Home | History | Annotate | Download | only in Core
      1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a basic region store model. In this model, we do have field
     11 // sensitivity. But we assume nothing about the heap shape. So recursive data
     12 // structures are largely ignored. Basically we do 1-limiting analysis.
     13 // Parameter pointers are assumed with no aliasing. Pointee objects of
     14 // parameters are created lazily.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/Analysis/Analyses/LiveVariables.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
     28 #include "llvm/ADT/ImmutableList.h"
     29 #include "llvm/ADT/ImmutableMap.h"
     30 #include "llvm/ADT/Optional.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 
     33 using namespace clang;
     34 using namespace ento;
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Representation of binding keys.
     38 //===----------------------------------------------------------------------===//
     39 
     40 namespace {
     41 class BindingKey {
     42 public:
     43   enum Kind { Default = 0x0, Direct = 0x1 };
     44 private:
     45   enum { Symbolic = 0x2 };
     46 
     47   llvm::PointerIntPair<const MemRegion *, 2> P;
     48   uint64_t Data;
     49 
     50   /// Create a key for a binding to region \p r, which has a symbolic offset
     51   /// from region \p Base.
     52   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
     53     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
     54     assert(r && Base && "Must have known regions.");
     55     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
     56   }
     57 
     58   /// Create a key for a binding at \p offset from base region \p r.
     59   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
     60     : P(r, k), Data(offset) {
     61     assert(r && "Must have known regions.");
     62     assert(getOffset() == offset && "Failed to store offset");
     63     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
     64   }
     65 public:
     66 
     67   bool isDirect() const { return P.getInt() & Direct; }
     68   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
     69 
     70   const MemRegion *getRegion() const { return P.getPointer(); }
     71   uint64_t getOffset() const {
     72     assert(!hasSymbolicOffset());
     73     return Data;
     74   }
     75 
     76   const SubRegion *getConcreteOffsetRegion() const {
     77     assert(hasSymbolicOffset());
     78     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
     79   }
     80 
     81   const MemRegion *getBaseRegion() const {
     82     if (hasSymbolicOffset())
     83       return getConcreteOffsetRegion()->getBaseRegion();
     84     return getRegion()->getBaseRegion();
     85   }
     86 
     87   void Profile(llvm::FoldingSetNodeID& ID) const {
     88     ID.AddPointer(P.getOpaqueValue());
     89     ID.AddInteger(Data);
     90   }
     91 
     92   static BindingKey Make(const MemRegion *R, Kind k);
     93 
     94   bool operator<(const BindingKey &X) const {
     95     if (P.getOpaqueValue() < X.P.getOpaqueValue())
     96       return true;
     97     if (P.getOpaqueValue() > X.P.getOpaqueValue())
     98       return false;
     99     return Data < X.Data;
    100   }
    101 
    102   bool operator==(const BindingKey &X) const {
    103     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
    104            Data == X.Data;
    105   }
    106 
    107   void dump() const;
    108 };
    109 } // end anonymous namespace
    110 
    111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
    112   const RegionOffset &RO = R->getAsOffset();
    113   if (RO.hasSymbolicOffset())
    114     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
    115 
    116   return BindingKey(RO.getRegion(), RO.getOffset(), k);
    117 }
    118 
    119 namespace llvm {
    120   static inline
    121   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
    122     os << '(' << K.getRegion();
    123     if (!K.hasSymbolicOffset())
    124       os << ',' << K.getOffset();
    125     os << ',' << (K.isDirect() ? "direct" : "default")
    126        << ')';
    127     return os;
    128   }
    129 
    130   template <typename T> struct isPodLike;
    131   template <> struct isPodLike<BindingKey> {
    132     static const bool value = true;
    133   };
    134 } // end llvm namespace
    135 
    136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // Actual Store type.
    140 //===----------------------------------------------------------------------===//
    141 
    142 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
    143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
    144 typedef std::pair<BindingKey, SVal> BindingPair;
    145 
    146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
    147         RegionBindings;
    148 
    149 namespace {
    150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
    151                                  ClusterBindings> {
    152  ClusterBindings::Factory &CBFactory;
    153 public:
    154   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
    155           ParentTy;
    156 
    157   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
    158                     const RegionBindings::TreeTy *T,
    159                     RegionBindings::TreeTy::Factory *F)
    160     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
    161       CBFactory(CBFactory) {}
    162 
    163   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
    164     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
    165       CBFactory(CBFactory) {}
    166 
    167   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
    168     return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
    169                              CBFactory);
    170   }
    171 
    172   RegionBindingsRef remove(key_type_ref K) const {
    173     return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
    174                              CBFactory);
    175   }
    176 
    177   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
    178 
    179   RegionBindingsRef addBinding(const MemRegion *R,
    180                                BindingKey::Kind k, SVal V) const;
    181 
    182   RegionBindingsRef &operator=(const RegionBindingsRef &X) {
    183     *static_cast<ParentTy*>(this) = X;
    184     return *this;
    185   }
    186 
    187   const SVal *lookup(BindingKey K) const;
    188   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
    189   const ClusterBindings *lookup(const MemRegion *R) const {
    190     return static_cast<const ParentTy*>(this)->lookup(R);
    191   }
    192 
    193   RegionBindingsRef removeBinding(BindingKey K);
    194 
    195   RegionBindingsRef removeBinding(const MemRegion *R,
    196                                   BindingKey::Kind k);
    197 
    198   RegionBindingsRef removeBinding(const MemRegion *R) {
    199     return removeBinding(R, BindingKey::Direct).
    200            removeBinding(R, BindingKey::Default);
    201   }
    202 
    203   Optional<SVal> getDirectBinding(const MemRegion *R) const;
    204 
    205   /// getDefaultBinding - Returns an SVal* representing an optional default
    206   ///  binding associated with a region and its subregions.
    207   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
    208 
    209   /// Return the internal tree as a Store.
    210   Store asStore() const {
    211     return asImmutableMap().getRootWithoutRetain();
    212   }
    213 
    214   void dump(raw_ostream &OS, const char *nl) const {
    215    for (iterator I = begin(), E = end(); I != E; ++I) {
    216      const ClusterBindings &Cluster = I.getData();
    217      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    218           CI != CE; ++CI) {
    219        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
    220      }
    221      OS << nl;
    222    }
    223   }
    224 
    225   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
    226 };
    227 } // end anonymous namespace
    228 
    229 typedef const RegionBindingsRef& RegionBindingsConstRef;
    230 
    231 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
    232   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
    233 }
    234 
    235 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
    236   if (R->isBoundable())
    237     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
    238       if (TR->getValueType()->isUnionType())
    239         return UnknownVal();
    240 
    241   return Optional<SVal>::create(lookup(R, BindingKey::Default));
    242 }
    243 
    244 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
    245   const MemRegion *Base = K.getBaseRegion();
    246 
    247   const ClusterBindings *ExistingCluster = lookup(Base);
    248   ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
    249                              : CBFactory.getEmptyMap());
    250 
    251   ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
    252   return add(Base, NewCluster);
    253 }
    254 
    255 
    256 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
    257                                                 BindingKey::Kind k,
    258                                                 SVal V) const {
    259   return addBinding(BindingKey::Make(R, k), V);
    260 }
    261 
    262 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
    263   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
    264   if (!Cluster)
    265     return nullptr;
    266   return Cluster->lookup(K);
    267 }
    268 
    269 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
    270                                       BindingKey::Kind k) const {
    271   return lookup(BindingKey::Make(R, k));
    272 }
    273 
    274 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
    275   const MemRegion *Base = K.getBaseRegion();
    276   const ClusterBindings *Cluster = lookup(Base);
    277   if (!Cluster)
    278     return *this;
    279 
    280   ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
    281   if (NewCluster.isEmpty())
    282     return remove(Base);
    283   return add(Base, NewCluster);
    284 }
    285 
    286 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
    287                                                 BindingKey::Kind k){
    288   return removeBinding(BindingKey::Make(R, k));
    289 }
    290 
    291 //===----------------------------------------------------------------------===//
    292 // Fine-grained control of RegionStoreManager.
    293 //===----------------------------------------------------------------------===//
    294 
    295 namespace {
    296 struct minimal_features_tag {};
    297 struct maximal_features_tag {};
    298 
    299 class RegionStoreFeatures {
    300   bool SupportsFields;
    301 public:
    302   RegionStoreFeatures(minimal_features_tag) :
    303     SupportsFields(false) {}
    304 
    305   RegionStoreFeatures(maximal_features_tag) :
    306     SupportsFields(true) {}
    307 
    308   void enableFields(bool t) { SupportsFields = t; }
    309 
    310   bool supportsFields() const { return SupportsFields; }
    311 };
    312 }
    313 
    314 //===----------------------------------------------------------------------===//
    315 // Main RegionStore logic.
    316 //===----------------------------------------------------------------------===//
    317 
    318 namespace {
    319 class invalidateRegionsWorker;
    320 
    321 class RegionStoreManager : public StoreManager {
    322 public:
    323   const RegionStoreFeatures Features;
    324 
    325   RegionBindings::Factory RBFactory;
    326   mutable ClusterBindings::Factory CBFactory;
    327 
    328   typedef std::vector<SVal> SValListTy;
    329 private:
    330   typedef llvm::DenseMap<const LazyCompoundValData *,
    331                          SValListTy> LazyBindingsMapTy;
    332   LazyBindingsMapTy LazyBindingsMap;
    333 
    334   /// The largest number of fields a struct can have and still be
    335   /// considered "small".
    336   ///
    337   /// This is currently used to decide whether or not it is worth "forcing" a
    338   /// LazyCompoundVal on bind.
    339   ///
    340   /// This is controlled by 'region-store-small-struct-limit' option.
    341   /// To disable all small-struct-dependent behavior, set the option to "0".
