Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "sparse.h"
     11 #include <Eigen/SparseCore>
     12 
     13 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
     14 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
     15 {
     16   typedef typename Solver::MatrixType Mat;
     17   typedef typename Mat::Scalar Scalar;
     18 
     19   DenseRhs refX = dA.lu().solve(db);
     20   {
     21     Rhs x(b.rows(), b.cols());
     22     Rhs oldb = b;
     23 
     24     solver.compute(A);
     25     if (solver.info() != Success)
     26     {
     27       std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     28       exit(0);
     29       return;
     30     }
     31     x = solver.solve(b);
     32     if (solver.info() != Success)
     33     {
     34       std::cerr << "sparse solver testing: solving failed\n";
     35       return;
     36     }
     37     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     38 
     39     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     40     x.setZero();
     41     // test the analyze/factorize API
     42     solver.analyzePattern(A);
     43     solver.factorize(A);
     44     if (solver.info() != Success)
     45     {
     46       std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     47       exit(0);
     48       return;
     49     }
     50     x = solver.solve(b);
     51     if (solver.info() != Success)
     52     {
     53       std::cerr << "sparse solver testing: solving failed\n";
     54       return;
     55     }
     56     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     57 
     58     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     59   }
     60 
     61   // test dense Block as the result and rhs:
     62   {
     63     DenseRhs x(db.rows(), db.cols());
     64     DenseRhs oldb(db);
     65     x.setZero();
     66     x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
     67     VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
     68     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     69   }
     70 }
     71 
     72 template<typename Solver, typename Rhs>
     73 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
     74 {
     75   typedef typename Solver::MatrixType Mat;
     76   typedef typename Mat::Scalar Scalar;
     77   typedef typename Mat::RealScalar RealScalar;
     78 
     79   Rhs x(b.rows(), b.cols());
     80 
     81   solver.compute(A);
     82   if (solver.info() != Success)
     83   {
     84     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
     85     exit(0);
     86     return;
     87   }
     88   x = solver.solve(b);
     89   if (solver.info() != Success)
     90   {
     91     std::cerr << "sparse solver testing: solving failed\n";
     92     return;
     93   }
     94 
     95   RealScalar res_error;
     96   // Compute the norm of the relative error
     97   if(refX.size() != 0)
     98     res_error = (refX - x).norm()/refX.norm();
     99   else
    100   {
    101     // Compute the relative residual norm
    102     res_error = (b - A * x).norm()/b.norm();
    103   }
    104   if (res_error > test_precision<Scalar>() ){
    105     std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
    106     << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
    107     abort();
    108   }
    109 
    110 }
    111 template<typename Solver, typename DenseMat>
    112 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
    113 {
    114   typedef typename Solver::MatrixType Mat;
    115   typedef typename Mat::Scalar Scalar;
    116 
    117   solver.compute(A);
    118   if (solver.info() != Success)
    119   {
    120     std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
    121     return;
    122   }
    123 
    124   Scalar refDet = dA.determinant();
    125   VERIFY_IS_APPROX(refDet,solver.determinant());
    126 }
    127 template<typename Solver, typename DenseMat>
    128 void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
    129 {
    130   using std::abs;
    131   typedef typename Solver::MatrixType Mat;
    132   typedef typename Mat::Scalar Scalar;
    133 
    134   solver.compute(A);
    135   if (solver.info() != Success)
    136   {
    137     std::cerr << "sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
    138     return;
    139   }
    140 
    141   Scalar refDet = abs(dA.determinant());
    142   VERIFY_IS_APPROX(refDet,solver.absDeterminant());
    143 }
    144 
    145 template<typename Solver, typename DenseMat>
    146 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
    147 {
    148   typedef typename Solver::MatrixType Mat;
    149   typedef typename Mat::Scalar Scalar;
    150   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    151 
    152   int size = internal::random<int>(1,maxSize);
    153   double density = (std::max)(8./(size*size), 0.01);
    154 
    155   Mat M(size, size);
    156   DenseMatrix dM(size, size);
    157 
    158   initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
    159 
    160   A = M * M.adjoint();
    161   dA = dM * dM.adjoint();
    162 
    163   halfA.resize(size,size);
    164   halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
    165 
    166   return size;
    167 }
    168 
    169 
    170 #ifdef TEST_REAL_CASES
    171 template<typename Scalar>
    172 inline std::string get_matrixfolder()
    173 {
    174   std::string mat_folder = TEST_REAL_CASES;
    175   if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
    176     mat_folder  = mat_folder + static_cast<std::string>("/complex/");
    177   else
    178     mat_folder = mat_folder + static_cast<std::string>("/real/");
    179   return mat_folder;
    180 }
    181 #endif
    182 
    183 template<typename Solver> void check_sparse_spd_solving(Solver& solver)
    184 {
    185   typedef typename Solver::MatrixType Mat;
    186   typedef typename Mat::Scalar Scalar;
    187   typedef SparseMatrix<Scalar,ColMajor> SpMat;
    188   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    189   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    190 
