Home | History | Annotate | Download | only in src
      1 /*-
      2  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen (at) FreeBSD.ORG>
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __FBSDID("$FreeBSD$");
     29 
     30 #include <complex.h>
     31 #include <float.h>
     32 
     33 #include "math.h"
     34 #include "math_private.h"
     35 
     36 #undef isinf
     37 #define isinf(x)	(fabs(x) == INFINITY)
     38 #undef isnan
     39 #define isnan(x)	((x) != (x))
     40 #define	raise_inexact()	do { volatile float junk = 1 + tiny; } while(0)
     41 #undef signbit
     42 #define signbit(x)	(__builtin_signbit(x))
     43 
     44 /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
     45 static const double
     46 A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
     47 B_crossover =		0.6417,			/* suggested by Hull et al */
     48 FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
     49 QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
     50 m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
     51 m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
     52 pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
     53 RECIP_EPSILON =		1 / DBL_EPSILON,
     54 SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
     55 SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
     56 SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
     57 
     58 static const volatile double
     59 pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
     60 static const volatile float
     61 tiny =			0x1p-100;
     62 
     63 static double complex clog_for_large_values(double complex z);
     64 
     65 /*
     66  * Testing indicates that all these functions are accurate up to 4 ULP.
     67  * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
     68  * The functions catan(h) are a little under 2 times slower than atanh.
     69  *
     70  * The code for casinh, casin, cacos, and cacosh comes first.  The code is
     71  * rather complicated, and the four functions are highly interdependent.
     72  *
     73  * The code for catanh and catan comes at the end.  It is much simpler than
     74  * the other functions, and the code for these can be disconnected from the
     75  * rest of the code.
     76  */
     77 
     78 /*
     79  *			================================
     80  *			| casinh, casin, cacos, cacosh |
     81  *			================================
     82  */
     83 
     84 /*
     85  * The algorithm is very close to that in "Implementing the complex arcsine
     86  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
     87  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
     88  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
     89  * http://dl.acm.org/citation.cfm?id=275324.
     90  *
     91  * Throughout we use the convention z = x + I*y.
     92  *
     93  * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
     94  * where
     95  * A = (|z+I| + |z-I|) / 2
     96  * B = (|z+I| - |z-I|) / 2 = y/A
     97  *
     98  * These formulas become numerically unstable:
     99  *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
    100  *       is, Re(casinh(z)) is close to 0);
    101  *   (b) for Im(casinh(z)) when z is close to either of the intervals
    102  *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
    103  *       close to PI/2).
    104  *
    105  * These numerical problems are overcome by defining
    106  * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
    107  * Then if A < A_crossover, we use
    108  *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
    109  *   A-1 = f(x, 1+y) + f(x, 1-y)
    110  * and if B > B_crossover, we use
    111  *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
    112  *   A-y = f(x, y+1) + f(x, y-1)
    113  * where without loss of generality we have assumed that x and y are
    114  * non-negative.
    115  *
    116  * Much of the difficulty comes because the intermediate computations may
    117  * produce overflows or underflows.  This is dealt with in the paper by Hull
    118  * et al by using exception handling.  We do this by detecting when
    119  * computations risk underflow or overflow.  The hardest part is handling the
    120  * underflows when computing f(a, b).
    121  *
    122  * Note that the function f(a, b) does not appear explicitly in the paper by
    123  * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
    124  * function f(a, b) allows us to concentrate many of the clever tricks in this
    125  * paper into one function.
    126  */
    127 
    128 /*
    129  * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
    130  * Pass hypot(a, b) as the third argument.
    131  */
    132 static inline double
    133 f(double a, double b, double hypot_a_b)
    134 {
    135 	if (b < 0)
    136 		return ((hypot_a_b - b) / 2);
    137 	if (b == 0)
    138 		return (a / 2);
    139 	return (a * a / (hypot_a_b + b) / 2);
    140 }
    141 
    142 /*
    143  * All the hard work is contained in this function.
    144  * x and y are assumed positive or zero, and less than RECIP_EPSILON.