    342   unsigned SmallStructLimit;
    343 
    344   /// \brief A helper used to populate the work list with the given set of
    345   /// regions.
    346   void populateWorkList(invalidateRegionsWorker &W,
    347                         ArrayRef<SVal> Values,
    348                         InvalidatedRegions *TopLevelRegions);
    349 
    350 public:
    351   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    352     : StoreManager(mgr), Features(f),
    353       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
    354       SmallStructLimit(0) {
    355     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
    356       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
    357       SmallStructLimit =
    358         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
    359     }
    360   }
    361 
    362 
    363   /// setImplicitDefaultValue - Set the default binding for the provided
    364   ///  MemRegion to the value implicitly defined for compound literals when
    365   ///  the value is not specified.
    366   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
    367                                             const MemRegion *R, QualType T);
    368 
    369   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    370   ///  type.  'Array' represents the lvalue of the array being decayed
    371   ///  to a pointer, and the returned SVal represents the decayed
    372   ///  version of that lvalue (i.e., a pointer to the first element of
    373   ///  the array).  This is called by ExprEngine when evaluating
    374   ///  casts from arrays to pointers.
    375   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
    376 
    377   StoreRef getInitialStore(const LocationContext *InitLoc) override {
    378     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
    379   }
    380 
    381   //===-------------------------------------------------------------------===//
    382   // Binding values to regions.
    383   //===-------------------------------------------------------------------===//
    384   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
    385                                            const Expr *Ex,
    386                                            unsigned Count,
    387                                            const LocationContext *LCtx,
    388                                            RegionBindingsRef B,
    389                                            InvalidatedRegions *Invalidated);
    390 
    391   StoreRef invalidateRegions(Store store,
    392                              ArrayRef<SVal> Values,
    393                              const Expr *E, unsigned Count,
    394                              const LocationContext *LCtx,
    395                              const CallEvent *Call,
    396                              InvalidatedSymbols &IS,
    397                              RegionAndSymbolInvalidationTraits &ITraits,
    398                              InvalidatedRegions *Invalidated,
    399                              InvalidatedRegions *InvalidatedTopLevel) override;
    400 
    401   bool scanReachableSymbols(Store S, const MemRegion *R,
    402                             ScanReachableSymbols &Callbacks) override;
    403 
    404   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
    405                                             const SubRegion *R);
    406 
    407 public: // Part of public interface to class.
    408 
    409   StoreRef Bind(Store store, Loc LV, SVal V) override {
    410     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
    411   }
    412 
    413   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
    414 
    415   // BindDefault is only used to initialize a region with a default value.
    416   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
    417     RegionBindingsRef B = getRegionBindings(store);
    418     assert(!B.lookup(R, BindingKey::Direct));
    419 
    420     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
    421     if (B.lookup(Key)) {
    422       const SubRegion *SR = cast<SubRegion>(R);
    423       assert(SR->getAsOffset().getOffset() ==
    424              SR->getSuperRegion()->getAsOffset().getOffset() &&
    425              "A default value must come from a super-region");
    426       B = removeSubRegionBindings(B, SR);
    427     } else {
    428       B = B.addBinding(Key, V);
    429     }
    430 
    431     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
    432   }
    433 
    434   /// Attempt to extract the fields of \p LCV and bind them to the struct region
    435   /// \p R.
    436   ///
    437   /// This path is used when it seems advantageous to "force" loading the values
    438   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
    439   /// than using a Default binding at the base of the entire region. This is a
    440   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
    441   ///
    442   /// \returns The updated store bindings, or \c None if binding non-lazily
    443   ///          would be too expensive.
    444   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
    445                                                  const TypedValueRegion *R,
    446                                                  const RecordDecl *RD,
    447                                                  nonloc::LazyCompoundVal LCV);
    448 
    449   /// BindStruct - Bind a compound value to a structure.
    450   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
    451                                const TypedValueRegion* R, SVal V);
    452 
    453   /// BindVector - Bind a compound value to a vector.
    454   RegionBindingsRef bindVector(RegionBindingsConstRef B,
    455                                const TypedValueRegion* R, SVal V);
    456 
    457   RegionBindingsRef bindArray(RegionBindingsConstRef B,
    458                               const TypedValueRegion* R,
    459                               SVal V);
    460 
    461   /// Clears out all bindings in the given region and assigns a new value
    462   /// as a Default binding.
    463   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
    464                                   const TypedRegion *R,
    465                                   SVal DefaultVal);
    466 
    467   /// \brief Create a new store with the specified binding removed.
    468   /// \param ST the original store, that is the basis for the new store.
    469   /// \param L the location whose binding should be removed.
    470   StoreRef killBinding(Store ST, Loc L) override;
    471 
    472   void incrementReferenceCount(Store store) override {
    473     getRegionBindings(store).manualRetain();
    474   }
    475 
    476   /// If the StoreManager supports it, decrement the reference count of
    477   /// the specified Store object.  If the reference count hits 0, the memory
    478   /// associated with the object is recycled.
    479   void decrementReferenceCount(Store store) override {
    480     getRegionBindings(store).manualRelease();
    481   }
    482 
    483   bool includedInBindings(Store store, const MemRegion *region) const override;
    484 
    485   /// \brief Return the value bound to specified location in a given state.
    486   ///
    487   /// The high level logic for this method is this:
    488   /// getBinding (L)
    489   ///   if L has binding
    490   ///     return L's binding
    491   ///   else if L is in killset
    492   ///     return unknown
    493   ///   else
    494   ///     if L is on stack or heap
    495   ///       return undefined
    496   ///     else
    497   ///       return symbolic
    498   SVal getBinding(Store S, Loc L, QualType T) override {
    499     return getBinding(getRegionBindings(S), L, T);
    500   }
    501 
    502   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
    503 
    504   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
    505 
    506   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
    507 
    508   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
    509 
    510   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
    511 
    512   SVal getBindingForLazySymbol(const TypedValueRegion *R);
    513 
    514   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
    515                                          const TypedValueRegion *R,
    516                                          QualType Ty);
    517 
    518   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
    519                       RegionBindingsRef LazyBinding);
    520 
    521   /// Get bindings for the values in a struct and return a CompoundVal, used
    522   /// when doing struct copy:
    523   /// struct s x, y;
    524   /// x = y;
    525   /// y's value is retrieved by this method.
    526   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
    527   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
    528   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
    529 
    530   /// Used to lazily generate derived symbols for bindings that are defined
    531   /// implicitly by default bindings in a super region.
    532   ///
    533   /// Note that callers may need to specially handle LazyCompoundVals, which
    534   /// are returned as is in case the caller needs to treat them differently.
    535   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
    536                                                   const MemRegion *superR,
    537                                                   const TypedValueRegion *R,
    538                                                   QualType Ty);
    539 
    540   /// Get the state and region whose binding this region \p R corresponds to.
    541   ///
    542   /// If there is no lazy binding for \p R, the returned value will have a null
    543   /// \c second. Note that a null pointer can represents a valid Store.
    544   std::pair<Store, const SubRegion *>
    545   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
    546                   const SubRegion *originalRegion);
    547 
    548   /// Returns the cached set of interesting SVals contained within a lazy
    549   /// binding.
    550   ///
    551   /// The precise value of "interesting" is determined for the purposes of
    552   /// RegionStore's internal analysis. It must always contain all regions and
    553   /// symbols, but may omit constants and other kinds of SVal.
    554   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
    555 
    556   //===------------------------------------------------------------------===//
    557   // State pruning.
    558   //===------------------------------------------------------------------===//
    559 
    560   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
    561   ///  It returns a new Store with these values removed.
    562   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
    563                               SymbolReaper& SymReaper) override;
    564 
    565   //===------------------------------------------------------------------===//
    566   // Region "extents".
    567   //===------------------------------------------------------------------===//
    568 
    569   // FIXME: This method will soon be eliminated; see the note in Store.h.
    570   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
    571                                          const MemRegion* R,
    572                                          QualType EleTy) override;
    573 
    574   //===------------------------------------------------------------------===//
    575   // Utility methods.
    576   //===------------------------------------------------------------------===//
    577 
    578   RegionBindingsRef getRegionBindings(Store store) const {
    579     return RegionBindingsRef(CBFactory,
    580                              static_cast<const RegionBindings::TreeTy*>(store),
    581                              RBFactory.getTreeFactory());
    582   }
    583 
    584   void print(Store store, raw_ostream &Out, const char* nl,
    585              const char *sep) override;
    586 
    587   void iterBindings(Store store, BindingsHandler& f) override {
    588     RegionBindingsRef B = getRegionBindings(store);
    589     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    590       const ClusterBindings &Cluster = I.getData();
    591       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    592            CI != CE; ++CI) {
    593         const BindingKey &K = CI.getKey();
    594         if (!K.isDirect())
    595           continue;
    596         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
    597           // FIXME: Possibly incorporate the offset?
    598           if (!f.HandleBinding(*this, store, R, CI.getData()))
    599             return;
    600         }
    601       }
    602     }
    603   }
    604 };
    605 
    606 } // end anonymous namespace
    607 
    608 //===----------------------------------------------------------------------===//
    609 // RegionStore creation.
    610 //===----------------------------------------------------------------------===//
    611 
    612 std::unique_ptr<StoreManager>
    613 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
    614   RegionStoreFeatures F = maximal_features_tag();
    615   return llvm::make_unique<RegionStoreManager>(StMgr, F);
    616 }
    617 
    618 std::unique_ptr<StoreManager>
    619 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
    620   RegionStoreFeatures F = minimal_features_tag();
    621   F.enableFields(true);
    622   return llvm::make_unique<RegionStoreManager>(StMgr, F);
    623 }
    624 
    625 
    626 //===----------------------------------------------------------------------===//
    627 // Region Cluster analysis.
