Home | History | Annotate | Download | only in AArch64
      1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that collect the Linker Optimization Hint (LOH).
     11 // This pass should be run at the very end of the compilation flow, just before
     12 // assembly printer.
     13 // To be useful for the linker, the LOH must be printed into the assembly file.
     14 //
     15 // A LOH describes a sequence of instructions that may be optimized by the
     16 // linker.
     17 // This same sequence cannot be optimized by the compiler because some of
     18 // the information will be known at link time.
     19 // For instance, consider the following sequence:
     20 //     L1: adrp xA, sym@PAGE
     21 //     L2: add xB, xA, sym@PAGEOFF
     22 //     L3: ldr xC, [xB, #imm]
     23 // This sequence can be turned into:
     24 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
     25 //     L3: ldr xC, sym+#imm
     26 // It may also be turned into either the following more efficient
     27 // code sequences:
     28 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
     29 //     L1: adrp xA, sym@PAGE
     30 //     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
     31 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
     32 //     L1: adr xA, sym
     33 //     L3: ldr xC, [xB, #imm]
     34 //
     35 // To be valid a LOH must meet all the requirements needed by all the related
     36 // possible linker transformations.
     37 // For instance, using the running example, the constraints to emit
     38 // ".loh AdrpAddLdr" are:
     39 // - L1, L2, and L3 instructions are of the expected type, i.e.,
     40 //   respectively ADRP, ADD (immediate), and LD.
     41 // - The result of L1 is used only by L2.
     42 // - The register argument (xA) used in the ADD instruction is defined
     43 //   only by L1.
     44 // - The result of L2 is used only by L3.
     45 // - The base address (xB) in L3 is defined only L2.
     46 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
     47 //   @PAGE/@PAGEOFF with no additional constants
     48 //
     49 // Currently supported LOHs are:
     50 // * So called non-ADRP-related:
     51 //   - .loh AdrpAddLdr L1, L2, L3:
     52 //     L1: adrp xA, sym@PAGE
     53 //     L2: add xB, xA, sym@PAGEOFF
     54 //     L3: ldr xC, [xB, #imm]
     55 //   - .loh AdrpLdrGotLdr L1, L2, L3:
     56 //     L1: adrp xA, sym@GOTPAGE
     57 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
     58 //     L3: ldr xC, [xB, #imm]
     59 //   - .loh AdrpLdr L1, L3:
     60 //     L1: adrp xA, sym@PAGE
     61 //     L3: ldr xC, [xA, sym@PAGEOFF]
     62 //   - .loh AdrpAddStr L1, L2, L3:
     63 //     L1: adrp xA, sym@PAGE
     64 //     L2: add xB, xA, sym@PAGEOFF
     65 //     L3: str xC, [xB, #imm]
     66 //   - .loh AdrpLdrGotStr L1, L2, L3:
     67 //     L1: adrp xA, sym@GOTPAGE
     68 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
     69 //     L3: str xC, [xB, #imm]
     70 //   - .loh AdrpAdd L1, L2:
     71 //     L1: adrp xA, sym@PAGE
     72 //     L2: add xB, xA, sym@PAGEOFF
     73 //   For all these LOHs, L1, L2, L3 form a simple chain:
     74 //   L1 result is used only by L2 and L2 result by L3.
     75 //   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
     76 //   by L1.
     77 // All these LOHs aim at using more efficient load/store patterns by folding
     78 // some instructions used to compute the address directly into the load/store.
     79 //
     80 // * So called ADRP-related:
     81 //  - .loh AdrpAdrp L2, L1:
     82 //    L2: ADRP xA, sym1@PAGE
     83 //    L1: ADRP xA, sym2@PAGE
     84 //    L2 dominates L1 and xA is not redifined between L2 and L1
     85 // This LOH aims at getting rid of redundant ADRP instructions.
     86 //
     87 // The overall design for emitting the LOHs is:
     88 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
     89 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
     90 //     1. Associates them a label.
     91 //     2. Emits them in a MCStreamer (EmitLOHDirective).
     92 //         - The MCMachOStreamer records them into the MCAssembler.
     93 //         - The MCAsmStreamer prints them.
     94 //         - Other MCStreamers ignore them.
