Home | History | Annotate | Download | only in Sema
      1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ lambda expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/DeclSpec.h"
     14 #include "TypeLocBuilder.h"
     15 #include "clang/AST/ASTLambda.h"
     16 #include "clang/AST/ExprCXX.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Sema/Initialization.h"
     19 #include "clang/Sema/Lookup.h"
     20 #include "clang/Sema/Scope.h"
     21 #include "clang/Sema/ScopeInfo.h"
     22 #include "clang/Sema/SemaInternal.h"
     23 #include "clang/Sema/SemaLambda.h"
     24 using namespace clang;
     25 using namespace sema;
     26 
     27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
     28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
     29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
     30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
     31 /// of the capture-ready lambda's LambdaScopeInfo.
     32 ///
     33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
     34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
     35 /// lambda that is ready to capture the \p VarToCapture being referenced in
     36 /// the current lambda.
     37 /// As we climb down the stack, we want the index of the first such lambda -
     38 /// that is the lambda with the highest index that is 'capture-ready'.
     39 ///
     40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
     41 ///  - its enclosing context is non-dependent
     42 ///  - and if the chain of lambdas between L and the lambda in which
     43 ///    V is potentially used (i.e. the lambda at the top of the scope info
     44 ///    stack), can all capture or have already captured V.
     45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
     46 ///
     47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
     48 /// for whether it is 'capture-capable' (see
     49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
     50 /// capture.
     51 ///
     52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
     53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
     54 ///  is at the top of the stack and has the highest index.
     55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
     56 ///
     57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
     58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
     59 /// which is capture-ready.  If the return value evaluates to 'false' then
     60 /// no lambda is capture-ready for \p VarToCapture.
     61 
     62 static inline Optional<unsigned>
     63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
     64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
     65     VarDecl *VarToCapture) {
     66   // Label failure to capture.
     67   const Optional<unsigned> NoLambdaIsCaptureReady;
     68 
     69   assert(
     70       isa<clang::sema::LambdaScopeInfo>(
     71           FunctionScopes[FunctionScopes.size() - 1]) &&
     72       "The function on the top of sema's function-info stack must be a lambda");
     73 
     74   // If VarToCapture is null, we are attempting to capture 'this'.
     75   const bool IsCapturingThis = !VarToCapture;
     76   const bool IsCapturingVariable = !IsCapturingThis;
     77 
     78   // Start with the current lambda at the top of the stack (highest index).
     79   unsigned CurScopeIndex = FunctionScopes.size() - 1;
     80   DeclContext *EnclosingDC =
     81       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
     82 
     83   do {
     84     const clang::sema::LambdaScopeInfo *LSI =
     85         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
     86     // IF we have climbed down to an intervening enclosing lambda that contains
     87     // the variable declaration - it obviously can/must not capture the
     88     // variable.
     89     // Since its enclosing DC is dependent, all the lambdas between it and the
     90     // innermost nested lambda are dependent (otherwise we wouldn't have
     91     // arrived here) - so we don't yet have a lambda that can capture the
     92     // variable.
     93     if (IsCapturingVariable &&
     94         VarToCapture->getDeclContext()->Equals(EnclosingDC))
     95       return NoLambdaIsCaptureReady;
     96 
     97     // For an enclosing lambda to be capture ready for an entity, all
     98     // intervening lambda's have to be able to capture that entity. If even
     99     // one of the intervening lambda's is not capable of capturing the entity
    100     // then no enclosing lambda can ever capture that entity.
    101     // For e.g.
    102     // const int x = 10;
    103     // [=](auto a) {    #1
    104     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
    105     //    [=](auto c) { #3
    106     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
    107     //    }; }; };
    108     // If they do not have a default implicit capture, check to see
    109     // if the entity has already been explicitly captured.
    110     // If even a single dependent enclosing lambda lacks the capability
    111     // to ever capture this variable, there is no further enclosing
    112     // non-dependent lambda that can capture this variable.
    113     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
    114       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
    115         return NoLambdaIsCaptureReady;
    116       if (IsCapturingThis && !LSI->isCXXThisCaptured())
    117         return NoLambdaIsCaptureReady;
    118     }
    119     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
    120 
    121     assert(CurScopeIndex);
    122     --CurScopeIndex;
    123   } while (!EnclosingDC->isTranslationUnit() &&
    124            EnclosingDC->isDependentContext() &&
    125            isLambdaCallOperator(EnclosingDC));
    126 
    127   assert(CurScopeIndex < (FunctionScopes.size() - 1));
    128   // If the enclosingDC is not dependent, then the immediately nested lambda
    129   // (one index above) is capture-ready.
    130   if (!EnclosingDC->isDependentContext())
    131     return CurScopeIndex + 1;
    132   return NoLambdaIsCaptureReady;
    133 }
    134 
    135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
    136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
    137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
    138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
    139 /// of the capture-capable lambda's LambdaScopeInfo.
    140 ///
    141 /// Given the current stack of lambdas being processed by Sema and
    142 /// the variable of interest, to identify the nearest enclosing lambda (to the
    143 /// current lambda at the top of the stack) that can truly capture
    144 /// a variable, it has to have the following two properties:
    145 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
    146 ///     - climb down the stack (i.e. starting from the innermost and examining
    147 ///       each outer lambda step by step) checking if each enclosing
    148 ///       lambda can either implicitly or explicitly capture the variable.
    149 ///       Record the first such lambda that is enclosed in a non-dependent
    150 ///       context. If no such lambda currently exists return failure.
    151 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
    152 ///  capture the variable by checking all its enclosing lambdas:
    153 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
    154 ///       identified above in 'a' can also capture the variable (this is done
    155 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
    156 ///       'this' by passing in the index of the Lambda identified in step 'a')
    157 ///
    158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
    159 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
    160 /// is at the top of the stack.
    161 ///
    162 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
    163 ///
    164 ///
    165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
    166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
    167 /// which is capture-capable.  If the return value evaluates to 'false' then
    168 /// no lambda is capture-capable for \p VarToCapture.
    169 
    170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
    171     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
    172     VarDecl *VarToCapture, Sema &S) {
    173 
    174   const Optional<unsigned> NoLambdaIsCaptureCapable;
    175 
    176   const Optional<unsigned> OptionalStackIndex =
    177       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
    178                                                         VarToCapture);
    179   if (!OptionalStackIndex)
    180     return NoLambdaIsCaptureCapable;
    181 
    182   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
    183   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
    184           S.getCurGenericLambda()) &&
    185          "The capture ready lambda for a potential capture can only be the "
    186          "current lambda if it is a generic lambda");
    187 
    188   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
    189       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
    190 
    191   // If VarToCapture is null, we are attempting to capture 'this'
    192   const bool IsCapturingThis = !VarToCapture;
    193   const bool IsCapturingVariable = !IsCapturingThis;
    194 
    195   if (IsCapturingVariable) {
    196     // Check if the capture-ready lambda can truly capture the variable, by
    197     // checking whether all enclosing lambdas of the capture-ready lambda allow
    198     // the capture - i.e. make sure it is capture-capable.
    199     QualType CaptureType, DeclRefType;
    200     const bool CanCaptureVariable =
    201         !S.tryCaptureVariable(VarToCapture,
    202                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
    203                               clang::Sema::TryCapture_Implicit,
    204                               /*EllipsisLoc*/ SourceLocation(),
    205                               /*BuildAndDiagnose*/ false, CaptureType,
    206                               DeclRefType, &IndexOfCaptureReadyLambda);
    207     if (!CanCaptureVariable)
    208       return NoLambdaIsCaptureCapable;
    209   } else {
    210     // Check if the capture-ready lambda can truly capture 'this' by checking
    211     // whether all enclosing lambdas of the capture-ready lambda can capture
    212     // 'this'.
