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \ 480 ThreadState *const thr = cur_thread(); \ 481 if (thr->ignore_interceptors) \ 482 return NoTsanAtomic##func(__VA_ARGS__); \ 483 AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \ 484 ScopedAtomic sa(thr, callpc, a, mo, __func__); \ 485 return Atomic##func(thr, pc, __VA_ARGS__); \ 486 /**/ 487 488 class ScopedAtomic { 489 public: 490 ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a, 491 morder mo, const char *func) 492 : thr_(thr) { 493 FuncEntry(thr_, pc); 494 DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo); 495 } 496 ~ScopedAtomic() { 497 ProcessPendingSignals(thr_); 498 FuncExit(thr_); 499 } 500 private: 501 ThreadState *thr_; 502 }; 503 504 static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) { 505 StatInc(thr, StatAtomic); 506 StatInc(thr, t); 507 StatInc(thr, size == 1 ? StatAtomic1 508 : size == 2 ? StatAtomic2 509 : size == 4 ? StatAtomic4 510 : size == 8 ? StatAtomic8 511 : StatAtomic16); 512 StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed 513 : mo == mo_consume ? StatAtomicConsume 514 : mo == mo_acquire ? StatAtomicAcquire 515 : mo == mo_release ? StatAtomicRelease 516 : mo == mo_acq_rel ? StatAtomicAcq_Rel 517 : StatAtomicSeq_Cst); 518 } 519 520 extern "C" { 521 SANITIZER_INTERFACE_ATTRIBUTE 522 a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) { 523 SCOPED_ATOMIC(Load, a, mo); 524 } 525 526 SANITIZER_INTERFACE_ATTRIBUTE 527 a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) { 528 SCOPED_ATOMIC(Load, a, mo); 529 } 530 531 SANITIZER_INTERFACE_ATTRIBUTE 532 a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) { 533 SCOPED_ATOMIC(Load, a, mo); 534 } 535 536 SANITIZER_INTERFACE_ATTRIBUTE 537 a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) { 538 SCOPED_ATOMIC(Load, a, mo); 539 } 540 541 #if __TSAN_HAS_INT128 542 SANITIZER_INTERFACE_ATTRIBUTE 543 a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) { 544 SCOPED_ATOMIC(Load, a, mo); 545 } 546 #endif 547 548 SANITIZER_INTERFACE_ATTRIBUTE 549 void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) { 550 SCOPED_ATOMIC(Store, a, v, mo); 551 } 552 553 SANITIZER_INTERFACE_ATTRIBUTE 554 void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) { 555 SCOPED_ATOMIC(Store, a, v, mo); 556 } 557 558 SANITIZER_INTERFACE_ATTRIBUTE 559 void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) { 560 SCOPED_ATOMIC(Store, a, v, mo); 561 } 562 563 SANITIZER_INTERFACE_ATTRIBUTE 564 void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) { 565 SCOPED_ATOMIC(Store, a, v, mo); 566 } 567 568 #if __TSAN_HAS_INT128 569 SANITIZER_INTERFACE_ATTRIBUTE 570 void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) { 571 SCOPED_ATOMIC(Store, a, v, mo); 572 } 573 #endif 574 575 SANITIZER_INTERFACE_ATTRIBUTE 576 a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) { 577 SCOPED_ATOMIC(Exchange, a, v, mo); 578 } 579 580 SANITIZER_INTERFACE_ATTRIBUTE 581 a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) { 582 SCOPED_ATOMIC(Exchange, a, v, mo); 583 } 584 585 SANITIZER_INTERFACE_ATTRIBUTE 586 a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) { 587 SCOPED_ATOMIC(Exchange, a, v, mo); 588 } 589 590 SANITIZER_INTERFACE_ATTRIBUTE 591 a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) { 592 SCOPED_ATOMIC(Exchange, a, v, mo); 593 } 594 595 #if __TSAN_HAS_INT128 596 SANITIZER_INTERFACE_ATTRIBUTE 597 a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) { 598 SCOPED_ATOMIC(Exchange, a, v, mo); 599 } 600 #endif 601 602 SANITIZER_INTERFACE_ATTRIBUTE 603 a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) { 604 SCOPED_ATOMIC(FetchAdd, a, v, mo); 605 } 606 607 SANITIZER_INTERFACE_ATTRIBUTE 608 a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) { 609 SCOPED_ATOMIC(FetchAdd, a, v, mo); 610 } 611 612 SANITIZER_INTERFACE_ATTRIBUTE 613 a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) { 614 SCOPED_ATOMIC(FetchAdd, a, v, mo); 615 } 616 617 SANITIZER_INTERFACE_ATTRIBUTE 618 a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) { 619 SCOPED_ATOMIC(FetchAdd, a, v, mo); 620 } 621 622 #if __TSAN_HAS_INT128 623 SANITIZER_INTERFACE_ATTRIBUTE 624 a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) { 625 SCOPED_ATOMIC(FetchAdd, a, v, mo); 626 } 627 #endif 628 629 SANITIZER_INTERFACE_ATTRIBUTE 630 a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) { 631 SCOPED_ATOMIC(FetchSub, a, v, mo); 632 } 633 634 SANITIZER_INTERFACE_ATTRIBUTE 635 a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) { 636 SCOPED_ATOMIC(FetchSub, a, v, mo); 637 } 638 639 SANITIZER_INTERFACE_ATTRIBUTE 640 