    145  * Upon return:
    146  * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
    147  * B_is_usable is set to 1 if the value of B is usable.
    148  * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
    149  * If returning sqrt_A2my2 has potential to result in an underflow, it is
    150  * rescaled, and new_y is similarly rescaled.
    151  */
    152 static inline void
    153 do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
    154     double *sqrt_A2my2, double *new_y)
    155 {
    156 	double R, S, A; /* A, B, R, and S are as in Hull et al. */
    157 	double Am1, Amy; /* A-1, A-y. */
    158 
    159 	R = hypot(x, y + 1);		/* |z+I| */
    160 	S = hypot(x, y - 1);		/* |z-I| */
    161 
    162 	/* A = (|z+I| + |z-I|) / 2 */
    163 	A = (R + S) / 2;
    164 	/*
    165 	 * Mathematically A >= 1.  There is a small chance that this will not
    166 	 * be so because of rounding errors.  So we will make certain it is
    167 	 * so.
    168 	 */
    169 	if (A < 1)
    170 		A = 1;
    171 
    172 	if (A < A_crossover) {
    173 		/*
    174 		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
    175 		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
    176 		 */
    177 		if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
    178 			/*
    179 			 * fp is of order x^2, and fm = x/2.
    180 			 * A = 1 (inexactly).
    181 			 */
    182 			*rx = sqrt(x);
    183 		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
    184 			/*
    185 			 * Underflow will not occur because
    186 			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
    187 			 */
    188 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
    189 			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
    190 		} else if (y < 1) {
    191 			/*
    192 			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
    193 			 * A = 1 (inexactly).
    194 			 */
    195 			*rx = x / sqrt((1 - y) * (1 + y));
    196 		} else {		/* if (y > 1) */
    197 			/*
    198 			 * A-1 = y-1 (inexactly).
    199 			 */
    200 			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
    201 		}
    202 	} else {
    203 		*rx = log(A + sqrt(A * A - 1));
    204 	}
    205 
    206 	*new_y = y;
    207 
    208 	if (y < FOUR_SQRT_MIN) {
    209 		/*
    210 		 * Avoid a possible underflow caused by y/A.  For casinh this
    211 		 * would be legitimate, but will be picked up by invoking atan2
    212 		 * later on.  For cacos this would not be legitimate.
    213 		 */
    214 		*B_is_usable = 0;
    215 		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
    216 		*new_y = y * (2 / DBL_EPSILON);
    217 		return;
    218 	}
    219 
    220 	/* B = (|z+I| - |z-I|) / 2 = y/A */
    221 	*B = y / A;
    222 	*B_is_usable = 1;
    223 
    224 	if (*B > B_crossover) {
    225 		*B_is_usable = 0;
    226 		/*
    227 		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
    228 		 * sqrt_A2my2 = sqrt(Amy*(A+y))
    229 		 */
    230 		if (y == 1 && x < DBL_EPSILON / 128) {
    231 			/*
    232 			 * fp is of order x^2, and fm = x/2.
    233 			 * A = 1 (inexactly).
    234 			 */
    235 			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
    236 		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
    237 			/*
    238 			 * Underflow will not occur because
    239 			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
    240 			 * and
    241 			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
    242 			 */
    243 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
    244 			*sqrt_A2my2 = sqrt(Amy * (A + y));
    245 		} else if (y > 1) {
    246 			/*
    247 			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
    248 			 * A = y (inexactly).
    249 			 *
    250 			 * y < RECIP_EPSILON.  So the following
    251 			 * scaling should avoid any underflow problems.
    252 			 */
    253 			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
    254 			    sqrt((y + 1) * (y - 1));
    255 			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
    256 		} else {		/* if (y < 1) */
    257 			/*
    258 			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
    259 			 * A = 1 (inexactly).