    213     const bool CanCaptureThis =
    214         !S.CheckCXXThisCapture(
    215              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
    216              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
    217              &IndexOfCaptureReadyLambda);
    218     if (!CanCaptureThis)
    219       return NoLambdaIsCaptureCapable;
    220   }
    221   return IndexOfCaptureReadyLambda;
    222 }
    223 
    224 static inline TemplateParameterList *
    225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
    226   if (LSI->GLTemplateParameterList)
    227     return LSI->GLTemplateParameterList;
    228 
    229   if (LSI->AutoTemplateParams.size()) {
    230     SourceRange IntroRange = LSI->IntroducerRange;
    231     SourceLocation LAngleLoc = IntroRange.getBegin();
    232     SourceLocation RAngleLoc = IntroRange.getEnd();
    233     LSI->GLTemplateParameterList = TemplateParameterList::Create(
    234         SemaRef.Context,
    235         /*Template kw loc*/ SourceLocation(), LAngleLoc,
    236         (NamedDecl **)LSI->AutoTemplateParams.data(),
    237         LSI->AutoTemplateParams.size(), RAngleLoc);
    238   }
    239   return LSI->GLTemplateParameterList;
    240 }
    241 
    242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
    243                                              TypeSourceInfo *Info,
    244                                              bool KnownDependent,
    245                                              LambdaCaptureDefault CaptureDefault) {
    246   DeclContext *DC = CurContext;
    247   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    248     DC = DC->getParent();
    249   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
    250                                                                *this);
    251   // Start constructing the lambda class.
    252   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
    253                                                      IntroducerRange.getBegin(),
    254                                                      KnownDependent,
    255                                                      IsGenericLambda,
    256                                                      CaptureDefault);
    257   DC->addDecl(Class);
    258 
    259   return Class;
    260 }
    261 
    262 /// \brief Determine whether the given context is or is enclosed in an inline
    263 /// function.
    264 static bool isInInlineFunction(const DeclContext *DC) {
    265   while (!DC->isFileContext()) {
    266     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
    267       if (FD->isInlined())
    268         return true;
    269 
    270     DC = DC->getLexicalParent();
    271   }
    272 
    273   return false;
    274 }
    275 
    276 MangleNumberingContext *
    277 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
    278                                     Decl *&ManglingContextDecl) {
    279   // Compute the context for allocating mangling numbers in the current
    280   // expression, if the ABI requires them.
    281   ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
    282 
    283   enum ContextKind {
    284     Normal,
    285     DefaultArgument,
    286     DataMember,
    287     StaticDataMember
    288   } Kind = Normal;
    289 
    290   // Default arguments of member function parameters that appear in a class
    291   // definition, as well as the initializers of data members, receive special
    292   // treatment. Identify them.
    293   if (ManglingContextDecl) {
    294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
    295       if (const DeclContext *LexicalDC
    296           = Param->getDeclContext()->getLexicalParent())
    297         if (LexicalDC->isRecord())
    298           Kind = DefaultArgument;
    299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
    300       if (Var->getDeclContext()->isRecord())
    301         Kind = StaticDataMember;
    302     } else if (isa<FieldDecl>(ManglingContextDecl)) {
    303       Kind = DataMember;
    304     }
    305   }
    306 
    307   // Itanium ABI [5.1.7]:
    308   //   In the following contexts [...] the one-definition rule requires closure
    309   //   types in different translation units to "correspond":
    310   bool IsInNonspecializedTemplate =
    311     !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
    312   switch (Kind) {
    313   case Normal:
    314     //  -- the bodies of non-exported nonspecialized template functions
    315     //  -- the bodies of inline functions
    316     if ((IsInNonspecializedTemplate &&
    317          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
    318         isInInlineFunction(CurContext)) {
    319       ManglingContextDecl = nullptr;
    320       return &Context.getManglingNumberContext(DC);
    321     }
    322 
    323     ManglingContextDecl = nullptr;
    324     return nullptr;
    325 
    326   case StaticDataMember:
    327     //  -- the initializers of nonspecialized static members of template classes
    328     if (!IsInNonspecializedTemplate) {
    329       ManglingContextDecl = nullptr;
    330       return nullptr;
    331     }
    332     // Fall through to get the current context.
    333 
    334   case DataMember:
    335     //  -- the in-class initializers of class members
    336   case DefaultArgument:
    337     //  -- default arguments appearing in class definitions
    338     return &ExprEvalContexts.back().getMangleNumberingContext(Context);
    339   }
    340 
    341   llvm_unreachable("unexpected context");
    342 }
    343 
    344 MangleNumberingContext &
    345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
    346     ASTContext &Ctx) {
    347   assert(ManglingContextDecl && "Need to have a context declaration");
    348   if (!MangleNumbering)
    349     MangleNumbering = Ctx.createMangleNumberingContext();
    350   return *MangleNumbering;
    351 }
    352 
    353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
    354                                            SourceRange IntroducerRange,
    355                                            TypeSourceInfo *MethodTypeInfo,
    356                                            SourceLocation EndLoc,
    357                                            ArrayRef<ParmVarDecl *> Params) {
    358   QualType MethodType = MethodTypeInfo->getType();
    359   TemplateParameterList *TemplateParams =
    360             getGenericLambdaTemplateParameterList(getCurLambda(), *this);
    361   // If a lambda appears in a dependent context or is a generic lambda (has
    362   // template parameters) and has an 'auto' return type, deduce it to a
    363   // dependent type.
    364   if (Class->isDependentContext() || TemplateParams) {
    365     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
    366     QualType Result = FPT->getReturnType();
    367     if (Result->isUndeducedType()) {
    368       Result = SubstAutoType(Result, Context.DependentTy);
    369       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
    370                                            FPT->getExtProtoInfo());
    371     }
    372   }
    373 
    374   // C++11 [expr.prim.lambda]p5:
    375   //   The closure type for a lambda-expression has a public inline function
    376   //   call operator (13.5.4) whose parameters and return type are described by
    377   //   the lambda-expression's parameter-declaration-clause and
    378   //   trailing-return-type respectively.
    379   DeclarationName MethodName
    380     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
    381   DeclarationNameLoc MethodNameLoc;
    382   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
    383     = IntroducerRange.getBegin().getRawEncoding();
    384   MethodNameLoc.CXXOperatorName.EndOpNameLoc
    385     = IntroducerRange.getEnd().getRawEncoding();
    386   CXXMethodDecl *Method
    387     = CXXMethodDecl::Create(Context, Class, EndLoc,
    388                             DeclarationNameInfo(MethodName,
    389                                                 IntroducerRange.getBegin(),
    390                                                 MethodNameLoc),
    391                             MethodType, MethodTypeInfo,
    392                             SC_None,
    393                             /*isInline=*/true,
    394                             /*isConstExpr=*/false,
    395                             EndLoc);
    396   Method->setAccess(AS_public);
    397 
    398   // Temporarily set the lexical declaration context to the current
    399   // context, so that the Scope stack matches the lexical nesting.
    400   Method->setLexicalDeclContext(CurContext);
    401   // Create a function template if we have a template parameter list
    402   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
    403             FunctionTemplateDecl::Create(Context, Class,
    404                                          Method->getLocation(), MethodName,
    405                                          TemplateParams,
    406                                          Method) : nullptr;
    407   if (TemplateMethod) {
    408     TemplateMethod->setLexicalDeclContext(CurContext);
    409     TemplateMethod->setAccess(AS_public);
    410     Method->setDescribedFunctionTemplate(TemplateMethod);
    411   }
    412 
    413   // Add parameters.