    191   // generate the problem
    192   Mat A, halfA;
    193   DenseMatrix dA;
    194   for (int i = 0; i < g_repeat; i++) {
    195     int size = generate_sparse_spd_problem(solver, A, halfA, dA);
    196 
    197     // generate the right hand sides
    198     int rhsCols = internal::random<int>(1,16);
    199     double density = (std::max)(8./(size*rhsCols), 0.1);
    200     SpMat B(size,rhsCols);
    201     DenseVector b = DenseVector::Random(size);
    202     DenseMatrix dB(size,rhsCols);
    203     initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
    204 
    205     check_sparse_solving(solver, A,     b,  dA, b);
    206     check_sparse_solving(solver, halfA, b,  dA, b);
    207     check_sparse_solving(solver, A,     dB, dA, dB);
    208     check_sparse_solving(solver, halfA, dB, dA, dB);
    209     check_sparse_solving(solver, A,     B,  dA, dB);
    210     check_sparse_solving(solver, halfA, B,  dA, dB);
    211 
    212     // check only once
    213     if(i==0)
    214     {
    215       b = DenseVector::Zero(size);
    216       check_sparse_solving(solver, A, b, dA, b);
    217     }
    218   }
    219 
    220   // First, get the folder
    221 #ifdef TEST_REAL_CASES
    222   if (internal::is_same<Scalar, float>::value
    223       || internal::is_same<Scalar, std::complex<float> >::value)
    224     return ;
    225 
    226   std::string mat_folder = get_matrixfolder<Scalar>();
    227   MatrixMarketIterator<Scalar> it(mat_folder);
    228   for (; it; ++it)
    229   {
    230     if (it.sym() == SPD){
    231       Mat halfA;
    232       PermutationMatrix<Dynamic, Dynamic, Index> pnull;
    233       halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
    234 
    235       std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    236       check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    237       check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
    238     }
    239   }
    240 #endif
    241 }
    242 
    243 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
    244 {
    245   typedef typename Solver::MatrixType Mat;
    246   typedef typename Mat::Scalar Scalar;
    247   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    248 
    249   // generate the problem
    250   Mat A, halfA;
    251   DenseMatrix dA;
    252   generate_sparse_spd_problem(solver, A, halfA, dA, 30);
    253 
    254   for (int i = 0; i < g_repeat; i++) {
    255     check_sparse_determinant(solver, A,     dA);
    256     check_sparse_determinant(solver, halfA, dA );
    257   }
    258 }
    259 
    260 template<typename Solver, typename DenseMat>
    261 int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
    262 {
    263   typedef typename Solver::MatrixType Mat;
    264   typedef typename Mat::Scalar Scalar;
    265 
    266   int size = internal::random<int>(1,maxSize);
    267   double density = (std::max)(8./(size*size), 0.01);
    268 
    269   A.resize(size,size);
    270   dA.resize(size,size);
    271 
    272   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
    273 
    274   return size;
    275 }
    276 
    277 template<typename Solver> void check_sparse_square_solving(Solver& solver)
    278 {
    279   typedef typename Solver::MatrixType Mat;
    280   typedef typename Mat::Scalar Scalar;
    281   typedef SparseMatrix<Scalar,ColMajor> SpMat;
    282   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    283   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    284 
    285   int rhsCols = internal::random<int>(1,16);
    286 
    287   Mat A;
    288   DenseMatrix dA;
    289   for (int i = 0; i < g_repeat; i++) {
    290     int size = generate_sparse_square_problem(solver, A, dA);
    291 
    292     A.makeCompressed();
    293     DenseVector b = DenseVector::Random(size);
    294     DenseMatrix dB(size,rhsCols);
    295     SpMat B(size,rhsCols);
    296     double density = (std::max)(8./(size*rhsCols), 0.1);
    297     initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
    298     B.makeCompressed();
    299     check_sparse_solving(solver, A, b,  dA, b);
    300     check_sparse_solving(solver, A, dB, dA, dB);
    301     check_sparse_solving(solver, A, B,  dA, dB);
    302 
    303     // check only once
    304     if(i==0)
    305     {
    306       b = DenseVector::Zero(size);
    307       check_sparse_solving(solver, A, b, dA, b);
    308     }
    309   }
    310 
    311   // First, get the folder
    312 #ifdef TEST_REAL_CASES
    313   if (internal::is_same<Scalar, float>::value
    314       || internal::is_same<Scalar, std::complex<float> >::value)
    315     return ;
    316 
    317   std::string mat_folder = get_matrixfolder<Scalar>();
    318   MatrixMarketIterator<Scalar> it(mat_folder);
    319   for (; it; ++it)
    320   {
    321     std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    322     check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    323   }
    324 #endif
    325 
    326 }
    327 
    328 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
    329 {
    330   typedef typename Solver::MatrixType Mat;
    331   typedef typename Mat::Scalar Scalar;
    332   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    333 
    334   // generate the problem
    335   Mat A;
    336   DenseMatrix dA;
    337   generate_sparse_square_problem(solver, A, dA, 30);
    338   A.makeCompressed();
    339   for (int i = 0; i < g_repeat; i++) {
    340     check_sparse_determinant(solver, A, dA);
    341   }
    342 }
    343 
    344 template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
    345 {
    346   typedef typename Solver::MatrixType Mat;
    347   typedef typename Mat::Scalar Scalar;
    348   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    349 
    350   // generate the problem
    351   Mat A;
    352   DenseMatrix dA;
    353   generate_sparse_square_problem(solver, A, dA, 30);
    354   A.makeCompressed();
    355   for (int i = 0; i < g_repeat; i++) {
    356     check_sparse_abs_determinant(solver, A, dA);
    357   }
    358 }
    359 
    360