    260 			 */
    261 			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
    262 		}
    263 	}
    264 }
    265 
    266 /*
    267  * casinh(z) = z + O(z^3)   as z -> 0
    268  *
    269  * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
    270  * The above formula works for the imaginary part as well, because
    271  * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
    272  *    as z -> infinity, uniformly in y
    273  */
    274 double complex
    275 casinh(double complex z)
    276 {
    277 	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
    278 	int B_is_usable;
    279 	double complex w;
    280 
    281 	x = creal(z);
    282 	y = cimag(z);
    283 	ax = fabs(x);
    284 	ay = fabs(y);
    285 
    286 	if (isnan(x) || isnan(y)) {
    287 		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
    288 		if (isinf(x))
    289 			return (cpack(x, y + y));
    290 		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
    291 		if (isinf(y))
    292 			return (cpack(y, x + x));
    293 		/* casinh(NaN + I*0) = NaN + I*0 */
    294 		if (y == 0)
    295 			return (cpack(x + x, y));
    296 		/*
    297 		 * All other cases involving NaN return NaN + I*NaN.
    298 		 * C99 leaves it optional whether to raise invalid if one of
    299 		 * the arguments is not NaN, so we opt not to raise it.
    300 		 */
    301 		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    302 	}
    303 
    304 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    305 		/* clog...() will raise inexact unless x or y is infinite. */
    306 		if (signbit(x) == 0)
    307 			w = clog_for_large_values(z) + m_ln2;
    308 		else
    309 			w = clog_for_large_values(-z) + m_ln2;
    310 		return (cpack(copysign(creal(w), x), copysign(cimag(w), y)));
    311 	}
    312 
    313 	/* Avoid spuriously raising inexact for z = 0. */
    314 	if (x == 0 && y == 0)
    315 		return (z);
    316 
    317 	/* All remaining cases are inexact. */
    318 	raise_inexact();
    319 
    320 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
    321 		return (z);
    322 
    323 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
    324 	if (B_is_usable)
    325 		ry = asin(B);
    326 	else
    327 		ry = atan2(new_y, sqrt_A2my2);
    328 	return (cpack(copysign(rx, x), copysign(ry, y)));
    329 }
    330 
    331 /*
    332  * casin(z) = reverse(casinh(reverse(z)))
    333  * where reverse(x + I*y) = y + I*x = I*conj(z).
    334  */
    335 double complex
    336 casin(double complex z)
    337 {
    338 	double complex w = casinh(cpack(cimag(z), creal(z)));
    339 
    340 	return (cpack(cimag(w), creal(w)));
    341 }
    342 
    343 /*
    344  * cacos(z) = PI/2 - casin(z)
    345  * but do the computation carefully so cacos(z) is accurate when z is
    346  * close to 1.
    347  *
    348  * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
    349  *
    350  * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
    351  * The above formula works for the real part as well, because
    352  * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
    353  *    as z -> infinity, uniformly in y
    354  */
    355 double complex
    356 cacos(double complex z)
    357 {
    358 	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
    359 	int sx, sy;
    360 	int B_is_usable;
    361 	double complex w;
    362 
    363 	x = creal(z);
    364 	y = cimag(z);
    365 	sx = signbit(x);
    366 	sy = signbit(y);
    367 	ax = fabs(x);
    368 	ay = fabs(y);
    369 
    370 	if (isnan(x) || isnan(y)) {
    371 		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
    372 		if (isinf(x))
    373 			return (cpack(y + y, -INFINITY));
    374 		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
    375 		if (isinf(y))
    376 			return (cpack(x + x, -y));
    377 		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
    378 		if (x == 0)
    379 			return (cpack(pio2_hi + pio2_lo, y + y));
    380 		/*
    381 		 * All other cases involving NaN return NaN + I*NaN.
    382 		 * C99 leaves it optional whether to raise invalid if one of
    383 		 * the arguments is not NaN, so we opt not to raise it.