    414   if (!Params.empty()) {
    415     Method->setParams(Params);
    416     CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
    417                              const_cast<ParmVarDecl **>(Params.end()),
    418                              /*CheckParameterNames=*/false);
    419 
    420     for (auto P : Method->params())
    421       P->setOwningFunction(Method);
    422   }
    423 
    424   Decl *ManglingContextDecl;
    425   if (MangleNumberingContext *MCtx =
    426           getCurrentMangleNumberContext(Class->getDeclContext(),
    427                                         ManglingContextDecl)) {
    428     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
    429     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
    430   }
    431 
    432   return Method;
    433 }
    434 
    435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
    436                                         CXXMethodDecl *CallOperator,
    437                                         SourceRange IntroducerRange,
    438                                         LambdaCaptureDefault CaptureDefault,
    439                                         SourceLocation CaptureDefaultLoc,
    440                                         bool ExplicitParams,
    441                                         bool ExplicitResultType,
    442                                         bool Mutable) {
    443   LSI->CallOperator = CallOperator;
    444   CXXRecordDecl *LambdaClass = CallOperator->getParent();
    445   LSI->Lambda = LambdaClass;
    446   if (CaptureDefault == LCD_ByCopy)
    447     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
    448   else if (CaptureDefault == LCD_ByRef)
    449     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
    450   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
    451   LSI->IntroducerRange = IntroducerRange;
    452   LSI->ExplicitParams = ExplicitParams;
    453   LSI->Mutable = Mutable;
    454 
    455   if (ExplicitResultType) {
    456     LSI->ReturnType = CallOperator->getReturnType();
    457 
    458     if (!LSI->ReturnType->isDependentType() &&
    459         !LSI->ReturnType->isVoidType()) {
    460       if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
    461                               diag::err_lambda_incomplete_result)) {
    462         // Do nothing.
    463       }
    464     }
    465   } else {
    466     LSI->HasImplicitReturnType = true;
    467   }
    468 }
    469 
    470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
    471   LSI->finishedExplicitCaptures();
    472 }
    473 
    474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
    475   // Introduce our parameters into the function scope
    476   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
    477        p < NumParams; ++p) {
    478     ParmVarDecl *Param = CallOperator->getParamDecl(p);
    479 
    480     // If this has an identifier, add it to the scope stack.
    481     if (CurScope && Param->getIdentifier()) {
    482       CheckShadow(CurScope, Param);
    483 
    484       PushOnScopeChains(Param, CurScope);
    485     }
    486   }
    487 }
    488 
    489 /// If this expression is an enumerator-like expression of some type
    490 /// T, return the type T; otherwise, return null.
    491 ///
    492 /// Pointer comparisons on the result here should always work because
    493 /// it's derived from either the parent of an EnumConstantDecl
    494 /// (i.e. the definition) or the declaration returned by
    495 /// EnumType::getDecl() (i.e. the definition).
    496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
    497   // An expression is an enumerator-like expression of type T if,
    498   // ignoring parens and parens-like expressions:
    499   E = E->IgnoreParens();
    500 
    501   //  - it is an enumerator whose enum type is T or
    502   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    503     if (EnumConstantDecl *D
    504           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
    505       return cast<EnumDecl>(D->getDeclContext());
    506     }
    507     return nullptr;
    508   }
    509 
    510   //  - it is a comma expression whose RHS is an enumerator-like
    511   //    expression of type T or
    512   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    513     if (BO->getOpcode() == BO_Comma)
    514       return findEnumForBlockReturn(BO->getRHS());
    515     return nullptr;
    516   }
    517 
    518   //  - it is a statement-expression whose value expression is an
    519   //    enumerator-like expression of type T or
    520   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    521     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
    522       return findEnumForBlockReturn(last);
    523     return nullptr;
    524   }
    525 
    526   //   - it is a ternary conditional operator (not the GNU ?:
    527   //     extension) whose second and third operands are
    528   //     enumerator-like expressions of type T or
    529   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    530     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
    531       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
    532         return ED;
    533     return nullptr;
    534   }
    535 
    536   // (implicitly:)
    537   //   - it is an implicit integral conversion applied to an
    538   //     enumerator-like expression of type T or
    539   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    540     // We can sometimes see integral conversions in valid
    541     // enumerator-like expressions.
    542     if (ICE->getCastKind() == CK_IntegralCast)
    543       return findEnumForBlockReturn(ICE->getSubExpr());
    544 
    545     // Otherwise, just rely on the type.
    546   }
    547 
    548   //   - it is an expression of that formal enum type.
    549   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
    550     return ET->getDecl();
    551   }
    552 
    553   // Otherwise, nope.
    554   return nullptr;
    555 }
    556 
    557 /// Attempt to find a type T for which the returned expression of the
    558 /// given statement is an enumerator-like expression of that type.
    559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
    560   if (Expr *retValue = ret->getRetValue())
    561     return findEnumForBlockReturn(retValue);
    562   return nullptr;
    563 }
    564 
    565 /// Attempt to find a common type T for which all of the returned
    566 /// expressions in a block are enumerator-like expressions of that
    567 /// type.
    568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
    569   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
    570 
    571   // Try to find one for the first return.
    572   EnumDecl *ED = findEnumForBlockReturn(*i);
    573   if (!ED) return nullptr;
    574 
    575   // Check that the rest of the returns have the same enum.
    576   for (++i; i != e; ++i) {
    577     if (findEnumForBlockReturn(*i) != ED)
    578       return nullptr;
    579   }
    580 
    581   // Never infer an anonymous enum type.
    582   if (!ED->hasNameForLinkage()) return nullptr;
    583 
    584   return ED;
    585 }
    586 
    587 /// Adjust the given return statements so that they formally return
    588 /// the given type.  It should require, at most, an IntegralCast.
    589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
    590                                      QualType returnType) {
    591   for (ArrayRef<ReturnStmt*>::iterator
    592          i = returns.begin(), e = returns.end(); i != e; ++i) {
    593     ReturnStmt *ret = *i;
    594     Expr *retValue = ret->getRetValue();
    595     if (S.Context.hasSameType(retValue->getType(), returnType))
    596       continue;
    597 
    598     // Right now we only support integral fixup casts.
    599     assert(returnType->isIntegralOrUnscopedEnumerationType());
    600     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
    601 
    602     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
    603 
    604     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
    605     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
    606                                  E, /*base path*/ nullptr, VK_RValue);
    607     if (cleanups) {
    608       cleanups->setSubExpr(E);
    609     } else {
    610       ret->setRetValue(E);
    611     }
    612   }
    613 }
    614 
    615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
    616   assert(CSI.HasImplicitReturnType);
    617   // If it was ever a placeholder, it had to been deduced to DependentTy.
    618   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
    619 
    620   // C++ core issue 975:
    621   //   If a lambda-expression does not include a trailing-return-type,
    622   //   it is as if the trailing-return-type denotes the following type:
    623   //     - if there are no return statements in the compound-statement,
    624   //       or all return statements return either an expression of type
    625   //       void or no expression or braced-init-list, the type void;
    626   //     - otherwise, if all return statements return an expression
    627   //       and the types of the returned expressions after
    628   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
    629   //       array-to-pointer conversion (4.2 [conv.array]), and
    630   //       function-to-pointer conversion (4.3 [conv.func]) are the
    631   //       same, that common type;
    632   //     - otherwise, the program is ill-formed.
    633   //
    634   // C++ core issue 1048 additionally removes top-level cv-qualifiers
    635   // from the types of returned expressions to match the C++14 auto
    636   // deduction rules.
    637   //
    638   // In addition, in blocks in non-C++ modes, if all of the return
    639   // statements are enumerator-like expressions of some type T, where
    640   // T has a name for linkage, then we infer the return type of the
    641   // block to be that type.
    642 
    643   // First case: no return statements, implicit void return type.
    644   ASTContext &Ctx = getASTContext();
    645   if (CSI.Returns.empty()) {
    646     // It's possible there were simply no /valid/ return statements.
    647     // In this case, the first one we found may have at least given us a type.
    648     if (CSI.ReturnType.isNull())
    649       CSI.ReturnType = Ctx.VoidTy;
    650     return;
    651   }
    652 
    653   // Second case: at least one return statement has dependent type.
    654   // Delay type checking until instantiation.
    655   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
    656   if (CSI.ReturnType->isDependentType())
    657     return;
    658 
    659   // Try to apply the enum-fuzz rule.