    628 //===----------------------------------------------------------------------===//
    629 
    630 namespace {
    631 /// Used to determine which global regions are automatically included in the
    632 /// initial worklist of a ClusterAnalysis.
    633 enum GlobalsFilterKind {
    634   /// Don't include any global regions.
    635   GFK_None,
    636   /// Only include system globals.
    637   GFK_SystemOnly,
    638   /// Include all global regions.
    639   GFK_All
    640 };
    641 
    642 template <typename DERIVED>
    643 class ClusterAnalysis  {
    644 protected:
    645   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
    646   typedef const MemRegion * WorkListElement;
    647   typedef SmallVector<WorkListElement, 10> WorkList;
    648 
    649   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
    650 
    651   WorkList WL;
    652 
    653   RegionStoreManager &RM;
    654   ASTContext &Ctx;
    655   SValBuilder &svalBuilder;
    656 
    657   RegionBindingsRef B;
    658 
    659 private:
    660   GlobalsFilterKind GlobalsFilter;
    661 
    662 protected:
    663   const ClusterBindings *getCluster(const MemRegion *R) {
    664     return B.lookup(R);
    665   }
    666 
    667   /// Returns true if the memory space of the given region is one of the global
    668   /// regions specially included at the start of analysis.
    669   bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
    670     switch (GlobalsFilter) {
    671     case GFK_None:
    672       return false;
    673     case GFK_SystemOnly:
    674       return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
    675     case GFK_All:
    676       return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
    677     }
    678 
    679     llvm_unreachable("unknown globals filter");
    680   }
    681 
    682 public:
    683   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
    684                   RegionBindingsRef b, GlobalsFilterKind GFK)
    685     : RM(rm), Ctx(StateMgr.getContext()),
    686       svalBuilder(StateMgr.getSValBuilder()),
    687       B(b), GlobalsFilter(GFK) {}
    688 
    689   RegionBindingsRef getRegionBindings() const { return B; }
    690 
    691   bool isVisited(const MemRegion *R) {
    692     return Visited.count(getCluster(R));
    693   }
    694 
    695   void GenerateClusters() {
    696     // Scan the entire set of bindings and record the region clusters.
    697     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
    698          RI != RE; ++RI){
    699       const MemRegion *Base = RI.getKey();
    700 
    701       const ClusterBindings &Cluster = RI.getData();
    702       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
    703       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
    704 
    705       // If this is an interesting global region, add it the work list up front.
    706       if (isInitiallyIncludedGlobalRegion(Base))
    707         AddToWorkList(WorkListElement(Base), &Cluster);
    708     }
    709   }
    710 
    711   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
    712     if (C && !Visited.insert(C).second)
    713       return false;
    714     WL.push_back(E);
    715     return true;
    716   }
    717 
    718   bool AddToWorkList(const MemRegion *R) {
    719     const MemRegion *BaseR = R->getBaseRegion();
    720     return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
    721   }
    722 
    723   void RunWorkList() {
    724     while (!WL.empty()) {
    725       WorkListElement E = WL.pop_back_val();
    726       const MemRegion *BaseR = E;
    727 
    728       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
    729     }
    730   }
    731 
    732   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
    733   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
    734 
    735   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
    736                     bool Flag) {
    737     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
    738   }
    739 };
    740 }
    741 
    742 //===----------------------------------------------------------------------===//
    743 // Binding invalidation.
    744 //===----------------------------------------------------------------------===//
    745 
    746 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
    747                                               ScanReachableSymbols &Callbacks) {
    748   assert(R == R->getBaseRegion() && "Should only be called for base regions");
    749   RegionBindingsRef B = getRegionBindings(S);
    750   const ClusterBindings *Cluster = B.lookup(R);
    751 
    752   if (!Cluster)
    753     return true;
    754 
    755   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
    756        RI != RE; ++RI) {
    757     if (!Callbacks.scan(RI.getData()))
    758       return false;
    759   }
    760 
    761   return true;
    762 }
    763 
    764 static inline bool isUnionField(const FieldRegion *FR) {
    765   return FR->getDecl()->getParent()->isUnion();
    766 }
    767 
    768 typedef SmallVector<const FieldDecl *, 8> FieldVector;
    769 
    770 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
    771   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    772 
    773   const MemRegion *Base = K.getConcreteOffsetRegion();
    774   const MemRegion *R = K.getRegion();
    775 
    776   while (R != Base) {
    777     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
    778       if (!isUnionField(FR))
    779         Fields.push_back(FR->getDecl());
    780 
    781     R = cast<SubRegion>(R)->getSuperRegion();
    782   }
    783 }
    784 
    785 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
    786   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    787 
    788   if (Fields.empty())
    789     return true;
    790 
    791   FieldVector FieldsInBindingKey;
    792   getSymbolicOffsetFields(K, FieldsInBindingKey);
    793 
    794   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
    795   if (Delta >= 0)
    796     return std::equal(FieldsInBindingKey.begin() + Delta,
    797                       FieldsInBindingKey.end(),
    798                       Fields.begin());
    799   else
    800     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
    801                       Fields.begin() - Delta);
    802 }
    803 
    804 /// Collects all bindings in \p Cluster that may refer to bindings within
    805 /// \p Top.
    806 ///
    807 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
    808 /// \c second is the value (an SVal).
    809 ///
    810 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
    811 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
    812 /// an aggregate within a larger aggregate with a default binding.
    813 static void
    814 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    815                          SValBuilder &SVB, const ClusterBindings &Cluster,
    816                          const SubRegion *Top, BindingKey TopKey,
    817                          bool IncludeAllDefaultBindings) {
    818   FieldVector FieldsInSymbolicSubregions;
    819   if (TopKey.hasSymbolicOffset()) {
    820     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
    821     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
    822     TopKey = BindingKey::Make(Top, BindingKey::Default);
    823   }
    824 
    825   // Find the length (in bits) of the region being invalidated.
    826   uint64_t Length = UINT64_MAX;
    827   SVal Extent = Top->getExtent(SVB);
    828   if (Optional<nonloc::ConcreteInt> ExtentCI =
    829           Extent.getAs<nonloc::ConcreteInt>()) {
    830     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
    831     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
    832     // Extents are in bytes but region offsets are in bits. Be careful!
    833     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
    834   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
    835     if (FR->getDecl()->isBitField())
    836       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
    837   }
    838 
    839   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
    840        I != E; ++I) {
    841     BindingKey NextKey = I.getKey();
    842     if (NextKey.getRegion() == TopKey.getRegion()) {
    843       // FIXME: This doesn't catch the case where we're really invalidating a
    844       // region with a symbolic offset. Example:
    845       //      R: points[i].y
    846       //   Next: points[0].x
    847 
    848       if (NextKey.getOffset() > TopKey.getOffset() &&
    849           NextKey.getOffset() - TopKey.getOffset() < Length) {
    850         // Case 1: The next binding is inside the region we're invalidating.
    851         // Include it.
    852         Bindings.push_back(*I);
    853 
    854       } else if (NextKey.getOffset() == TopKey.getOffset()) {
    855         // Case 2: The next binding is at the same offset as the region we're
    856         // invalidating. In this case, we need to leave default bindings alone,
    857         // since they may be providing a default value for a regions beyond what
    858         // we're invalidating.
    859         // FIXME: This is probably incorrect; consider invalidating an outer
    860         // struct whose first field is bound to a LazyCompoundVal.
    861         if (IncludeAllDefaultBindings || NextKey.isDirect())
    862           Bindings.push_back(*I);
    863       }
    864 
    865     } else if (NextKey.hasSymbolicOffset()) {
    866       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
    867       if (Top->isSubRegionOf(Base)) {
    868         // Case 3: The next key is symbolic and we just changed something within
    869         // its concrete region. We don't know if the binding is still valid, so
    870         // we'll be conservative and include it.
    871         if (IncludeAllDefaultBindings || NextKey.isDirect())
    872           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    873             Bindings.push_back(*I);
    874       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
    875         // Case 4: The next key is symbolic, but we changed a known
    876         // super-region. In this case the binding is certainly included.
    877         if (Top == Base || BaseSR->isSubRegionOf(Top))
    878           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    879             Bindings.push_back(*I);
    880       }
    881     }
    882   }
    883 }
    884 
    885 static void
    886 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    887                          SValBuilder &SVB, const ClusterBindings &Cluster,
    888                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
    889   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
    890                            BindingKey::Make(Top, BindingKey::Default),
    891                            IncludeAllDefaultBindings);
    892 }
    893 
    894 RegionBindingsRef
    895 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
    896                                             const SubRegion *Top) {
    897   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
    898   const MemRegion *ClusterHead = TopKey.getBaseRegion();
    899 
    900   if (Top == ClusterHead) {
    901     // We can remove an entire cluster's bindings all in one go.
    902     return B.remove(Top);
    903   }
    904 
    905   const ClusterBindings *Cluster = B.lookup(ClusterHead);
    906   if (!Cluster) {
    907     // If we're invalidating a region with a symbolic offset, we need to make
    908     // sure we don't treat the base region as uninitialized anymore.
    909     if (TopKey.hasSymbolicOffset()) {
    910       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    911       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
    912     }
    913     return B;
    914   }
    915 
    916   SmallVector<BindingPair, 32> Bindings;
    917   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
    918                            /*IncludeAllDefaultBindings=*/false);
    919 
    920   ClusterBindingsRef Result(*Cluster, CBFactory);
    921   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
    922                                                     E = Bindings.end();
    923        I != E; ++I)
    924     Result = Result.remove(I->first);
    925 
    926   // If we're invalidating a region with a symbolic offset, we need to make sure
    927   // we don't treat the base region as uninitialized anymore.
    928   // FIXME: This isn't very precise; see the example in
    929   // collectSubRegionBindings.