     95 //     3. Closes the MCStreamer:
     96 //         - The MachObjectWriter gets them from the MCAssembler and writes
     97 //           them in the object file.
     98 //         - Other ObjectWriters ignore them.
     99 //===----------------------------------------------------------------------===//
    100 
    101 #include "AArch64.h"
    102 #include "AArch64InstrInfo.h"
    103 #include "AArch64MachineFunctionInfo.h"
    104 #include "AArch64Subtarget.h"
    105 #include "MCTargetDesc/AArch64AddressingModes.h"
    106 #include "llvm/ADT/BitVector.h"
    107 #include "llvm/ADT/DenseMap.h"
    108 #include "llvm/ADT/MapVector.h"
    109 #include "llvm/ADT/SetVector.h"
    110 #include "llvm/ADT/SmallVector.h"
    111 #include "llvm/ADT/Statistic.h"
    112 #include "llvm/CodeGen/MachineBasicBlock.h"
    113 #include "llvm/CodeGen/MachineDominators.h"
    114 #include "llvm/CodeGen/MachineFunctionPass.h"
    115 #include "llvm/CodeGen/MachineInstr.h"
    116 #include "llvm/CodeGen/MachineInstrBuilder.h"
    117 #include "llvm/Support/CommandLine.h"
    118 #include "llvm/Support/Debug.h"
    119 #include "llvm/Support/ErrorHandling.h"
    120 #include "llvm/Support/raw_ostream.h"
    121 #include "llvm/Target/TargetInstrInfo.h"
    122 #include "llvm/Target/TargetMachine.h"
    123 #include "llvm/Target/TargetRegisterInfo.h"
    124 using namespace llvm;
    125 
    126 #define DEBUG_TYPE "aarch64-collect-loh"
    127 
    128 static cl::opt<bool>
    129 PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
    130                    cl::desc("Restrict analysis to registers invovled"
    131                             " in LOHs"),
    132                    cl::init(true));
    133 
    134 static cl::opt<bool>
    135 BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
    136                     cl::desc("Restrict analysis at basic block scope"),
    137                     cl::init(true));
    138 
    139 STATISTIC(NumADRPSimpleCandidate,
    140           "Number of simplifiable ADRP dominate by another");
    141 STATISTIC(NumADRPComplexCandidate2,
    142           "Number of simplifiable ADRP reachable by 2 defs");
    143 STATISTIC(NumADRPComplexCandidate3,
    144           "Number of simplifiable ADRP reachable by 3 defs");
    145 STATISTIC(NumADRPComplexCandidateOther,
    146           "Number of simplifiable ADRP reachable by 4 or more defs");
    147 STATISTIC(NumADDToSTRWithImm,
    148           "Number of simplifiable STR with imm reachable by ADD");
    149 STATISTIC(NumLDRToSTRWithImm,
    150           "Number of simplifiable STR with imm reachable by LDR");
    151 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
    152 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
    153 STATISTIC(NumADDToLDRWithImm,
    154           "Number of simplifiable LDR with imm reachable by ADD");
    155 STATISTIC(NumLDRToLDRWithImm,
    156           "Number of simplifiable LDR with imm reachable by LDR");
    157 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
    158 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
    159 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
    160 STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
    161 STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
    162 STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
    163 STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
    164 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
    165 STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
    166 
    167 namespace llvm {
    168 void initializeAArch64CollectLOHPass(PassRegistry &);
    169 }
    170 
    171 namespace {
    172 struct AArch64CollectLOH : public MachineFunctionPass {
    173   static char ID;
    174   AArch64CollectLOH() : MachineFunctionPass(ID) {
    175     initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
    176   }
    177 
    178   bool runOnMachineFunction(MachineFunction &MF) override;
    179 
    180   const char *getPassName() const override {
    181     return "AArch64 Collect Linker Optimization Hint (LOH)";
    182   }
    183 
    184   void getAnalysisUsage(AnalysisUsage &AU) const override {
    185     AU.setPreservesAll();
    186     MachineFunctionPass::getAnalysisUsage(AU);
    187     AU.addRequired<MachineDominatorTree>();
    188   }
    189 
    190 private:
    191 };
    192 
    193 /// A set of MachineInstruction.
    194 typedef SetVector<const MachineInstr *> SetOfMachineInstr;
    195 /// Map a basic block to a set of instructions per register.