    384 		 */
    385 		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    386 	}
    387 
    388 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    389 		/* clog...() will raise inexact unless x or y is infinite. */
    390 		w = clog_for_large_values(z);
    391 		rx = fabs(cimag(w));
    392 		ry = creal(w) + m_ln2;
    393 		if (sy == 0)
    394 			ry = -ry;
    395 		return (cpack(rx, ry));
    396 	}
    397 
    398 	/* Avoid spuriously raising inexact for z = 1. */
    399 	if (x == 1 && y == 0)
    400 		return (cpack(0, -y));
    401 
    402 	/* All remaining cases are inexact. */
    403 	raise_inexact();
    404 
    405 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
    406 		return (cpack(pio2_hi - (x - pio2_lo), -y));
    407 
    408 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
    409 	if (B_is_usable) {
    410 		if (sx == 0)
    411 			rx = acos(B);
    412 		else
    413 			rx = acos(-B);
    414 	} else {
    415 		if (sx == 0)
    416 			rx = atan2(sqrt_A2mx2, new_x);
    417 		else
    418 			rx = atan2(sqrt_A2mx2, -new_x);
    419 	}
    420 	if (sy == 0)
    421 		ry = -ry;
    422 	return (cpack(rx, ry));
    423 }
    424 
    425 /*
    426  * cacosh(z) = I*cacos(z) or -I*cacos(z)
    427  * where the sign is chosen so Re(cacosh(z)) >= 0.
    428  */
    429 double complex
    430 cacosh(double complex z)
    431 {
    432 	double complex w;
    433 	double rx, ry;
    434 
    435 	w = cacos(z);
    436 	rx = creal(w);
    437 	ry = cimag(w);
    438 	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
    439 	if (isnan(rx) && isnan(ry))
    440 		return (cpack(ry, rx));
    441 	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
    442 	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
    443 	if (isnan(rx))
    444 		return (cpack(fabs(ry), rx));
    445 	/* cacosh(0 + I*NaN) = NaN + I*NaN */
    446 	if (isnan(ry))
    447 		return (cpack(ry, ry));
    448 	return (cpack(fabs(ry), copysign(rx, cimag(z))));
    449 }
    450 
    451 /*
    452  * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
    453  */
    454 static double complex
    455 clog_for_large_values(double complex z)
    456 {
    457 	double x, y;
    458 	double ax, ay, t;
    459 
    460 	x = creal(z);
    461 	y = cimag(z);
    462 	ax = fabs(x);
    463 	ay = fabs(y);
    464 	if (ax < ay) {
    465 		t = ax;
    466 		ax = ay;
    467 		ay = t;
    468 	}
    469 
    470 	/*
    471 	 * Avoid overflow in hypot() when x and y are both very large.
    472 	 * Divide x and y by E, and then add 1 to the logarithm.  This depends
    473 	 * on E being larger than sqrt(2).
    474 	 * Dividing by E causes an insignificant loss of accuracy; however
    475 	 * this method is still poor since it is uneccessarily slow.
    476 	 */
    477 	if (ax > DBL_MAX / 2)
    478 		return (cpack(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
    479 
    480 	/*
    481 	 * Avoid overflow when x or y is large.  Avoid underflow when x or
    482 	 * y is small.
    483 	 */
    484 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
    485 		return (cpack(log(hypot(x, y)), atan2(y, x)));
    486 
    487 	return (cpack(log(ax * ax + ay * ay) / 2, atan2(y, x)));
    488 }
    489 
    490 /*
    491  *				=================
    492  *				| catanh, catan |
    493  *				=================
    494  */
    495 
    496 /*
    497  * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
    498  * Assumes x*x and y*y will not overflow.
    499  * Assumes x and y are finite.
    500  * Assumes y is non-negative.
    501  * Assumes fabs(x) >= DBL_EPSILON.
    502  */
    503 static inline double
    504 sum_squares(double x, double y)
    505 {
    506 
    507 	/* Avoid underflow when y is small. */
    508 	if (y < SQRT_MIN)
    509 		return (x * x);
    510 
    511 	return (x * x + y * y);
    512 }
    513 
    514 /*
    515  * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
    516  * Assumes x and y are not NaN, and one of x and y is larger than
    517  * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
    518  * the code creal(1/z), because the imaginary part may produce an unwanted
    519  * underflow.
    520  * This is only called in a context where inexact is always raised before
    521  * the call, so no effort is made to avoid or force inexact.