    930   if (TopKey.hasSymbolicOffset()) {
    931     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    932     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
    933                         UnknownVal());
    934   }
    935 
    936   if (Result.isEmpty())
    937     return B.remove(ClusterHead);
    938   return B.add(ClusterHead, Result.asImmutableMap());
    939 }
    940 
    941 namespace {
    942 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
    943 {
    944   const Expr *Ex;
    945   unsigned Count;
    946   const LocationContext *LCtx;
    947   InvalidatedSymbols &IS;
    948   RegionAndSymbolInvalidationTraits &ITraits;
    949   StoreManager::InvalidatedRegions *Regions;
    950 public:
    951   invalidateRegionsWorker(RegionStoreManager &rm,
    952                           ProgramStateManager &stateMgr,
    953                           RegionBindingsRef b,
    954                           const Expr *ex, unsigned count,
    955                           const LocationContext *lctx,
    956                           InvalidatedSymbols &is,
    957                           RegionAndSymbolInvalidationTraits &ITraitsIn,
    958                           StoreManager::InvalidatedRegions *r,
    959                           GlobalsFilterKind GFK)
    960     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
    961       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){}
    962 
    963   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
    964   void VisitBinding(SVal V);
    965 };
    966 }
    967 
    968 void invalidateRegionsWorker::VisitBinding(SVal V) {
    969   // A symbol?  Mark it touched by the invalidation.
    970   if (SymbolRef Sym = V.getAsSymbol())
    971     IS.insert(Sym);
    972 
    973   if (const MemRegion *R = V.getAsRegion()) {
    974     AddToWorkList(R);
    975     return;
    976   }
    977 
    978   // Is it a LazyCompoundVal?  All references get invalidated as well.
    979   if (Optional<nonloc::LazyCompoundVal> LCS =
    980           V.getAs<nonloc::LazyCompoundVal>()) {
    981 
    982     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
    983 
    984     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
    985                                                         E = Vals.end();
    986          I != E; ++I)
    987       VisitBinding(*I);
    988 
    989     return;
    990   }
    991 }
    992 
    993 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
    994                                            const ClusterBindings *C) {
    995 
    996   bool PreserveRegionsContents =
    997       ITraits.hasTrait(baseR,
    998                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
    999 
   1000   if (C) {
   1001     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
   1002       VisitBinding(I.getData());
   1003 
   1004     // Invalidate regions contents.
   1005     if (!PreserveRegionsContents)
   1006       B = B.remove(baseR);
   1007   }
   1008 
   1009   // BlockDataRegion?  If so, invalidate captured variables that are passed
   1010   // by reference.
   1011   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
   1012     for (BlockDataRegion::referenced_vars_iterator
   1013          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
   1014          BI != BE; ++BI) {
   1015       const VarRegion *VR = BI.getCapturedRegion();
   1016       const VarDecl *VD = VR->getDecl();
   1017       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
   1018         AddToWorkList(VR);
   1019       }
   1020       else if (Loc::isLocType(VR->getValueType())) {
   1021         // Map the current bindings to a Store to retrieve the value
   1022         // of the binding.  If that binding itself is a region, we should
   1023         // invalidate that region.  This is because a block may capture
   1024         // a pointer value, but the thing pointed by that pointer may
   1025         // get invalidated.
   1026         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
   1027         if (Optional<Loc> L = V.getAs<Loc>()) {
   1028           if (const MemRegion *LR = L->getAsRegion())
   1029             AddToWorkList(LR);
   1030         }
   1031       }
   1032     }
   1033     return;
   1034   }
   1035 
   1036   // Symbolic region?
   1037   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
   1038     IS.insert(SR->getSymbol());
   1039 
   1040   // Nothing else should be done in the case when we preserve regions context.
   1041   if (PreserveRegionsContents)
   1042     return;
   1043 
   1044   // Otherwise, we have a normal data region. Record that we touched the region.
   1045   if (Regions)
   1046     Regions->push_back(baseR);
   1047 
   1048   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
   1049     // Invalidate the region by setting its default value to
   1050     // conjured symbol. The type of the symbol is irrelevant.
   1051     DefinedOrUnknownSVal V =
   1052       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
   1053     B = B.addBinding(baseR, BindingKey::Default, V);
   1054     return;
   1055   }
   1056 
   1057   if (!baseR->isBoundable())
   1058     return;
   1059 
   1060   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
   1061   QualType T = TR->getValueType();
   1062 
   1063   if (isInitiallyIncludedGlobalRegion(baseR)) {
   1064     // If the region is a global and we are invalidating all globals,
   1065     // erasing the entry is good enough.  This causes all globals to be lazily
   1066     // symbolicated from the same base symbol.
   1067     return;
   1068   }
   1069 
   1070   if (T->isStructureOrClassType()) {
   1071     // Invalidate the region by setting its default value to
   1072     // conjured symbol. The type of the symbol is irrelevant.
   1073     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1074                                                           Ctx.IntTy, Count);
   1075     B = B.addBinding(baseR, BindingKey::Default, V);
   1076     return;
   1077   }
   1078 
   1079   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
   1080       // Set the default value of the array to conjured symbol.
   1081     DefinedOrUnknownSVal V =
   1082     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1083                                      AT->getElementType(), Count);
   1084     B = B.addBinding(baseR, BindingKey::Default, V);
   1085     return;
   1086   }
   1087 
   1088   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1089                                                         T,Count);
   1090   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
   1091   B = B.addBinding(baseR, BindingKey::Direct, V);
   1092 }
   1093 
   1094 RegionBindingsRef
   1095 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
   1096                                            const Expr *Ex,
   1097                                            unsigned Count,
   1098                                            const LocationContext *LCtx,
   1099                                            RegionBindingsRef B,
   1100                                            InvalidatedRegions *Invalidated) {
   1101   // Bind the globals memory space to a new symbol that we will use to derive
   1102   // the bindings for all globals.
   1103   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
   1104   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
   1105                                         /* type does not matter */ Ctx.IntTy,
   1106                                         Count);
   1107 
   1108   B = B.removeBinding(GS)
   1109        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
   1110 
   1111   // Even if there are no bindings in the global scope, we still need to
   1112   // record that we touched it.
   1113   if (Invalidated)
   1114     Invalidated->push_back(GS);
   1115 
   1116   return B;
   1117 }
   1118 
   1119 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
   1120                                           ArrayRef<SVal> Values,
   1121                                           InvalidatedRegions *TopLevelRegions) {
   1122   for (ArrayRef<SVal>::iterator I = Values.begin(),
   1123                                 E = Values.end(); I != E; ++I) {
   1124     SVal V = *I;
   1125     if (Optional<nonloc::LazyCompoundVal> LCS =
   1126         V.getAs<nonloc::LazyCompoundVal>()) {
   1127 
   1128       const SValListTy &Vals = getInterestingValues(*LCS);
   1129 
   1130       for (SValListTy::const_iterator I = Vals.begin(),
   1131                                       E = Vals.end(); I != E; ++I) {
   1132         // Note: the last argument is false here because these are
   1133         // non-top-level regions.
   1134         if (const MemRegion *R = (*I).getAsRegion())
   1135           W.AddToWorkList(R);
   1136       }
   1137       continue;
   1138     }
   1139 
   1140     if (const MemRegion *R = V.getAsRegion()) {
   1141       if (TopLevelRegions)
   1142         TopLevelRegions->push_back(R);
   1143       W.AddToWorkList(R);
   1144       continue;
   1145     }
   1146   }
   1147 }
   1148 
   1149 StoreRef
   1150 RegionStoreManager::invalidateRegions(Store store,
   1151                                      ArrayRef<SVal> Values,
   1152                                      const Expr *Ex, unsigned Count,
   1153                                      const LocationContext *LCtx,
   1154                                      const CallEvent *Call,
   1155                                      InvalidatedSymbols &IS,
   1156                                      RegionAndSymbolInvalidationTraits &ITraits,
   1157                                      InvalidatedRegions *TopLevelRegions,
   1158                                      InvalidatedRegions *Invalidated) {
   1159   GlobalsFilterKind GlobalsFilter;
   1160   if (Call) {
   1161     if (Call->isInSystemHeader())
   1162       GlobalsFilter = GFK_SystemOnly;
   1163     else
   1164       GlobalsFilter = GFK_All;
   1165   } else {
   1166     GlobalsFilter = GFK_None;
   1167   }
   1168 
   1169   RegionBindingsRef B = getRegionBindings(store);
   1170   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
   1171                             Invalidated, GlobalsFilter);
   1172 
   1173   // Scan the bindings and generate the clusters.
   1174   W.GenerateClusters();
   1175 
   1176   // Add the regions to the worklist.
   1177   populateWorkList(W, Values, TopLevelRegions);
   1178 
   1179   W.RunWorkList();
   1180 
   1181   // Return the new bindings.
   1182   B = W.getRegionBindings();
   1183 
   1184   // For calls, determine which global regions should be invalidated and
   1185   // invalidate them. (Note that function-static and immutable globals are never
   1186   // invalidated by this.)
   1187   // TODO: This could possibly be more precise with modules.
   1188   switch (GlobalsFilter) {
   1189   case GFK_All:
   1190     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
   1191                                Ex, Count, LCtx, B, Invalidated);
   1192     // FALLTHROUGH
   1193   case GFK_SystemOnly:
   1194     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
   1195                                Ex, Count, LCtx, B, Invalidated);
   1196     // FALLTHROUGH
   1197   case GFK_None:
   1198     break;
   1199   }
   1200 
   1201   return StoreRef(B.asStore(), *this);
   1202 }
   1203 
   1204 //===----------------------------------------------------------------------===//
   1205 // Extents for regions.