    196 /// This is used to represent the exposed uses of a basic block
    197 /// per register.
    198 typedef MapVector<const MachineBasicBlock *,
    199                   std::unique_ptr<SetOfMachineInstr[]>>
    200 BlockToSetOfInstrsPerColor;
    201 /// Map a basic block to an instruction per register.
    202 /// This is used to represent the live-out definitions of a basic block
    203 /// per register.
    204 typedef MapVector<const MachineBasicBlock *,
    205                   std::unique_ptr<const MachineInstr *[]>>
    206 BlockToInstrPerColor;
    207 /// Map an instruction to a set of instructions. Used to represent the
    208 /// mapping def to reachable uses or use to definitions.
    209 typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
    210 /// Map a basic block to a BitVector.
    211 /// This is used to record the kill registers per basic block.
    212 typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
    213 
    214 /// Map a register to a dense id.
    215 typedef DenseMap<unsigned, unsigned> MapRegToId;
    216 /// Map a dense id to a register. Used for debug purposes.
    217 typedef SmallVector<unsigned, 32> MapIdToReg;
    218 } // end anonymous namespace.
    219 
    220 char AArch64CollectLOH::ID = 0;
    221 
    222 INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
    223                       "AArch64 Collect Linker Optimization Hint (LOH)", false,
    224                       false)
    225 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    226 INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
    227                     "AArch64 Collect Linker Optimization Hint (LOH)", false,
    228                     false)
    229 
    230 /// Given a couple (MBB, reg) get the corresponding set of instruction from
    231 /// the given "sets".
    232 /// If this couple does not reference any set, an empty set is added to "sets"
    233 /// for this couple and returned.
    234 /// \param nbRegs is used internally allocate some memory. It must be consistent
    235 /// with the way sets is used.
    236 static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
    237                                  const MachineBasicBlock &MBB, unsigned reg,
    238                                  unsigned nbRegs) {
    239   SetOfMachineInstr *result;
    240   BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
    241   if (it != sets.end())
    242     result = it->second.get();
    243   else
    244     result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
    245 
    246   return result[reg];
    247 }
    248 
    249 /// Given a couple (reg, MI) get the corresponding set of instructions from the
    250 /// the given "sets".
    251 /// This is used to get the uses record in sets of a definition identified by
    252 /// MI and reg, i.e., MI defines reg.
    253 /// If the couple does not reference anything, an empty set is added to
    254 /// "sets[reg]".
    255 /// \pre set[reg] is valid.
    256 static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
    257                                   const MachineInstr &MI) {
    258   return sets[reg][&MI];
    259 }
    260 
    261 /// Same as getUses but does not modify the input map: sets.
    262 /// \return NULL if the couple (reg, MI) is not in sets.
    263 static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
    264                                         const MachineInstr &MI) {
    265   InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
    266   if (Res != sets[reg].end())
    267     return &(Res->second);
    268   return nullptr;
    269 }
    270 
    271 /// Initialize the reaching definition algorithm:
    272 /// For each basic block BB in MF, record:
    273 /// - its kill set.
    274 /// - its reachable uses (uses that are exposed to BB's predecessors).
    275 /// - its the generated definitions.
    276 /// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
    277 /// the list of uses of exposed defintions.
    278 /// \param ADRPMode specifies to only consider ADRP instructions for generated
    279 /// definition. It also consider definitions of ADRP instructions as uses and
    280 /// ignore other uses. The ADRPMode is used to collect the information for LHO
    281 /// that involve ADRP operation only.
    282 static void initReachingDef(const MachineFunction &MF,
    283                             InstrToInstrs *ColorOpToReachedUses,
    284                             BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
    285                             BlockToSetOfInstrsPerColor &ReachableUses,
    286                             const MapRegToId &RegToId,
    287                             const MachineInstr *DummyOp, bool ADRPMode) {
    288   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    289   unsigned NbReg = RegToId.size();
    290 
    291   for (const MachineBasicBlock &MBB : MF) {
    292     auto &BBGen = Gen[&MBB];
    293     BBGen = make_unique<const MachineInstr *[]>(NbReg);
    294     std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
    295 
    296     BitVector &BBKillSet = Kill[&MBB];
    297     BBKillSet.resize(NbReg);
    298     for (const MachineInstr &MI : MBB) {
    299       bool IsADRP = MI.getOpcode() == AArch64::ADRP;
    300 
    301       // Process uses first.