    660   if (!getLangOpts().CPlusPlus) {
    661     assert(isa<BlockScopeInfo>(CSI));
    662     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
    663     if (ED) {
    664       CSI.ReturnType = Context.getTypeDeclType(ED);
    665       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
    666       return;
    667     }
    668   }
    669 
    670   // Third case: only one return statement. Don't bother doing extra work!
    671   SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
    672                                          E = CSI.Returns.end();
    673   if (I+1 == E)
    674     return;
    675 
    676   // General case: many return statements.
    677   // Check that they all have compatible return types.
    678 
    679   // We require the return types to strictly match here.
    680   // Note that we've already done the required promotions as part of
    681   // processing the return statement.
    682   for (; I != E; ++I) {
    683     const ReturnStmt *RS = *I;
    684     const Expr *RetE = RS->getRetValue();
    685 
    686     QualType ReturnType =
    687         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
    688     if (Context.hasSameType(ReturnType, CSI.ReturnType))
    689       continue;
    690 
    691     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
    692     // TODO: It's possible that the *first* return is the divergent one.
    693     Diag(RS->getLocStart(),
    694          diag::err_typecheck_missing_return_type_incompatible)
    695       << ReturnType << CSI.ReturnType
    696       << isa<LambdaScopeInfo>(CSI);
    697     // Continue iterating so that we keep emitting diagnostics.
    698   }
    699 }
    700 
    701 QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
    702                                                       bool ByRef,
    703                                                       IdentifierInfo *Id,
    704                                                       Expr *&Init) {
    705 
    706   // We do not need to distinguish between direct-list-initialization
    707   // and copy-list-initialization here, because we will always deduce
    708   // std::initializer_list<T>, and direct- and copy-list-initialization
    709   // always behave the same for such a type.
    710   // FIXME: We should model whether an '=' was present.
    711   const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
    712 
    713   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
    714   // deduce against.
    715   QualType DeductType = Context.getAutoDeductType();
    716   TypeLocBuilder TLB;
    717   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
    718   if (ByRef) {
    719     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
    720     assert(!DeductType.isNull() && "can't build reference to auto");
    721     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
    722   }
    723   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
    724 
    725   // Are we a non-list direct initialization?
    726   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
    727 
    728   Expr *DeduceInit = Init;
    729   // Initializer could be a C++ direct-initializer. Deduction only works if it
    730   // contains exactly one expression.
    731   if (CXXDirectInit) {
    732     if (CXXDirectInit->getNumExprs() == 0) {
    733       Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
    734           << DeclarationName(Id) << TSI->getType() << Loc;
    735       return QualType();
    736     } else if (CXXDirectInit->getNumExprs() > 1) {
    737       Diag(CXXDirectInit->getExpr(1)->getLocStart(),
    738            diag::err_init_capture_multiple_expressions)
    739           << DeclarationName(Id) << TSI->getType() << Loc;
    740       return QualType();
    741     } else {
    742       DeduceInit = CXXDirectInit->getExpr(0);
    743       if (isa<InitListExpr>(DeduceInit))
    744         Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
    745           << DeclarationName(Id) << Loc;
    746     }
    747   }
    748 
    749   // Now deduce against the initialization expression and store the deduced
    750   // type below.
    751   QualType DeducedType;
    752   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
    753     if (isa<InitListExpr>(Init))
    754       Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
    755           << DeclarationName(Id)
    756           << (DeduceInit->getType().isNull() ? TSI->getType()
    757                                              : DeduceInit->getType())
    758           << DeduceInit->getSourceRange();
    759     else
    760       Diag(Loc, diag::err_init_capture_deduction_failure)
    761           << DeclarationName(Id) << TSI->getType()
    762           << (DeduceInit->getType().isNull() ? TSI->getType()
    763                                              : DeduceInit->getType())
    764           << DeduceInit->getSourceRange();
    765   }
    766   if (DeducedType.isNull())
    767     return QualType();
    768 
    769   // Perform initialization analysis and ensure any implicit conversions
    770   // (such as lvalue-to-rvalue) are enforced.
    771   InitializedEntity Entity =
    772       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
    773   InitializationKind Kind =
    774       IsDirectInit
    775           ? (CXXDirectInit ? InitializationKind::CreateDirect(
    776                                  Loc, Init->getLocStart(), Init->getLocEnd())
    777                            : InitializationKind::CreateDirectList(Loc))
    778           : InitializationKind::CreateCopy(Loc, Init->getLocStart());
    779 
    780   MultiExprArg Args = Init;
    781   if (CXXDirectInit)
    782     Args =
    783         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
    784   QualType DclT;
    785   InitializationSequence InitSeq(*this, Entity, Kind, Args);
    786   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
    787 
    788   if (Result.isInvalid())
    789     return QualType();
    790   Init = Result.getAs<Expr>();
    791 
    792   // The init-capture initialization is a full-expression that must be
    793   // processed as one before we enter the declcontext of the lambda's
    794   // call-operator.
    795   Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
    796                                /*IsConstexpr*/ false,
    797                                /*IsLambdaInitCaptureInitalizer*/ true);
    798   if (Result.isInvalid())
    799     return QualType();
    800 
    801   Init = Result.getAs<Expr>();
    802   return DeducedType;
    803 }
    804 
    805 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
    806     QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
    807 
    808   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
    809       Loc);
    810   // Create a dummy variable representing the init-capture. This is not actually
    811   // used as a variable, and only exists as a way to name and refer to the
    812   // init-capture.
    813   // FIXME: Pass in separate source locations for '&' and identifier.
    814   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
    815                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
    816   NewVD->setInitCapture(true);
    817   NewVD->setReferenced(true);
    818   NewVD->markUsed(Context);
    819   NewVD->setInit(Init);
    820   return NewVD;
    821 
    822 }
    823 
    824 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
    825   FieldDecl *Field = FieldDecl::Create(
    826       Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
    827       nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
    828       ICIS_NoInit);
    829   Field->setImplicit(true);
    830   Field->setAccess(AS_private);
    831   LSI->Lambda->addDecl(Field);
    832 
    833   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
    834                   /*isNested*/false, Var->getLocation(), SourceLocation(),
    835                   Var->getType(), Var->getInit());
    836   return Field;
    837 }
    838 
    839 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
    840                   Declarator &ParamInfo, Scope *CurScope) {
    841   // Determine if we're within a context where we know that the lambda will
    842   // be dependent, because there are template parameters in scope.
    843   bool KnownDependent = false;
    844   LambdaScopeInfo *const LSI = getCurLambda();
    845   assert(LSI && "LambdaScopeInfo should be on stack!");
    846   TemplateParameterList *TemplateParams =
    847             getGenericLambdaTemplateParameterList(LSI, *this);
    848 
    849   if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
    850     // Since we have our own TemplateParams, so check if an outer scope
    851     // has template params, only then are we in a dependent scope.
    852     if (TemplateParams)  {
    853       TmplScope = TmplScope->getParent();
    854       TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
    855     }
    856     if (TmplScope && !TmplScope->decl_empty())
    857       KnownDependent = true;
    858   }
    859   // Determine the signature of the call operator.
    860   TypeSourceInfo *MethodTyInfo;
    861   bool ExplicitParams = true;
    862   bool ExplicitResultType = true;
    863   bool ContainsUnexpandedParameterPack = false;
    864   SourceLocation EndLoc;
    865   SmallVector<ParmVarDecl *, 8> Params;
    866   if (ParamInfo.getNumTypeObjects() == 0) {
    867     // C++11 [expr.prim.lambda]p4:
    868     //   If a lambda-expression does not include a lambda-declarator, it is as
    869     //   if the lambda-declarator were ().
    870     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
    871         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
    872     EPI.HasTrailingReturn = true;
    873     EPI.TypeQuals |= DeclSpec::TQ_const;
    874     // C++1y [expr.prim.lambda]:
    875     //   The lambda return type is 'auto', which is replaced by the
    876     //   trailing-return type if provided and/or deduced from 'return'
    877     //   statements
    878     // We don't do this before C++1y, because we don't support deduced return
    879     // types there.