a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) { 641 SCOPED_ATOMIC(FetchSub, a, v, mo); 642 } 643 644 SANITIZER_INTERFACE_ATTRIBUTE 645 a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) { 646 SCOPED_ATOMIC(FetchSub, a, v, mo); 647 } 648 649 #if __TSAN_HAS_INT128 650 SANITIZER_INTERFACE_ATTRIBUTE 651 a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) { 652 SCOPED_ATOMIC(FetchSub, a, v, mo); 653 } 654 #endif 655 656 SANITIZER_INTERFACE_ATTRIBUTE 657 a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) { 658 SCOPED_ATOMIC(FetchAnd, a, v, mo); 659 } 660 661 SANITIZER_INTERFACE_ATTRIBUTE 662 a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) { 663 SCOPED_ATOMIC(FetchAnd, a, v, mo); 664 } 665 666 SANITIZER_INTERFACE_ATTRIBUTE 667 a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) { 668 SCOPED_ATOMIC(FetchAnd, a, v, mo); 669 } 670 671 SANITIZER_INTERFACE_ATTRIBUTE 672 a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) { 673 SCOPED_ATOMIC(FetchAnd, a, v, mo); 674 } 675 676 #if __TSAN_HAS_INT128 677 SANITIZER_INTERFACE_ATTRIBUTE 678 a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) { 679 SCOPED_ATOMIC(FetchAnd, a, v, mo); 680 } 681 #endif 682 683 SANITIZER_INTERFACE_ATTRIBUTE 684 a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) { 685 SCOPED_ATOMIC(FetchOr, a, v, mo); 686 } 687 688 SANITIZER_INTERFACE_ATTRIBUTE 689 a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) { 690 SCOPED_ATOMIC(FetchOr, a, v, mo); 691 } 692 693 SANITIZER_INTERFACE_ATTRIBUTE 694 a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) { 695 SCOPED_ATOMIC(FetchOr, a, v, mo); 696 } 697 698 SANITIZER_INTERFACE_ATTRIBUTE 699 a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) { 700 SCOPED_ATOMIC(FetchOr, a, v, mo); 701 } 702 703 #if __TSAN_HAS_INT128 704 SANITIZER_INTERFACE_ATTRIBUTE 705 a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) { 706 SCOPED_ATOMIC(FetchOr, a, v, mo); 707 } 708 #endif 709 710 SANITIZER_INTERFACE_ATTRIBUTE 711 a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) { 712 SCOPED_ATOMIC(FetchXor, a, v, mo); 713 } 714 715 SANITIZER_INTERFACE_ATTRIBUTE 716 a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) { 717 SCOPED_ATOMIC(FetchXor, a, v, mo); 718 } 719 720 SANITIZER_INTERFACE_ATTRIBUTE 721 a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) { 722 SCOPED_ATOMIC(FetchXor, a, v, mo); 723 } 724 725 SANITIZER_INTERFACE_ATTRIBUTE 726 a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) { 727 SCOPED_ATOMIC(FetchXor, a, v, mo); 728 } 729 730 #if __TSAN_HAS_INT128 731 SANITIZER_INTERFACE_ATTRIBUTE 732 a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) { 733 SCOPED_ATOMIC(FetchXor, a, v, mo); 734 } 735 #endif 736 737 SANITIZER_INTERFACE_ATTRIBUTE 738 a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) { 739 SCOPED_ATOMIC(FetchNand, a, v, mo); 740 } 741 742 SANITIZER_INTERFACE_ATTRIBUTE 743 a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) { 744 SCOPED_ATOMIC(FetchNand, a, v, mo); 745 } 746 747 SANITIZER_INTERFACE_ATTRIBUTE 748 a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) { 749 SCOPED_ATOMIC(FetchNand, a, v, mo); 750 } 751 752 SANITIZER_INTERFACE_ATTRIBUTE 753 a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) { 754 SCOPED_ATOMIC(FetchNand, a, v, mo); 755 } 756 757 #if __TSAN_HAS_INT128 758 SANITIZER_INTERFACE_ATTRIBUTE 759 a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) { 760 SCOPED_ATOMIC(FetchNand, a, v, mo); 761 } 762 #endif 763 764 SANITIZER_INTERFACE_ATTRIBUTE 765 int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v, 766 morder mo, morder fmo) { 767 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 768 } 769 770 SANITIZER_INTERFACE_ATTRIBUTE 771 int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v, 772 morder mo, morder fmo) { 773 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 774 } 775 776 SANITIZER_INTERFACE_ATTRIBUTE 777 int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v, 778 morder mo, morder fmo) { 779 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 780 } 781 782 SANITIZER_INTERFACE_ATTRIBUTE 783 int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v, 784 morder mo, morder fmo) { 785 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 786 } 787 788 #if __TSAN_HAS_INT128 789 SANITIZER_INTERFACE_ATTRIBUTE 790 int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v, 791 morder mo, morder fmo) { 792 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 793 } 794 #endif 795 796 SANITIZER_INTERFACE_ATTRIBUTE 797 int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v, 798 morder mo, morder fmo) { 799 