   1206 //===----------------------------------------------------------------------===//
   1207 
   1208 DefinedOrUnknownSVal
   1209 RegionStoreManager::getSizeInElements(ProgramStateRef state,
   1210                                       const MemRegion *R,
   1211                                       QualType EleTy) {
   1212   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
   1213   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
   1214   if (!SizeInt)
   1215     return UnknownVal();
   1216 
   1217   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
   1218 
   1219   if (Ctx.getAsVariableArrayType(EleTy)) {
   1220     // FIXME: We need to track extra state to properly record the size
   1221     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
   1222     // we don't have a divide-by-zero below.
   1223     return UnknownVal();
   1224   }
   1225 
   1226   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
   1227 
   1228   // If a variable is reinterpreted as a type that doesn't fit into a larger
   1229   // type evenly, round it down.
   1230   // This is a signed value, since it's used in arithmetic with signed indices.
   1231   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
   1232 }
   1233 
   1234 //===----------------------------------------------------------------------===//
   1235 // Location and region casting.
   1236 //===----------------------------------------------------------------------===//
   1237 
   1238 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
   1239 ///  type.  'Array' represents the lvalue of the array being decayed
   1240 ///  to a pointer, and the returned SVal represents the decayed
   1241 ///  version of that lvalue (i.e., a pointer to the first element of
   1242 ///  the array).  This is called by ExprEngine when evaluating casts
   1243 ///  from arrays to pointers.
   1244 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
   1245   if (!Array.getAs<loc::MemRegionVal>())
   1246     return UnknownVal();
   1247 
   1248   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
   1249   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
   1250   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
   1251 }
   1252 
   1253 //===----------------------------------------------------------------------===//
   1254 // Loading values from regions.
   1255 //===----------------------------------------------------------------------===//
   1256 
   1257 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
   1258   assert(!L.getAs<UnknownVal>() && "location unknown");
   1259   assert(!L.getAs<UndefinedVal>() && "location undefined");
   1260 
   1261   // For access to concrete addresses, return UnknownVal.  Checks
   1262   // for null dereferences (and similar errors) are done by checkers, not
   1263   // the Store.
   1264   // FIXME: We can consider lazily symbolicating such memory, but we really
   1265   // should defer this when we can reason easily about symbolicating arrays
   1266   // of bytes.
   1267   if (L.getAs<loc::ConcreteInt>()) {
   1268     return UnknownVal();
   1269   }
   1270   if (!L.getAs<loc::MemRegionVal>()) {
   1271     return UnknownVal();
   1272   }
   1273 
   1274   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
   1275 
   1276   if (isa<AllocaRegion>(MR) ||
   1277       isa<SymbolicRegion>(MR) ||
   1278       isa<CodeTextRegion>(MR)) {
   1279     if (T.isNull()) {
   1280       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
   1281         T = TR->getLocationType();
   1282       else {
   1283         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
   1284         T = SR->getSymbol()->getType();
   1285       }
   1286     }
   1287     MR = GetElementZeroRegion(MR, T);
   1288   }
   1289 
   1290   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
   1291   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
   1292   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
   1293   QualType RTy = R->getValueType();
   1294 
   1295   // FIXME: we do not yet model the parts of a complex type, so treat the
   1296   // whole thing as "unknown".
   1297   if (RTy->isAnyComplexType())
   1298     return UnknownVal();
   1299 
   1300   // FIXME: We should eventually handle funny addressing.  e.g.:
   1301   //
   1302   //   int x = ...;
   1303   //   int *p = &x;
   1304   //   char *q = (char*) p;
   1305   //   char c = *q;  // returns the first byte of 'x'.
   1306   //
   1307   // Such funny addressing will occur due to layering of regions.
   1308   if (RTy->isStructureOrClassType())
   1309     return getBindingForStruct(B, R);
   1310 
   1311   // FIXME: Handle unions.
   1312   if (RTy->isUnionType())
   1313     return createLazyBinding(B, R);
   1314 
   1315   if (RTy->isArrayType()) {
   1316     if (RTy->isConstantArrayType())
   1317       return getBindingForArray(B, R);
   1318     else
   1319       return UnknownVal();
   1320   }
   1321 
   1322   // FIXME: handle Vector types.
   1323   if (RTy->isVectorType())
   1324     return UnknownVal();
   1325 
   1326   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
   1327     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
   1328 
   1329   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
   1330     // FIXME: Here we actually perform an implicit conversion from the loaded
   1331     // value to the element type.  Eventually we want to compose these values
   1332     // more intelligently.  For example, an 'element' can encompass multiple
   1333     // bound regions (e.g., several bound bytes), or could be a subset of
   1334     // a larger value.
   1335     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
   1336   }
   1337 
   1338   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
   1339     // FIXME: Here we actually perform an implicit conversion from the loaded
   1340     // value to the ivar type.  What we should model is stores to ivars
   1341     // that blow past the extent of the ivar.  If the address of the ivar is
   1342     // reinterpretted, it is possible we stored a different value that could
   1343     // fit within the ivar.  Either we need to cast these when storing them
   1344     // or reinterpret them lazily (as we do here).
   1345     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
   1346   }
   1347 
   1348   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
   1349     // FIXME: Here we actually perform an implicit conversion from the loaded
   1350     // value to the variable type.  What we should model is stores to variables
   1351     // that blow past the extent of the variable.  If the address of the
   1352     // variable is reinterpretted, it is possible we stored a different value
   1353     // that could fit within the variable.  Either we need to cast these when
   1354     // storing them or reinterpret them lazily (as we do here).
   1355     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
   1356   }
   1357 
   1358   const SVal *V = B.lookup(R, BindingKey::Direct);
   1359 
   1360   // Check if the region has a binding.
   1361   if (V)
   1362     return *V;
   1363 
   1364   // The location does not have a bound value.  This means that it has
   1365   // the value it had upon its creation and/or entry to the analyzed
   1366   // function/method.  These are either symbolic values or 'undefined'.
   1367   if (R->hasStackNonParametersStorage()) {
   1368     // All stack variables are considered to have undefined values
   1369     // upon creation.  All heap allocated blocks are considered to
   1370     // have undefined values as well unless they are explicitly bound
   1371     // to specific values.
   1372     return UndefinedVal();
   1373   }
   1374 
   1375   // All other values are symbolic.
   1376   return svalBuilder.getRegionValueSymbolVal(R);
   1377 }
   1378 
   1379 static QualType getUnderlyingType(const SubRegion *R) {
   1380   QualType RegionTy;
   1381   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
   1382     RegionTy = TVR->getValueType();
   1383 
   1384   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   1385     RegionTy = SR->getSymbol()->getType();
   1386 
   1387   return RegionTy;
   1388 }
   1389 
   1390 /// Checks to see if store \p B has a lazy binding for region \p R.
   1391 ///
   1392 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
   1393 /// if there are additional bindings within \p R.
   1394 ///
   1395 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
   1396 /// for lazy bindings for super-regions of \p R.
   1397 static Optional<nonloc::LazyCompoundVal>
   1398 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
   1399                        const SubRegion *R, bool AllowSubregionBindings) {
   1400   Optional<SVal> V = B.getDefaultBinding(R);
   1401   if (!V)
   1402     return None;
   1403 
   1404   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
   1405   if (!LCV)
   1406     return None;
   1407 
   1408   // If the LCV is for a subregion, the types might not match, and we shouldn't
   1409   // reuse the binding.
   1410   QualType RegionTy = getUnderlyingType(R);
   1411   if (!RegionTy.isNull() &&
   1412       !RegionTy->isVoidPointerType()) {
   1413     QualType SourceRegionTy = LCV->getRegion()->getValueType();
   1414     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
   1415       return None;
   1416   }
   1417 
   1418   if (!AllowSubregionBindings) {
   1419     // If there are any other bindings within this region, we shouldn't reuse
   1420     // the top-level binding.
   1421     SmallVector<BindingPair, 16> Bindings;
   1422     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
   1423                              /*IncludeAllDefaultBindings=*/true);
   1424     if (Bindings.size() > 1)
   1425       return None;
   1426   }
   1427 
   1428   return *LCV;
   1429 }
   1430 
   1431 
   1432 std::pair<Store, const SubRegion *>
   1433 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
   1434                                    const SubRegion *R,
   1435                                    const SubRegion *originalRegion) {
   1436   if (originalRegion != R) {
   1437     if (Optional<nonloc::LazyCompoundVal> V =
   1438           getExistingLazyBinding(svalBuilder, B, R, true))
   1439       return std::make_pair(V->getStore(), V->getRegion());
   1440   }
   1441 
   1442   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
   1443   StoreRegionPair Result = StoreRegionPair();
   1444 
   1445   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1446     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
   1447                              originalRegion);
   1448 
   1449     if (Result.second)
   1450       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
   1451 
   1452   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
   1453     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
   1454                                        originalRegion);
   1455 
   1456     if (Result.second)
   1457       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
   1458 
   1459   } else if (const CXXBaseObjectRegion *BaseReg =
   1460                dyn_cast<CXXBaseObjectRegion>(R)) {
   1461     // C++ base object region is another kind of region that we should blast
   1462     // through to look for lazy compound value. It is like a field region.
   1463     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
   1464                              originalRegion);
   1465 
   1466     if (Result.second)
   1467       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
   1468                                                             Result.second);
   1469   }
   1470 
   1471   return Result;
   1472 }
   1473 
   1474 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
   1475                                               const ElementRegion* R) {
   1476   // We do not currently model bindings of the CompoundLiteralregion.
   1477   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
   1478     return UnknownVal();
   1479 
   1480   // Check if the region has a binding.
   1481   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1482     return *V;
   1483 
   1484   const MemRegion* superR = R->getSuperRegion();
   1485 
   1486   // Check if the region is an element region of a string literal.