    880     QualType DefaultTypeForNoTrailingReturn =
    881         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
    882                                   : Context.DependentTy;
    883     QualType MethodTy =
    884         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
    885     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
    886     ExplicitParams = false;
    887     ExplicitResultType = false;
    888     EndLoc = Intro.Range.getEnd();
    889   } else {
    890     assert(ParamInfo.isFunctionDeclarator() &&
    891            "lambda-declarator is a function");
    892     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
    893 
    894     // C++11 [expr.prim.lambda]p5:
    895     //   This function call operator is declared const (9.3.1) if and only if
    896     //   the lambda-expression's parameter-declaration-clause is not followed
    897     //   by mutable. It is neither virtual nor declared volatile. [...]
    898     if (!FTI.hasMutableQualifier())
    899       FTI.TypeQuals |= DeclSpec::TQ_const;
    900 
    901     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
    902     assert(MethodTyInfo && "no type from lambda-declarator");
    903     EndLoc = ParamInfo.getSourceRange().getEnd();
    904 
    905     ExplicitResultType = FTI.hasTrailingReturnType();
    906 
    907     if (FTIHasNonVoidParameters(FTI)) {
    908       Params.reserve(FTI.NumParams);
    909       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
    910         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
    911     }
    912 
    913     // Check for unexpanded parameter packs in the method type.
    914     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
    915       ContainsUnexpandedParameterPack = true;
    916   }
    917 
    918   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
    919                                                  KnownDependent, Intro.Default);
    920 
    921   CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
    922                                                 MethodTyInfo, EndLoc, Params);
    923   if (ExplicitParams)
    924     CheckCXXDefaultArguments(Method);
    925 
    926   // Attributes on the lambda apply to the method.
    927   ProcessDeclAttributes(CurScope, Method, ParamInfo);
    928 
    929   // Introduce the function call operator as the current declaration context.
    930   PushDeclContext(CurScope, Method);
    931 
    932   // Build the lambda scope.
    933   buildLambdaScope(LSI, Method,
    934                        Intro.Range,
    935                        Intro.Default, Intro.DefaultLoc,
    936                        ExplicitParams,
    937                        ExplicitResultType,
    938                        !Method->isConst());
    939 
    940   // C++11 [expr.prim.lambda]p9:
    941   //   A lambda-expression whose smallest enclosing scope is a block scope is a
    942   //   local lambda expression; any other lambda expression shall not have a
    943   //   capture-default or simple-capture in its lambda-introducer.
    944   //
    945   // For simple-captures, this is covered by the check below that any named
    946   // entity is a variable that can be captured.
    947   //
    948   // For DR1632, we also allow a capture-default in any context where we can
    949   // odr-use 'this' (in particular, in a default initializer for a non-static
    950   // data member).
    951   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
    952       (getCurrentThisType().isNull() ||
    953        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
    954                            /*BuildAndDiagnose*/false)))
    955     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
    956 
    957   // Distinct capture names, for diagnostics.
    958   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
    959 
    960   // Handle explicit captures.
    961   SourceLocation PrevCaptureLoc
    962     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
    963   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
    964        PrevCaptureLoc = C->Loc, ++C) {
    965     if (C->Kind == LCK_This) {
    966       // C++11 [expr.prim.lambda]p8:
    967       //   An identifier or this shall not appear more than once in a
    968       //   lambda-capture.
    969       if (LSI->isCXXThisCaptured()) {
    970         Diag(C->Loc, diag::err_capture_more_than_once)
    971             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
    972             << FixItHint::CreateRemoval(
    973                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    974         continue;
    975       }
    976 
    977       // C++11 [expr.prim.lambda]p8:
    978       //   If a lambda-capture includes a capture-default that is =, the
    979       //   lambda-capture shall not contain this [...].
    980       if (Intro.Default == LCD_ByCopy) {
    981         Diag(C->Loc, diag::err_this_capture_with_copy_default)
    982             << FixItHint::CreateRemoval(
    983                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    984         continue;
    985       }
    986 
    987       // C++11 [expr.prim.lambda]p12:
    988       //   If this is captured by a local lambda expression, its nearest
    989       //   enclosing function shall be a non-static member function.
    990       QualType ThisCaptureType = getCurrentThisType();
    991       if (ThisCaptureType.isNull()) {
    992         Diag(C->Loc, diag::err_this_capture) << true;
    993         continue;
    994       }
    995 
    996       CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
    997       continue;
    998     }
    999 
   1000     assert(C->Id && "missing identifier for capture");
   1001 
   1002     if (C->Init.isInvalid())
   1003       continue;
   1004 
   1005     VarDecl *Var = nullptr;
   1006     if (C->Init.isUsable()) {
   1007       Diag(C->Loc, getLangOpts().CPlusPlus14
   1008                        ? diag::warn_cxx11_compat_init_capture
   1009                        : diag::ext_init_capture);
   1010 
   1011       if (C->Init.get()->containsUnexpandedParameterPack())
   1012         ContainsUnexpandedParameterPack = true;
   1013       // If the initializer expression is usable, but the InitCaptureType
   1014       // is not, then an error has occurred - so ignore the capture for now.
   1015       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
   1016       // FIXME: we should create the init capture variable and mark it invalid
   1017       // in this case.
   1018       if (C->InitCaptureType.get().isNull())
   1019         continue;
   1020       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
   1021             C->Id, C->Init.get());
   1022       // C++1y [expr.prim.lambda]p11:
   1023       //   An init-capture behaves as if it declares and explicitly
   1024       //   captures a variable [...] whose declarative region is the
   1025       //   lambda-expression's compound-statement
   1026       if (Var)
   1027         PushOnScopeChains(Var, CurScope, false);
   1028     } else {
   1029       // C++11 [expr.prim.lambda]p8:
   1030       //   If a lambda-capture includes a capture-default that is &, the
   1031       //   identifiers in the lambda-capture shall not be preceded by &.
   1032       //   If a lambda-capture includes a capture-default that is =, [...]
   1033       //   each identifier it contains shall be preceded by &.
   1034       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
   1035         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
   1036             << FixItHint::CreateRemoval(
   1037                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1038         continue;
   1039       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
   1040         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
   1041             << FixItHint::CreateRemoval(
   1042                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1043         continue;
   1044       }
   1045 
   1046       // C++11 [expr.prim.lambda]p10:
   1047       //   The identifiers in a capture-list are looked up using the usual
   1048       //   rules for unqualified name lookup (3.4.1)
   1049       DeclarationNameInfo Name(C->Id, C->Loc);
   1050       LookupResult R(*this, Name, LookupOrdinaryName);
   1051       LookupName(R, CurScope);
   1052       if (R.isAmbiguous())
   1053         continue;
   1054       if (R.empty()) {
   1055         // FIXME: Disable corrections that would add qualification?
   1056         CXXScopeSpec ScopeSpec;
   1057         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
   1058                                 llvm::make_unique<DeclFilterCCC<VarDecl>>()))
   1059           continue;
   1060       }
   1061 
   1062       Var = R.getAsSingle<VarDecl>();
   1063       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
   1064         continue;
   1065     }
   1066 
   1067     // C++11 [expr.prim.lambda]p8:
   1068     //   An identifier or this shall not appear more than once in a
   1069     //   lambda-capture.
   1070     if (!CaptureNames.insert(C->Id).second) {
   1071       if (Var && LSI->isCaptured(Var)) {
   1072         Diag(C->Loc, diag::err_capture_more_than_once)
   1073             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
   1074             << FixItHint::CreateRemoval(
   1075                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1076       } else
   1077         // Previous capture captured something different (one or both was
   1078         // an init-cpature): no fixit.
   1079         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
   1080       continue;
   1081     }
   1082 
   1083     // C++11 [expr.prim.lambda]p10:
   1084     //   [...] each such lookup shall find a variable with automatic storage
   1085     //   duration declared in the reaching scope of the local lambda expression.