    522  */
    523 static inline double
    524 real_part_reciprocal(double x, double y)
    525 {
    526 	double scale;
    527 	uint32_t hx, hy;
    528 	int32_t ix, iy;
    529 
    530 	/*
    531 	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
    532 	 * example 2.
    533 	 */
    534 	GET_HIGH_WORD(hx, x);
    535 	ix = hx & 0x7ff00000;
    536 	GET_HIGH_WORD(hy, y);
    537 	iy = hy & 0x7ff00000;
    538 #define	BIAS	(DBL_MAX_EXP - 1)
    539 /* XXX more guard digits are useful iff there is extra precision. */
    540 #define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
    541 	if (ix - iy >= CUTOFF << 20 || isinf(x))
    542 		return (1 / x);		/* +-Inf -> +-0 is special */
    543 	if (iy - ix >= CUTOFF << 20)
    544 		return (x / y / y);	/* should avoid double div, but hard */
    545 	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
    546 		return (x / (x * x + y * y));
    547 	scale = 1;
    548 	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
    549 	x *= scale;
    550 	y *= scale;
    551 	return (x / (x * x + y * y) * scale);
    552 }
    553 
    554 /*
    555  * catanh(z) = log((1+z)/(1-z)) / 2
    556  *           = log1p(4*x / |z-1|^2) / 4
    557  *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
    558  *
    559  * catanh(z) = z + O(z^3)   as z -> 0
    560  *
    561  * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
    562  * The above formula works for the real part as well, because
    563  * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
    564  *    as z -> infinity, uniformly in x
    565  */
    566 double complex
    567 catanh(double complex z)
    568 {
    569 	double x, y, ax, ay, rx, ry;
    570 
    571 	x = creal(z);
    572 	y = cimag(z);
    573 	ax = fabs(x);
    574 	ay = fabs(y);
    575 
    576 	/* This helps handle many cases. */
    577 	if (y == 0 && ax <= 1)
    578 		return (cpack(atanh(x), y));
    579 
    580 	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
    581 	if (x == 0)
    582 		return (cpack(x, atan(y)));
    583 
    584 	if (isnan(x) || isnan(y)) {
    585 		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
    586 		if (isinf(x))
    587 			return (cpack(copysign(0, x), y + y));
    588 		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
    589 		if (isinf(y))
    590 			return (cpack(copysign(0, x),
    591 			    copysign(pio2_hi + pio2_lo, y)));
    592 		/*
    593 		 * All other cases involving NaN return NaN + I*NaN.
    594 		 * C99 leaves it optional whether to raise invalid if one of
    595 		 * the arguments is not NaN, so we opt not to raise it.
    596 		 */
    597 		return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    598 	}
    599 
    600 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
    601 		return (cpack(real_part_reciprocal(x, y),
    602 		    copysign(pio2_hi + pio2_lo, y)));
    603 
    604 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
    605 		/*
    606 		 * z = 0 was filtered out above.  All other cases must raise
    607 		 * inexact, but this is the only only that needs to do it
    608 		 * explicitly.
    609 		 */
    610 		raise_inexact();
    611 		return (z);
    612 	}
    613 
    614 	if (ax == 1 && ay < DBL_EPSILON)
    615 		rx = (m_ln2 - log(ay)) / 2;
    616 	else
    617 		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
    618 
    619 	if (ax == 1)
    620 		ry = atan2(2, -ay) / 2;
    621 	else if (ay < DBL_EPSILON)
    622 		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
    623 	else
    624 		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
    625 
    626 	return (cpack(copysign(rx, x), copysign(ry, y)));
    627 }
    628 
    629 /*
    630  * catan(z) = reverse(catanh(reverse(z)))
    631  * where reverse(x + I*y) = y + I*x = I*conj(z).
    632  */
    633 double complex
    634 catan(double complex z)
    635 {
    636 	double complex w = catanh(cpack(cimag(z), creal(z)));
    637 
    638 	return (cpack(cimag(w), creal(w)));
    639 }
    640