   1487   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
   1488     // FIXME: Handle loads from strings where the literal is treated as
   1489     // an integer, e.g., *((unsigned int*)"hello")
   1490     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
   1491     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
   1492       return UnknownVal();
   1493 
   1494     const StringLiteral *Str = StrR->getStringLiteral();
   1495     SVal Idx = R->getIndex();
   1496     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
   1497       int64_t i = CI->getValue().getSExtValue();
   1498       // Abort on string underrun.  This can be possible by arbitrary
   1499       // clients of getBindingForElement().
   1500       if (i < 0)
   1501         return UndefinedVal();
   1502       int64_t length = Str->getLength();
   1503       // Technically, only i == length is guaranteed to be null.
   1504       // However, such overflows should be caught before reaching this point;
   1505       // the only time such an access would be made is if a string literal was
   1506       // used to initialize a larger array.
   1507       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
   1508       return svalBuilder.makeIntVal(c, T);
   1509     }
   1510   }
   1511 
   1512   // Check for loads from a code text region.  For such loads, just give up.
   1513   if (isa<CodeTextRegion>(superR))
   1514     return UnknownVal();
   1515 
   1516   // Handle the case where we are indexing into a larger scalar object.
   1517   // For example, this handles:
   1518   //   int x = ...
   1519   //   char *y = &x;
   1520   //   return *y;
   1521   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
   1522   const RegionRawOffset &O = R->getAsArrayOffset();
   1523 
   1524   // If we cannot reason about the offset, return an unknown value.
   1525   if (!O.getRegion())
   1526     return UnknownVal();
   1527 
   1528   if (const TypedValueRegion *baseR =
   1529         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
   1530     QualType baseT = baseR->getValueType();
   1531     if (baseT->isScalarType()) {
   1532       QualType elemT = R->getElementType();
   1533       if (elemT->isScalarType()) {
   1534         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
   1535           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
   1536             if (SymbolRef parentSym = V->getAsSymbol())
   1537               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1538 
   1539             if (V->isUnknownOrUndef())
   1540               return *V;
   1541             // Other cases: give up.  We are indexing into a larger object
   1542             // that has some value, but we don't know how to handle that yet.
   1543             return UnknownVal();
   1544           }
   1545         }
   1546       }
   1547     }
   1548   }
   1549   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
   1550 }
   1551 
   1552 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
   1553                                             const FieldRegion* R) {
   1554 
   1555   // Check if the region has a binding.
   1556   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1557     return *V;
   1558 
   1559   QualType Ty = R->getValueType();
   1560   return getBindingForFieldOrElementCommon(B, R, Ty);
   1561 }
   1562 
   1563 Optional<SVal>
   1564 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
   1565                                                      const MemRegion *superR,
   1566                                                      const TypedValueRegion *R,
   1567                                                      QualType Ty) {
   1568 
   1569   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
   1570     const SVal &val = D.getValue();
   1571     if (SymbolRef parentSym = val.getAsSymbol())
   1572       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1573 
   1574     if (val.isZeroConstant())
   1575       return svalBuilder.makeZeroVal(Ty);
   1576 
   1577     if (val.isUnknownOrUndef())
   1578       return val;
   1579 
   1580     // Lazy bindings are usually handled through getExistingLazyBinding().
   1581     // We should unify these two code paths at some point.
   1582     if (val.getAs<nonloc::LazyCompoundVal>())
   1583       return val;
   1584 
   1585     llvm_unreachable("Unknown default value");
   1586   }
   1587 
   1588   return None;
   1589 }
   1590 
   1591 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
   1592                                         RegionBindingsRef LazyBinding) {
   1593   SVal Result;
   1594   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
   1595     Result = getBindingForElement(LazyBinding, ER);
   1596   else
   1597     Result = getBindingForField(LazyBinding,
   1598                                 cast<FieldRegion>(LazyBindingRegion));
   1599 
   1600   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1601   // default value for /part/ of an aggregate from a default value for the
   1602   // /entire/ aggregate. The most common case of this is when struct Outer
   1603   // has as its first member a struct Inner, which is copied in from a stack
   1604   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1605   // or unknown, it gets overridden by the Inner's default value of undefined.
   1606   //
   1607   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1608   // will now look zero-initialized. The proper way to solve this is with a
   1609   // new version of RegionStore that tracks the extent of a binding as well
   1610   // as the offset.
   1611   //
   1612   // This hack only takes care of the undefined case because that can very
   1613   // quickly result in a warning.
   1614   if (Result.isUndef())
   1615     Result = UnknownVal();
   1616 
   1617   return Result;
   1618 }
   1619 
   1620 SVal
   1621 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
   1622                                                       const TypedValueRegion *R,
   1623                                                       QualType Ty) {
   1624 
   1625   // At this point we have already checked in either getBindingForElement or
   1626   // getBindingForField if 'R' has a direct binding.
   1627 
   1628   // Lazy binding?
   1629   Store lazyBindingStore = nullptr;
   1630   const SubRegion *lazyBindingRegion = nullptr;
   1631   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
   1632   if (lazyBindingRegion)
   1633     return getLazyBinding(lazyBindingRegion,
   1634                           getRegionBindings(lazyBindingStore));
   1635 
   1636   // Record whether or not we see a symbolic index.  That can completely
   1637   // be out of scope of our lookup.
   1638   bool hasSymbolicIndex = false;
   1639 
   1640   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1641   // default value for /part/ of an aggregate from a default value for the
   1642   // /entire/ aggregate. The most common case of this is when struct Outer
   1643   // has as its first member a struct Inner, which is copied in from a stack
   1644   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1645   // or unknown, it gets overridden by the Inner's default value of undefined.
   1646   //
   1647   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1648   // will now look zero-initialized. The proper way to solve this is with a
   1649   // new version of RegionStore that tracks the extent of a binding as well
   1650   // as the offset.
   1651   //
   1652   // This hack only takes care of the undefined case because that can very
   1653   // quickly result in a warning.
   1654   bool hasPartialLazyBinding = false;
   1655 
   1656   const SubRegion *SR = dyn_cast<SubRegion>(R);
   1657   while (SR) {
   1658     const MemRegion *Base = SR->getSuperRegion();
   1659     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
   1660       if (D->getAs<nonloc::LazyCompoundVal>()) {
   1661         hasPartialLazyBinding = true;
   1662         break;
   1663       }
   1664 
   1665       return *D;
   1666     }
   1667 
   1668     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
   1669       NonLoc index = ER->getIndex();
   1670       if (!index.isConstant())
   1671         hasSymbolicIndex = true;
   1672     }
   1673 
   1674     // If our super region is a field or element itself, walk up the region
   1675     // hierarchy to see if there is a default value installed in an ancestor.
   1676     SR = dyn_cast<SubRegion>(Base);
   1677   }
   1678 
   1679   if (R->hasStackNonParametersStorage()) {
   1680     if (isa<ElementRegion>(R)) {
   1681       // Currently we don't reason specially about Clang-style vectors.  Check
   1682       // if superR is a vector and if so return Unknown.
   1683       if (const TypedValueRegion *typedSuperR =
   1684             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
   1685         if (typedSuperR->getValueType()->isVectorType())
   1686           return UnknownVal();
   1687       }
   1688     }
   1689 
   1690     // FIXME: We also need to take ElementRegions with symbolic indexes into
   1691     // account.  This case handles both directly accessing an ElementRegion
   1692     // with a symbolic offset, but also fields within an element with
   1693     // a symbolic offset.
   1694     if (hasSymbolicIndex)
   1695       return UnknownVal();
   1696 
   1697     if (!hasPartialLazyBinding)
   1698       return UndefinedVal();
   1699   }
   1700 
   1701   // All other values are symbolic.
   1702   return svalBuilder.getRegionValueSymbolVal(R);
   1703 }
   1704 
   1705 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
   1706                                                const ObjCIvarRegion* R) {
   1707   // Check if the region has a binding.
   1708   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1709     return *V;
   1710 
   1711   const MemRegion *superR = R->getSuperRegion();
   1712 
   1713   // Check if the super region has a default binding.
   1714   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
   1715     if (SymbolRef parentSym = V->getAsSymbol())
   1716       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1717 
   1718     // Other cases: give up.
   1719     return UnknownVal();
   1720   }
   1721 
   1722   return getBindingForLazySymbol(R);
   1723 }
   1724 
   1725 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
   1726                                           const VarRegion *R) {
   1727 
   1728   // Check if the region has a binding.
   1729   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1730     return *V;
   1731 
   1732   // Lazily derive a value for the VarRegion.
   1733   const VarDecl *VD = R->getDecl();
   1734   const MemSpaceRegion *MS = R->getMemorySpace();
   1735 
   1736   // Arguments are always symbolic.
   1737   if (isa<StackArgumentsSpaceRegion>(MS))
   1738     return svalBuilder.getRegionValueSymbolVal(R);
   1739 
   1740   // Is 'VD' declared constant?  If so, retrieve the constant value.
   1741   if (VD->getType().isConstQualified())
   1742     if (const Expr *Init = VD->getInit())
   1743       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
   1744         return *V;
   1745 
   1746   // This must come after the check for constants because closure-captured
   1747   // constant variables may appear in UnknownSpaceRegion.
   1748   if (isa<UnknownSpaceRegion>(MS))
   1749     return svalBuilder.getRegionValueSymbolVal(R);
   1750 
   1751   if (isa<GlobalsSpaceRegion>(MS)) {
   1752     QualType T = VD->getType();
   1753 
   1754     // Function-scoped static variables are default-initialized to 0; if they
   1755     // have an initializer, it would have been processed by now.
   1756     if (isa<StaticGlobalSpaceRegion>(MS))
   1757       return svalBuilder.makeZeroVal(T);
   1758 
   1759     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
   1760       assert(!V->getAs<nonloc::LazyCompoundVal>());
   1761       return V.getValue();
   1762     }
   1763 
   1764     return svalBuilder.getRegionValueSymbolVal(R);
   1765   }
   1766 
   1767   return UndefinedVal();
   1768 }
   1769 
   1770 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
   1771   // All other values are symbolic.