   1086     // Note that the 'reaching scope' check happens in tryCaptureVariable().
   1087     if (!Var) {
   1088       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
   1089       continue;
   1090     }
   1091 
   1092     // Ignore invalid decls; they'll just confuse the code later.
   1093     if (Var->isInvalidDecl())
   1094       continue;
   1095 
   1096     if (!Var->hasLocalStorage()) {
   1097       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
   1098       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
   1099       continue;
   1100     }
   1101 
   1102     // C++11 [expr.prim.lambda]p23:
   1103     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
   1104     SourceLocation EllipsisLoc;
   1105     if (C->EllipsisLoc.isValid()) {
   1106       if (Var->isParameterPack()) {
   1107         EllipsisLoc = C->EllipsisLoc;
   1108       } else {
   1109         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1110           << SourceRange(C->Loc);
   1111 
   1112         // Just ignore the ellipsis.
   1113       }
   1114     } else if (Var->isParameterPack()) {
   1115       ContainsUnexpandedParameterPack = true;
   1116     }
   1117 
   1118     if (C->Init.isUsable()) {
   1119       buildInitCaptureField(LSI, Var);
   1120     } else {
   1121       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
   1122                                                    TryCapture_ExplicitByVal;
   1123       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
   1124     }
   1125   }
   1126   finishLambdaExplicitCaptures(LSI);
   1127 
   1128   LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1129 
   1130   // Add lambda parameters into scope.
   1131   addLambdaParameters(Method, CurScope);
   1132 
   1133   // Enter a new evaluation context to insulate the lambda from any
   1134   // cleanups from the enclosing full-expression.
   1135   PushExpressionEvaluationContext(PotentiallyEvaluated);
   1136 }
   1137 
   1138 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
   1139                             bool IsInstantiation) {
   1140   LambdaScopeInfo *LSI = getCurLambda();
   1141 
   1142   // Leave the expression-evaluation context.
   1143   DiscardCleanupsInEvaluationContext();
   1144   PopExpressionEvaluationContext();
   1145 
   1146   // Leave the context of the lambda.
   1147   if (!IsInstantiation)
   1148     PopDeclContext();
   1149 
   1150   // Finalize the lambda.
   1151   CXXRecordDecl *Class = LSI->Lambda;
   1152   Class->setInvalidDecl();
   1153   SmallVector<Decl*, 4> Fields(Class->fields());
   1154   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1155               SourceLocation(), nullptr);
   1156   CheckCompletedCXXClass(Class);
   1157 
   1158   PopFunctionScopeInfo();
   1159 }
   1160 
   1161 /// \brief Add a lambda's conversion to function pointer, as described in
   1162 /// C++11 [expr.prim.lambda]p6.
   1163 static void addFunctionPointerConversion(Sema &S,
   1164                                          SourceRange IntroducerRange,
   1165                                          CXXRecordDecl *Class,
   1166                                          CXXMethodDecl *CallOperator) {
   1167   // Add the conversion to function pointer.
   1168   const FunctionProtoType *CallOpProto =
   1169       CallOperator->getType()->getAs<FunctionProtoType>();
   1170   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
   1171       CallOpProto->getExtProtoInfo();
   1172   QualType PtrToFunctionTy;
   1173   QualType InvokerFunctionTy;
   1174   {
   1175     FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
   1176     CallingConv CC = S.Context.getDefaultCallingConvention(
   1177         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
   1178     InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
   1179     InvokerExtInfo.TypeQuals = 0;
   1180     assert(InvokerExtInfo.RefQualifier == RQ_None &&
   1181         "Lambda's call operator should not have a reference qualifier");
   1182     InvokerFunctionTy =
   1183         S.Context.getFunctionType(CallOpProto->getReturnType(),
   1184                                   CallOpProto->getParamTypes(), InvokerExtInfo);
   1185     PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
   1186   }
   1187 
   1188   // Create the type of the conversion function.
   1189   FunctionProtoType::ExtProtoInfo ConvExtInfo(
   1190       S.Context.getDefaultCallingConvention(
   1191       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1192   // The conversion function is always const.
   1193   ConvExtInfo.TypeQuals = Qualifiers::Const;
   1194   QualType ConvTy =
   1195       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
   1196 
   1197   SourceLocation Loc = IntroducerRange.getBegin();
   1198   DeclarationName ConversionName
   1199     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1200         S.Context.getCanonicalType(PtrToFunctionTy));
   1201   DeclarationNameLoc ConvNameLoc;
   1202   // Construct a TypeSourceInfo for the conversion function, and wire
   1203   // all the parameters appropriately for the FunctionProtoTypeLoc
   1204   // so that everything works during transformation/instantiation of
   1205   // generic lambdas.
   1206   // The main reason for wiring up the parameters of the conversion
   1207   // function with that of the call operator is so that constructs
   1208   // like the following work:
   1209   // auto L = [](auto b) {                <-- 1
   1210   //   return [](auto a) -> decltype(a) { <-- 2
   1211   //      return a;
   1212   //   };
   1213   // };
   1214   // int (*fp)(int) = L(5);
   1215   // Because the trailing return type can contain DeclRefExprs that refer
   1216   // to the original call operator's variables, we hijack the call
   1217   // operators ParmVarDecls below.
   1218   TypeSourceInfo *ConvNamePtrToFunctionTSI =
   1219       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
   1220   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
   1221 
   1222   // The conversion function is a conversion to a pointer-to-function.
   1223   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
   1224   FunctionProtoTypeLoc ConvTL =
   1225       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
   1226   // Get the result of the conversion function which is a pointer-to-function.
   1227   PointerTypeLoc PtrToFunctionTL =
   1228       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
   1229   // Do the same for the TypeSourceInfo that is used to name the conversion
   1230   // operator.
   1231   PointerTypeLoc ConvNamePtrToFunctionTL =
   1232       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
   1233 
   1234   // Get the underlying function types that the conversion function will
   1235   // be converting to (should match the type of the call operator).
   1236   FunctionProtoTypeLoc CallOpConvTL =
   1237       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1238   FunctionProtoTypeLoc CallOpConvNameTL =
   1239     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1240 
   1241   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
   1242   // These parameter's are essentially used to transform the name and
   1243   // the type of the conversion operator.  By using the same parameters
   1244   // as the call operator's we don't have to fix any back references that
   1245   // the trailing return type of the call operator's uses (such as
   1246   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
   1247   // - we can simply use the return type of the call operator, and
   1248   // everything should work.
   1249   SmallVector<ParmVarDecl *, 4> InvokerParams;
   1250   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1251     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1252 
   1253     InvokerParams.push_back(ParmVarDecl::Create(S.Context,
   1254            // Temporarily add to the TU. This is set to the invoker below.
   1255                                              S.Context.getTranslationUnitDecl(),
   1256                                              From->getLocStart(),
   1257                                              From->getLocation(),
   1258                                              From->getIdentifier(),
   1259                                              From->getType(),
   1260                                              From->getTypeSourceInfo(),
   1261                                              From->getStorageClass(),
   1262                                              /*DefaultArg=*/nullptr));
   1263     CallOpConvTL.setParam(I, From);
   1264     CallOpConvNameTL.setParam(I, From);
   1265   }
   1266 
   1267   CXXConversionDecl *Conversion
   1268     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1269                                 DeclarationNameInfo(ConversionName,
   1270                                   Loc, ConvNameLoc),
   1271                                 ConvTy,
   1272                                 ConvTSI,
   1273                                 /*isInline=*/true, /*isExplicit=*/false,
   1274                                 /*isConstexpr=*/false,
   1275                                 CallOperator->getBody()->getLocEnd());
   1276   Conversion->setAccess(AS_public);
   1277   Conversion->setImplicit(true);
   1278 
   1279   if (Class->isGenericLambda()) {
   1280     // Create a template version of the conversion operator, using the template
   1281     // parameter list of the function call operator.