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 800 } 801 802 SANITIZER_INTERFACE_ATTRIBUTE 803 int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v, 804 morder mo, morder fmo) { 805 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 806 } 807 808 SANITIZER_INTERFACE_ATTRIBUTE 809 int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v, 810 morder mo, morder fmo) { 811 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 812 } 813 814 SANITIZER_INTERFACE_ATTRIBUTE 815 int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v, 816 morder mo, morder fmo) { 817 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 818 } 819 820 #if __TSAN_HAS_INT128 821 SANITIZER_INTERFACE_ATTRIBUTE 822 int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v, 823 morder mo, morder fmo) { 824 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 825 } 826 #endif 827 828 SANITIZER_INTERFACE_ATTRIBUTE 829 a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v, 830 morder mo, morder fmo) { 831 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 832 } 833 834 SANITIZER_INTERFACE_ATTRIBUTE 835 a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v, 836 morder mo, morder fmo) { 837 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 838 } 839 840 SANITIZER_INTERFACE_ATTRIBUTE 841 a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v, 842 morder mo, morder fmo) { 843 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 844 } 845 846 SANITIZER_INTERFACE_ATTRIBUTE 847 a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v, 848 morder mo, morder fmo) { 849 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 850 } 851 852 #if __TSAN_HAS_INT128 853 SANITIZER_INTERFACE_ATTRIBUTE 854 a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v, 855 morder mo, morder fmo) { 856 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); 857 } 858 #endif 859 860 SANITIZER_INTERFACE_ATTRIBUTE 861 void __tsan_atomic_thread_fence(morder mo) { 862 char* a = 0; 863 SCOPED_ATOMIC(Fence, mo); 864 } 865 866 SANITIZER_INTERFACE_ATTRIBUTE 867 void __tsan_atomic_signal_fence(morder mo) { 868 } 869 } // extern "C" 870 871 #else // #ifndef SANITIZER_GO 872 873 // Go 874 875 #define ATOMIC(func, ...) \ 876 if (thr->ignore_sync) { \ 877 NoTsanAtomic##func(__VA_ARGS__); \ 878 } else { \ 879 FuncEntry(thr, cpc); \ 880 Atomic##func(thr, pc, __VA_ARGS__); \ 881 FuncExit(thr); \ 882 } \ 883 /**/ 884 885 #define ATOMIC_RET(func, ret, ...) \ 886 if (thr->ignore_sync) { \ 887 (ret) = NoTsanAtomic##func(__VA_ARGS__); \ 888 } else { \ 889 FuncEntry(thr, cpc); \ 890 (ret) = Atomic##func(thr, pc, __VA_ARGS__); \ 891 FuncExit(thr); \ 892 } \ 893 /**/ 894 895 extern "C" { 896 SANITIZER_INTERFACE_ATTRIBUTE 897 void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 898 ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire); 899 } 900 901 SANITIZER_INTERFACE_ATTRIBUTE 902 void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 903 ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire); 904 } 905 906 SANITIZER_INTERFACE_ATTRIBUTE 907 void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 908 ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release); 909 } 910 911 SANITIZER_INTERFACE_ATTRIBUTE 912 void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 913 ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release); 914 } 915 916 SANITIZER_INTERFACE_ATTRIBUTE 917 void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 918 ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel); 919 } 920 921 SANITIZER_INTERFACE_ATTRIBUTE 922 void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 923 ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel); 924 } 925 926 SANITIZER_INTERFACE_ATTRIBUTE 927 void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 928 ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel); 929 } 930 931 SANITIZER_INTERFACE_ATTRIBUTE 932 void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 933 ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel); 934 } 935 936 SANITIZER_INTERFACE_ATTRIBUTE 937 void __tsan_go_atomic32_compare_exchange( 938 ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 939 a32 cur = 0; 940 a32 cmp = *(a32*)(a+8); 941 ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire); 942 *(bool*)(a+16) = (cur == cmp); 943 } 944 945 SANITIZER_INTERFACE_ATTRIBUTE 946 void __tsan_go_atomic64_compare_exchange( 947 ThreadState *thr, uptr cpc, uptr pc, u8 *a) { 948 a64 cur = 0; 949 a64 cmp = *(a64*)(a+8); 950 ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire); 951 *(bool*)(a+24) = (cur == cmp); 952 } 953 } // extern "C" 954 #endif // #ifndef SANITIZER_GO 955