   1772   return svalBuilder.getRegionValueSymbolVal(R);
   1773 }
   1774 
   1775 const RegionStoreManager::SValListTy &
   1776 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
   1777   // First, check the cache.
   1778   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
   1779   if (I != LazyBindingsMap.end())
   1780     return I->second;
   1781 
   1782   // If we don't have a list of values cached, start constructing it.
   1783   SValListTy List;
   1784 
   1785   const SubRegion *LazyR = LCV.getRegion();
   1786   RegionBindingsRef B = getRegionBindings(LCV.getStore());
   1787 
   1788   // If this region had /no/ bindings at the time, there are no interesting
   1789   // values to return.
   1790   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
   1791   if (!Cluster)
   1792     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
   1793 
   1794   SmallVector<BindingPair, 32> Bindings;
   1795   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
   1796                            /*IncludeAllDefaultBindings=*/true);
   1797   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
   1798                                                     E = Bindings.end();
   1799        I != E; ++I) {
   1800     SVal V = I->second;
   1801     if (V.isUnknownOrUndef() || V.isConstant())
   1802       continue;
   1803 
   1804     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
   1805             V.getAs<nonloc::LazyCompoundVal>()) {
   1806       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
   1807       List.insert(List.end(), InnerList.begin(), InnerList.end());
   1808       continue;
   1809     }
   1810 
   1811     List.push_back(V);
   1812   }
   1813 
   1814   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
   1815 }
   1816 
   1817 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
   1818                                              const TypedValueRegion *R) {
   1819   if (Optional<nonloc::LazyCompoundVal> V =
   1820         getExistingLazyBinding(svalBuilder, B, R, false))
   1821     return *V;
   1822 
   1823   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
   1824 }
   1825 
   1826 static bool isRecordEmpty(const RecordDecl *RD) {
   1827   if (!RD->field_empty())
   1828     return false;
   1829   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
   1830     return CRD->getNumBases() == 0;
   1831   return true;
   1832 }
   1833 
   1834 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
   1835                                              const TypedValueRegion *R) {
   1836   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
   1837   if (!RD->getDefinition() || isRecordEmpty(RD))
   1838     return UnknownVal();
   1839 
   1840   return createLazyBinding(B, R);
   1841 }
   1842 
   1843 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
   1844                                             const TypedValueRegion *R) {
   1845   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
   1846          "Only constant array types can have compound bindings.");
   1847 
   1848   return createLazyBinding(B, R);
   1849 }
   1850 
   1851 bool RegionStoreManager::includedInBindings(Store store,
   1852                                             const MemRegion *region) const {
   1853   RegionBindingsRef B = getRegionBindings(store);
   1854   region = region->getBaseRegion();
   1855 
   1856   // Quick path: if the base is the head of a cluster, the region is live.
   1857   if (B.lookup(region))
   1858     return true;
   1859 
   1860   // Slow path: if the region is the VALUE of any binding, it is live.
   1861   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
   1862     const ClusterBindings &Cluster = RI.getData();
   1863     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   1864          CI != CE; ++CI) {
   1865       const SVal &D = CI.getData();
   1866       if (const MemRegion *R = D.getAsRegion())
   1867         if (R->getBaseRegion() == region)
   1868           return true;
   1869     }
   1870   }
   1871 
   1872   return false;
   1873 }
   1874 
   1875 //===----------------------------------------------------------------------===//
   1876 // Binding values to regions.
   1877 //===----------------------------------------------------------------------===//
   1878 
   1879 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
   1880   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
   1881     if (const MemRegion* R = LV->getRegion())
   1882       return StoreRef(getRegionBindings(ST).removeBinding(R)
   1883                                            .asImmutableMap()
   1884                                            .getRootWithoutRetain(),
   1885                       *this);
   1886 
   1887   return StoreRef(ST, *this);
   1888 }
   1889 
   1890 RegionBindingsRef
   1891 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
   1892   if (L.getAs<loc::ConcreteInt>())
   1893     return B;
   1894 
   1895   // If we get here, the location should be a region.
   1896   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
   1897 
   1898   // Check if the region is a struct region.
   1899   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
   1900     QualType Ty = TR->getValueType();
   1901     if (Ty->isArrayType())
   1902       return bindArray(B, TR, V);
   1903     if (Ty->isStructureOrClassType())
   1904       return bindStruct(B, TR, V);
   1905     if (Ty->isVectorType())
   1906       return bindVector(B, TR, V);
   1907     if (Ty->isUnionType())
   1908       return bindAggregate(B, TR, V);
   1909   }
   1910 
   1911   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
   1912     // Binding directly to a symbolic region should be treated as binding
   1913     // to element 0.
   1914     QualType T = SR->getSymbol()->getType();
   1915     if (T->isAnyPointerType() || T->isReferenceType())
   1916       T = T->getPointeeType();
   1917 
   1918     R = GetElementZeroRegion(SR, T);
   1919   }
   1920 
   1921   // Clear out bindings that may overlap with this binding.
   1922   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
   1923   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
   1924 }
   1925 
   1926 RegionBindingsRef
   1927 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
   1928                                             const MemRegion *R,
   1929                                             QualType T) {
   1930   SVal V;
   1931 
   1932   if (Loc::isLocType(T))
   1933     V = svalBuilder.makeNull();
   1934   else if (T->isIntegralOrEnumerationType())
   1935     V = svalBuilder.makeZeroVal(T);
   1936   else if (T->isStructureOrClassType() || T->isArrayType()) {
   1937     // Set the default value to a zero constant when it is a structure
   1938     // or array.  The type doesn't really matter.
   1939     V = svalBuilder.makeZeroVal(Ctx.IntTy);
   1940   }
   1941   else {
   1942     // We can't represent values of this type, but we still need to set a value
   1943     // to record that the region has been initialized.
   1944     // If this assertion ever fires, a new case should be added above -- we
   1945     // should know how to default-initialize any value we can symbolicate.
   1946     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
   1947     V = UnknownVal();
   1948   }
   1949 
   1950   return B.addBinding(R, BindingKey::Default, V);
   1951 }
   1952 
   1953 RegionBindingsRef
   1954 RegionStoreManager::bindArray(RegionBindingsConstRef B,
   1955                               const TypedValueRegion* R,
   1956                               SVal Init) {
   1957 
   1958   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
   1959   QualType ElementTy = AT->getElementType();
   1960   Optional<uint64_t> Size;
   1961 
   1962   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
   1963     Size = CAT->getSize().getZExtValue();
   1964 
   1965   // Check if the init expr is a string literal.
   1966   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
   1967     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
   1968 
   1969     // Treat the string as a lazy compound value.
   1970     StoreRef store(B.asStore(), *this);
   1971     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
   1972         .castAs<nonloc::LazyCompoundVal>();
   1973     return bindAggregate(B, R, LCV);
   1974   }
   1975 
   1976   // Handle lazy compound values.
   1977   if (Init.getAs<nonloc::LazyCompoundVal>())
   1978     return bindAggregate(B, R, Init);
   1979 
   1980   // Remaining case: explicit compound values.
   1981 
   1982   if (Init.isUnknown())
   1983     return setImplicitDefaultValue(B, R, ElementTy);
   1984 
   1985   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
   1986   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1987   uint64_t i = 0;
   1988 
   1989   RegionBindingsRef NewB(B);
   1990 
   1991   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
   1992     // The init list might be shorter than the array length.
   1993     if (VI == VE)
   1994       break;
   1995 
   1996     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
   1997     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
   1998 
   1999     if (ElementTy->isStructureOrClassType())
   2000       NewB = bindStruct(NewB, ER, *VI);
   2001     else if (ElementTy->isArrayType())
   2002       NewB = bindArray(NewB, ER, *VI);
   2003     else
   2004       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2005   }
   2006 
   2007   // If the init list is shorter than the array length, set the
   2008   // array default value.
   2009   if (Size.hasValue() && i < Size.getValue())
   2010     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
   2011 
   2012   return NewB;
   2013 }
   2014 
   2015 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
   2016                                                  const TypedValueRegion* R,
   2017                                                  SVal V) {
   2018   QualType T = R->getValueType();
   2019   assert(T->isVectorType());
   2020   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
   2021 
   2022   // Handle lazy compound values and symbolic values.
   2023   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
   2024     return bindAggregate(B, R, V);
   2025 
   2026   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2027   // that we are binding symbolic struct value. Kill the field values, and if
   2028   // the value is symbolic go and bind it as a "default" binding.
   2029   if (!V.getAs<nonloc::CompoundVal>()) {
   2030     return bindAggregate(B, R, UnknownVal());
   2031   }
   2032 
   2033   QualType ElemType = VT->getElementType();
   2034   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
   2035   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2036   unsigned index = 0, numElements = VT->getNumElements();
   2037   RegionBindingsRef NewB(B);
   2038 
   2039   for ( ; index != numElements ; ++index) {
   2040     if (VI == VE)
   2041       break;
   2042 
   2043     NonLoc Idx = svalBuilder.makeArrayIndex(index);
   2044     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
   2045 
   2046     if (ElemType->isArrayType())
   2047       NewB = bindArray(NewB, ER, *VI);
   2048     else if (ElemType->isStructureOrClassType())
   2049       NewB = bindStruct(NewB, ER, *VI);
   2050     else
   2051       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2052   }
   2053   return NewB;
   2054 }
   2055 
   2056 Optional<RegionBindingsRef>
   2057 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
   2058                                        const TypedValueRegion *R,
   2059                                        const RecordDecl *RD,
   2060                                        nonloc::LazyCompoundVal LCV) {
   2061   FieldVector Fields;
   2062 
   2063   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
   2064     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
   2065       return None;
   2066 
   2067   for (const auto *FD : RD->fields()) {
   2068     if (FD->isUnnamedBitfield())
   2069       continue;
   2070 
   2071     // If there are too many fields, or if any of the fields are aggregates,
   2072     // just use the LCV as a default binding.