   1282     FunctionTemplateDecl *TemplateCallOperator =
   1283             CallOperator->getDescribedFunctionTemplate();
   1284     FunctionTemplateDecl *ConversionTemplate =
   1285                   FunctionTemplateDecl::Create(S.Context, Class,
   1286                                       Loc, ConversionName,
   1287                                       TemplateCallOperator->getTemplateParameters(),
   1288                                       Conversion);
   1289     ConversionTemplate->setAccess(AS_public);
   1290     ConversionTemplate->setImplicit(true);
   1291     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
   1292     Class->addDecl(ConversionTemplate);
   1293   } else
   1294     Class->addDecl(Conversion);
   1295   // Add a non-static member function that will be the result of
   1296   // the conversion with a certain unique ID.
   1297   DeclarationName InvokerName = &S.Context.Idents.get(
   1298                                                  getLambdaStaticInvokerName());
   1299   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
   1300   // we should get a prebuilt TrivialTypeSourceInfo from Context
   1301   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
   1302   // then rewire the parameters accordingly, by hoisting up the InvokeParams
   1303   // loop below and then use its Params to set Invoke->setParams(...) below.
   1304   // This would avoid the 'const' qualifier of the calloperator from
   1305   // contaminating the type of the invoker, which is currently adjusted
   1306   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
   1307   // trailing return type of the invoker would require a visitor to rebuild
   1308   // the trailing return type and adjusting all back DeclRefExpr's to refer
   1309   // to the new static invoker parameters - not the call operator's.
   1310   CXXMethodDecl *Invoke
   1311     = CXXMethodDecl::Create(S.Context, Class, Loc,
   1312                             DeclarationNameInfo(InvokerName, Loc),
   1313                             InvokerFunctionTy,
   1314                             CallOperator->getTypeSourceInfo(),
   1315                             SC_Static, /*IsInline=*/true,
   1316                             /*IsConstexpr=*/false,
   1317                             CallOperator->getBody()->getLocEnd());
   1318   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
   1319     InvokerParams[I]->setOwningFunction(Invoke);
   1320   Invoke->setParams(InvokerParams);
   1321   Invoke->setAccess(AS_private);
   1322   Invoke->setImplicit(true);
   1323   if (Class->isGenericLambda()) {
   1324     FunctionTemplateDecl *TemplateCallOperator =
   1325             CallOperator->getDescribedFunctionTemplate();
   1326     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
   1327                           S.Context, Class, Loc, InvokerName,
   1328                           TemplateCallOperator->getTemplateParameters(),
   1329                           Invoke);
   1330     StaticInvokerTemplate->setAccess(AS_private);
   1331     StaticInvokerTemplate->setImplicit(true);
   1332     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
   1333     Class->addDecl(StaticInvokerTemplate);
   1334   } else
   1335     Class->addDecl(Invoke);
   1336 }
   1337 
   1338 /// \brief Add a lambda's conversion to block pointer.
   1339 static void addBlockPointerConversion(Sema &S,
   1340                                       SourceRange IntroducerRange,
   1341                                       CXXRecordDecl *Class,
   1342                                       CXXMethodDecl *CallOperator) {
   1343   const FunctionProtoType *Proto =
   1344       CallOperator->getType()->getAs<FunctionProtoType>();
   1345 
   1346   // The function type inside the block pointer type is the same as the call
   1347   // operator with some tweaks. The calling convention is the default free
   1348   // function convention, and the type qualifications are lost.
   1349   FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
   1350   BlockEPI.ExtInfo =
   1351       BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
   1352           Proto->isVariadic(), /*IsCXXMethod=*/false));
   1353   BlockEPI.TypeQuals = 0;
   1354   QualType FunctionTy = S.Context.getFunctionType(
   1355       Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
   1356   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
   1357 
   1358   FunctionProtoType::ExtProtoInfo ConversionEPI(
   1359       S.Context.getDefaultCallingConvention(
   1360           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1361   ConversionEPI.TypeQuals = Qualifiers::Const;
   1362   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
   1363 
   1364   SourceLocation Loc = IntroducerRange.getBegin();
   1365   DeclarationName Name
   1366     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1367         S.Context.getCanonicalType(BlockPtrTy));
   1368   DeclarationNameLoc NameLoc;
   1369   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
   1370   CXXConversionDecl *Conversion
   1371     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1372                                 DeclarationNameInfo(Name, Loc, NameLoc),
   1373                                 ConvTy,
   1374                                 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
   1375                                 /*isInline=*/true, /*isExplicit=*/false,
   1376                                 /*isConstexpr=*/false,
   1377                                 CallOperator->getBody()->getLocEnd());
   1378   Conversion->setAccess(AS_public);
   1379   Conversion->setImplicit(true);
   1380   Class->addDecl(Conversion);
   1381 }
   1382 
   1383 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
   1384                                  Scope *CurScope,
   1385                                  bool IsInstantiation) {
   1386   // Collect information from the lambda scope.
   1387   SmallVector<LambdaCapture, 4> Captures;
   1388   SmallVector<Expr *, 4> CaptureInits;
   1389   LambdaCaptureDefault CaptureDefault;
   1390   SourceLocation CaptureDefaultLoc;
   1391   CXXRecordDecl *Class;
   1392   CXXMethodDecl *CallOperator;
   1393   SourceRange IntroducerRange;
   1394   bool ExplicitParams;
   1395   bool ExplicitResultType;
   1396   bool LambdaExprNeedsCleanups;
   1397   bool ContainsUnexpandedParameterPack;
   1398   SmallVector<VarDecl *, 4> ArrayIndexVars;
   1399   SmallVector<unsigned, 4> ArrayIndexStarts;
   1400   {
   1401     LambdaScopeInfo *LSI = getCurLambda();
   1402     CallOperator = LSI->CallOperator;
   1403     Class = LSI->Lambda;
   1404     IntroducerRange = LSI->IntroducerRange;
   1405     ExplicitParams = LSI->ExplicitParams;
   1406     ExplicitResultType = !LSI->HasImplicitReturnType;
   1407     LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
   1408     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
   1409     ArrayIndexVars.swap(LSI->ArrayIndexVars);
   1410     ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
   1411 
   1412     // Translate captures.
   1413     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
   1414       LambdaScopeInfo::Capture From = LSI->Captures[I];
   1415       assert(!From.isBlockCapture() && "Cannot capture __block variables");
   1416       bool IsImplicit = I >= LSI->NumExplicitCaptures;
   1417 
   1418       // Handle 'this' capture.
   1419       if (From.isThisCapture()) {
   1420         Captures.push_back(
   1421             LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
   1422         CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
   1423                                                          getCurrentThisType(),
   1424                                                          /*isImplicit=*/true));
   1425         continue;
   1426       }
   1427       if (From.isVLATypeCapture()) {
   1428         Captures.push_back(
   1429             LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
   1430         CaptureInits.push_back(nullptr);
   1431         continue;
   1432       }
   1433 
   1434       VarDecl *Var = From.getVariable();
   1435       LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
   1436       Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
   1437                                        Var, From.getEllipsisLoc()));
   1438       CaptureInits.push_back(From.getInitExpr());
   1439     }
   1440 
   1441     switch (LSI->ImpCaptureStyle) {
   1442     case CapturingScopeInfo::ImpCap_None:
   1443       CaptureDefault = LCD_None;
   1444       break;
   1445 
   1446     case CapturingScopeInfo::ImpCap_LambdaByval:
   1447       CaptureDefault = LCD_ByCopy;
   1448       break;
   1449 
   1450     case CapturingScopeInfo::ImpCap_CapturedRegion:
   1451     case CapturingScopeInfo::ImpCap_LambdaByref:
   1452       CaptureDefault = LCD_ByRef;
   1453       break;
   1454 
   1455     case CapturingScopeInfo::ImpCap_Block:
   1456       llvm_unreachable("block capture in lambda");
   1457       break;
   1458     }
   1459     CaptureDefaultLoc = LSI->CaptureDefaultLoc;
   1460 
   1461     // C++11 [expr.prim.lambda]p4:
   1462     //   If a lambda-expression does not include a
   1463     //   trailing-return-type, it is as if the trailing-return-type
   1464     //   denotes the following type:
   1465     //
   1466     // Skip for C++1y return type deduction semantics which uses
   1467     // different machinery.
   1468     // FIXME: Refactor and Merge the return type deduction machinery.
   1469     // FIXME: Assumes current resolution to core issue 975.
   1470     if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus14) {
   1471       deduceClosureReturnType(*LSI);
   1472 
   1473       //   - if there are no return statements in the
   1474       //     compound-statement, or all return statements return
   1475       //     either an expression of type void or no expression or
   1476       //     braced-init-list, the type void;
   1477       if (LSI->ReturnType.isNull()) {
   1478         LSI->ReturnType = Context.VoidTy;
   1479       }
   1480 
   1481       // Create a function type with the inferred return type.
   1482       const FunctionProtoType *Proto
   1483         = CallOperator->getType()->getAs<FunctionProtoType>();
   1484       QualType FunctionTy = Context.getFunctionType(
   1485           LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
   1486       CallOperator->setType(FunctionTy);
   1487     }
   1488     // C++ [expr.prim.lambda]p7:
   1489     //   The lambda-expression's compound-statement yields the
   1490     //   function-body (8.4) of the function call operator [...].
   1491     ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
   1492     CallOperator->setLexicalDeclContext(Class);
   1493     Decl *TemplateOrNonTemplateCallOperatorDecl =
   1494         CallOperator->getDescribedFunctionTemplate()
   1495         ? CallOperator->getDescribedFunctionTemplate()
   1496         : cast<Decl>(CallOperator);
   1497 
   1498     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
   1499     Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
   1500 
   1501     PopExpressionEvaluationContext();
   1502 
   1503     // C++11 [expr.prim.lambda]p6:
   1504     //   The closure type for a lambda-expression with no lambda-capture
   1505     //   has a public non-virtual non-explicit const conversion function
   1506     //   to pointer to function having the same parameter and return
   1507     //   types as the closure type's function call operator.
   1508     if (Captures.empty() && CaptureDefault == LCD_None)
   1509       addFunctionPointerConversion(*this, IntroducerRange, Class,
   1510                                    CallOperator);
   1511 
   1512     // Objective-C++:
   1513     //   The closure type for a lambda-expression has a public non-virtual
   1514     //   non-explicit const conversion function to a block pointer having the
   1515     //   same parameter and return types as the closure type's function call
   1516     //   operator.
   1517     // FIXME: Fix generic lambda to block conversions.
   1518     if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
   1519                                               !Class->isGenericLambda())
   1520       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
   1521 
   1522     // Finalize the lambda class.
   1523     SmallVector<Decl*, 4> Fields(Class->fields());
   1524     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1525                 SourceLocation(), nullptr);
   1526     CheckCompletedCXXClass(Class);
   1527   }
   1528 
   1529   if (LambdaExprNeedsCleanups)
   1530     ExprNeedsCleanups = true;
   1531 
   1532   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
   1533                                           CaptureDefault, CaptureDefaultLoc,
   1534                                           Captures,
   1535                                           ExplicitParams, ExplicitResultType,
   1536                                           CaptureInits, ArrayIndexVars,
   1537                                           ArrayIndexStarts, Body->getLocEnd(),
   1538                                           ContainsUnexpandedParameterPack);
   1539 
   1540   if (!CurContext->isDependentContext()) {
   1541     switch (ExprEvalContexts.back().Context) {
   1542     // C++11 [expr.prim.lambda]p2:
   1543     //   A lambda-expression shall not appear in an unevaluated operand
   1544     //   (Clause 5).
   1545     case Unevaluated:
   1546     case UnevaluatedAbstract:
   1547     // C++1y [expr.const]p2:
   1548     //   A conditional-expression e is a core constant expression unless the
   1549     //   evaluation of e, following the rules of the abstract machine, would
   1550     //   evaluate [...] a lambda-expression.
   1551     //
   1552     // This is technically incorrect, there are some constant evaluated contexts
   1553     // where this should be allowed.  We should probably fix this when DR1607 is
   1554     // ratified, it lays out the exact set of conditions where we shouldn't
   1555     // allow a lambda-expression.
   1556     case ConstantEvaluated:
   1557       // We don't actually diagnose this case immediately, because we
   1558       // could be within a context where we might find out later that
   1559       // the expression is potentially evaluated (e.g., for typeid).
   1560       ExprEvalContexts.back().Lambdas.push_back(Lambda);
   1561       break;
   1562 
   1563     case PotentiallyEvaluated:
   1564     case PotentiallyEvaluatedIfUsed:
   1565       break;
   1566     }
   1567   }
   1568 
   1569   return MaybeBindToTemporary(Lambda);
   1570 }
   1571 
   1572 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
   1573                                                SourceLocation ConvLocation,
   1574                                                CXXConversionDecl *Conv,
   1575                                                Expr *Src) {
   1576   // Make sure that the lambda call operator is marked used.
   1577   CXXRecordDecl *Lambda = Conv->getParent();
   1578   CXXMethodDecl *CallOperator
   1579     = cast<CXXMethodDecl>(
   1580         Lambda->lookup(
   1581           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
   1582   CallOperator->setReferenced();
   1583   CallOperator->markUsed(Context);
   1584 
   1585   ExprResult Init = PerformCopyInitialization(
   1586                       InitializedEntity::InitializeBlock(ConvLocation,
   1587                                                          Src->getType(),
   1588                                                          /*NRVO=*/false),
   1589                       CurrentLocation, Src);
   1590   if (!Init.isInvalid())
   1591     Init = ActOnFinishFullExpr(Init.get());
   1592 
   1593   if (Init.isInvalid())
   1594     return ExprError();
   1595 
   1596   // Create the new block to be returned.
   1597   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
   1598 
   1599   // Set the type information.
   1600   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
   1601   Block->setIsVariadic(CallOperator->isVariadic());
   1602   Block->setBlockMissingReturnType(false);
   1603 
   1604   // Add parameters.
   1605   SmallVector<ParmVarDecl *, 4> BlockParams;
   1606   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1607     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1608     BlockParams.push_back(ParmVarDecl::Create(Context, Block,
   1609                                               From->getLocStart(),
   1610                                               From->getLocation(),
   1611                                               From->getIdentifier(),
   1612                                               From->getType(),
   1613                                               From->getTypeSourceInfo(),
   1614                                               From->getStorageClass(),
   1615                                               /*DefaultArg=*/nullptr));
   1616   }
   1617   Block->setParams(BlockParams);
   1618 
   1619   Block->setIsConversionFromLambda(true);
   1620 
   1621   // Add capture. The capture uses a fake variable, which doesn't correspond
   1622   // to any actual memory location. However, the initializer copy-initializes
   1623   // the lambda object.
   1624   TypeSourceInfo *CapVarTSI =
   1625       Context.getTrivialTypeSourceInfo(Src->getType());
   1626   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
   1627                                     ConvLocation, nullptr,
   1628                                     Src->getType(), CapVarTSI,
   1629                                     SC_None);
   1630   BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
   1631                              /*Nested=*/false, /*Copy=*/Init.get());
   1632   Block->setCaptures(Context, &Capture, &Capture + 1,
   1633                      /*CapturesCXXThis=*/false);
   1634 
   1635   // Add a fake function body to the block. IR generation is responsible
   1636   // for filling in the actual body, which cannot be expressed as an AST.
   1637   Block->setBody(new (Context) CompoundStmt(ConvLocation));
   1638 
   1639   // Create the block literal expression.
   1640   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
   1641   ExprCleanupObjects.push_back(Block);
   1642   ExprNeedsCleanups = true;
   1643 
   1644   return BuildBlock;
   1645 }
   1646