   2073     if (Fields.size() == SmallStructLimit)
   2074       return None;
   2075 
   2076     QualType Ty = FD->getType();
   2077     if (!(Ty->isScalarType() || Ty->isReferenceType()))
   2078       return None;
   2079 
   2080     Fields.push_back(FD);
   2081   }
   2082 
   2083   RegionBindingsRef NewB = B;
   2084 
   2085   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
   2086     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
   2087     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
   2088 
   2089     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
   2090     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
   2091   }
   2092 
   2093   return NewB;
   2094 }
   2095 
   2096 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
   2097                                                  const TypedValueRegion* R,
   2098                                                  SVal V) {
   2099   if (!Features.supportsFields())
   2100     return B;
   2101 
   2102   QualType T = R->getValueType();
   2103   assert(T->isStructureOrClassType());
   2104 
   2105   const RecordType* RT = T->getAs<RecordType>();
   2106   const RecordDecl *RD = RT->getDecl();
   2107 
   2108   if (!RD->isCompleteDefinition())
   2109     return B;
   2110 
   2111   // Handle lazy compound values and symbolic values.
   2112   if (Optional<nonloc::LazyCompoundVal> LCV =
   2113         V.getAs<nonloc::LazyCompoundVal>()) {
   2114     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
   2115       return *NewB;
   2116     return bindAggregate(B, R, V);
   2117   }
   2118   if (V.getAs<nonloc::SymbolVal>())
   2119     return bindAggregate(B, R, V);
   2120 
   2121   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2122   // that we are binding symbolic struct value. Kill the field values, and if
   2123   // the value is symbolic go and bind it as a "default" binding.
   2124   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
   2125     return bindAggregate(B, R, UnknownVal());
   2126 
   2127   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
   2128   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2129 
   2130   RecordDecl::field_iterator FI, FE;
   2131   RegionBindingsRef NewB(B);
   2132 
   2133   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
   2134 
   2135     if (VI == VE)
   2136       break;
   2137 
   2138     // Skip any unnamed bitfields to stay in sync with the initializers.
   2139     if (FI->isUnnamedBitfield())
   2140       continue;
   2141 
   2142     QualType FTy = FI->getType();
   2143     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
   2144 
   2145     if (FTy->isArrayType())
   2146       NewB = bindArray(NewB, FR, *VI);
   2147     else if (FTy->isStructureOrClassType())
   2148       NewB = bindStruct(NewB, FR, *VI);
   2149     else
   2150       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
   2151     ++VI;
   2152   }
   2153 
   2154   // There may be fewer values in the initialize list than the fields of struct.
   2155   if (FI != FE) {
   2156     NewB = NewB.addBinding(R, BindingKey::Default,
   2157                            svalBuilder.makeIntVal(0, false));
   2158   }
   2159 
   2160   return NewB;
   2161 }
   2162 
   2163 RegionBindingsRef
   2164 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
   2165                                   const TypedRegion *R,
   2166                                   SVal Val) {
   2167   // Remove the old bindings, using 'R' as the root of all regions
   2168   // we will invalidate. Then add the new binding.
   2169   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
   2170 }
   2171 
   2172 //===----------------------------------------------------------------------===//
   2173 // State pruning.
   2174 //===----------------------------------------------------------------------===//
   2175 
   2176 namespace {
   2177 class removeDeadBindingsWorker :
   2178   public ClusterAnalysis<removeDeadBindingsWorker> {
   2179   SmallVector<const SymbolicRegion*, 12> Postponed;
   2180   SymbolReaper &SymReaper;
   2181   const StackFrameContext *CurrentLCtx;
   2182 
   2183 public:
   2184   removeDeadBindingsWorker(RegionStoreManager &rm,
   2185                            ProgramStateManager &stateMgr,
   2186                            RegionBindingsRef b, SymbolReaper &symReaper,
   2187                            const StackFrameContext *LCtx)
   2188     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
   2189       SymReaper(symReaper), CurrentLCtx(LCtx) {}
   2190 
   2191   // Called by ClusterAnalysis.
   2192   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
   2193   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
   2194   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
   2195 
   2196   bool UpdatePostponed();
   2197   void VisitBinding(SVal V);
   2198 };
   2199 }
   2200 
   2201 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
   2202                                                    const ClusterBindings &C) {
   2203 
   2204   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
   2205     if (SymReaper.isLive(VR))
   2206       AddToWorkList(baseR, &C);
   2207 
   2208     return;
   2209   }
   2210 
   2211   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   2212     if (SymReaper.isLive(SR->getSymbol()))
   2213       AddToWorkList(SR, &C);
   2214     else
   2215       Postponed.push_back(SR);
   2216 
   2217     return;
   2218   }
   2219 
   2220   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
   2221     AddToWorkList(baseR, &C);
   2222     return;
   2223   }
   2224 
   2225   // CXXThisRegion in the current or parent location context is live.
   2226   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
   2227     const StackArgumentsSpaceRegion *StackReg =
   2228       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
   2229     const StackFrameContext *RegCtx = StackReg->getStackFrame();
   2230     if (CurrentLCtx &&
   2231         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
   2232       AddToWorkList(TR, &C);
   2233   }
   2234 }
   2235 
   2236 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
   2237                                             const ClusterBindings *C) {
   2238   if (!C)
   2239     return;
   2240 
   2241   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
   2242   // This means we should continue to track that symbol.
   2243   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
   2244     SymReaper.markLive(SymR->getSymbol());
   2245 
   2246   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
   2247     VisitBinding(I.getData());
   2248 }
   2249 
   2250 void removeDeadBindingsWorker::VisitBinding(SVal V) {
   2251   // Is it a LazyCompoundVal?  All referenced regions are live as well.
   2252   if (Optional<nonloc::LazyCompoundVal> LCS =
   2253           V.getAs<nonloc::LazyCompoundVal>()) {
   2254 
   2255     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
   2256 
   2257     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
   2258                                                         E = Vals.end();
   2259          I != E; ++I)
   2260       VisitBinding(*I);
   2261 
   2262     return;
   2263   }
   2264 
   2265   // If V is a region, then add it to the worklist.
   2266   if (const MemRegion *R = V.getAsRegion()) {
   2267     AddToWorkList(R);
   2268 
   2269     // All regions captured by a block are also live.
   2270     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
   2271       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
   2272                                                 E = BR->referenced_vars_end();
   2273       for ( ; I != E; ++I)
   2274         AddToWorkList(I.getCapturedRegion());
   2275     }
   2276   }
   2277 
   2278 
   2279   // Update the set of live symbols.
   2280   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
   2281        SI!=SE; ++SI)
   2282     SymReaper.markLive(*SI);
   2283 }
   2284 
   2285 bool removeDeadBindingsWorker::UpdatePostponed() {
   2286   // See if any postponed SymbolicRegions are actually live now, after
   2287   // having done a scan.
   2288   bool changed = false;
   2289 
   2290   for (SmallVectorImpl<const SymbolicRegion*>::iterator
   2291         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
   2292     if (const SymbolicRegion *SR = *I) {
   2293       if (SymReaper.isLive(SR->getSymbol())) {
   2294         changed |= AddToWorkList(SR);
   2295         *I = nullptr;
   2296       }
   2297     }
   2298   }
   2299 
   2300   return changed;
   2301 }
   2302 
   2303 StoreRef RegionStoreManager::removeDeadBindings(Store store,
   2304                                                 const StackFrameContext *LCtx,
   2305                                                 SymbolReaper& SymReaper) {
   2306   RegionBindingsRef B = getRegionBindings(store);
   2307   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
   2308   W.GenerateClusters();
   2309 
   2310   // Enqueue the region roots onto the worklist.
   2311   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
   2312        E = SymReaper.region_end(); I != E; ++I) {
   2313     W.AddToWorkList(*I);
   2314   }
   2315 
   2316   do W.RunWorkList(); while (W.UpdatePostponed());
   2317 
   2318   // We have now scanned the store, marking reachable regions and symbols
   2319   // as live.  We now remove all the regions that are dead from the store
   2320   // as well as update DSymbols with the set symbols that are now dead.
   2321   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   2322     const MemRegion *Base = I.getKey();
   2323 
   2324     // If the cluster has been visited, we know the region has been marked.
   2325     if (W.isVisited(Base))
   2326       continue;
   2327 
   2328     // Remove the dead entry.
   2329     B = B.remove(Base);
   2330 
   2331     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
   2332       SymReaper.maybeDead(SymR->getSymbol());
   2333 
   2334     // Mark all non-live symbols that this binding references as dead.
   2335     const ClusterBindings &Cluster = I.getData();
   2336     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   2337          CI != CE; ++CI) {
   2338       SVal X = CI.getData();
   2339       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
   2340       for (; SI != SE; ++SI)
   2341         SymReaper.maybeDead(*SI);
   2342     }
   2343   }
   2344 
   2345   return StoreRef(B.asStore(), *this);
   2346 }
   2347 
   2348 //===----------------------------------------------------------------------===//
   2349 // Utility methods.
   2350 //===----------------------------------------------------------------------===//
   2351 
   2352 void RegionStoreManager::print(Store store, raw_ostream &OS,
   2353                                const char* nl, const char *sep) {
   2354   RegionBindingsRef B = getRegionBindings(store);
   2355   OS << "Store (direct and default bindings), "
   2356      << B.asStore()
   2357      << " :" << nl;
   2358   B.dump(OS, nl);
   2359 }
   2360