    302       if (IsADRP || !ADRPMode)
    303         for (const MachineOperand &MO : MI.operands()) {
    304           // Treat ADRP def as use, as the goal of the analysis is to find
    305           // ADRP defs reached by other ADRP defs.
    306           if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
    307               (ADRPMode && (!IsADRP || !MO.isDef())))
    308             continue;
    309           unsigned CurReg = MO.getReg();
    310           MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
    311           if (ItCurRegId == RegToId.end())
    312             continue;
    313           CurReg = ItCurRegId->second;
    314 
    315           // if CurReg has not been defined, this use is reachable.
    316           if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
    317             getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
    318           // current basic block definition for this color, if any, is in Gen.
    319           if (BBGen[CurReg])
    320             getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
    321         }
    322 
    323       // Process clobbers.
    324       for (const MachineOperand &MO : MI.operands()) {
    325         if (!MO.isRegMask())
    326           continue;
    327         // Clobbers kill the related colors.
    328         const uint32_t *PreservedRegs = MO.getRegMask();
    329 
    330         // Set generated regs.
    331         for (const auto &Entry : RegToId) {
    332           unsigned Reg = Entry.second;
    333           // Use the global register ID when querying APIs external to this
    334           // pass.
    335           if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
    336             // Do not register clobbered definition for no ADRP.
    337             // This definition is not used anyway (otherwise register
    338             // allocation is wrong).
    339             BBGen[Reg] = ADRPMode ? &MI : nullptr;
    340             BBKillSet.set(Reg);
    341           }
    342         }
    343       }
    344 
    345       // Process register defs.
    346       for (const MachineOperand &MO : MI.operands()) {
    347         if (!MO.isReg() || !MO.isDef())
    348           continue;
    349         unsigned CurReg = MO.getReg();
    350         MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
    351         if (ItCurRegId == RegToId.end())
    352           continue;
    353 
    354         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
    355           MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
    356           assert(ItRegId != RegToId.end() &&
    357                  "Sub-register of an "
    358                  "involved register, not recorded as involved!");
    359           BBKillSet.set(ItRegId->second);
    360           BBGen[ItRegId->second] = &MI;
    361         }
    362         BBGen[ItCurRegId->second] = &MI;
    363       }
    364     }
    365 
    366     // If we restrict our analysis to basic block scope, conservatively add a
    367     // dummy
    368     // use for each generated value.
    369     if (!ADRPMode && DummyOp && !MBB.succ_empty())
    370       for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
    371         if (BBGen[CurReg])
    372           getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
    373   }
    374 }
    375 
    376 /// Reaching def core algorithm:
    377 /// while an Out has changed
    378 ///    for each bb
    379 ///       for each color
    380 ///           In[bb][color] = U Out[bb.predecessors][color]
    381 ///           insert reachableUses[bb][color] in each in[bb][color]
    382 ///                 op.reachedUses
    383 ///
    384 ///           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
    385 static void reachingDefAlgorithm(const MachineFunction &MF,
    386                                  InstrToInstrs *ColorOpToReachedUses,
    387                                  BlockToSetOfInstrsPerColor &In,
    388                                  BlockToSetOfInstrsPerColor &Out,
    389                                  BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
    390                                  BlockToSetOfInstrsPerColor &ReachableUses,
    391                                  unsigned NbReg) {
    392   bool HasChanged;
    393   do {
    394     HasChanged = false;
    395     for (const MachineBasicBlock &MBB : MF) {
    396       unsigned CurReg;
    397       for (CurReg = 0; CurReg < NbReg; ++CurReg) {
    398         SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
    399         SetOfMachineInstr &BBReachableUses =
    400             getSet(ReachableUses, MBB, CurReg, NbReg);
    401         SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
    402         unsigned Size = BBOutSet.size();
    403         //   In[bb][color] = U Out[bb.predecessors][color]
    404         for (const MachineBasicBlock *PredMBB : MBB.predecessors()) {
    405           SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
    406           BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
    407         }
    408         //   insert reachableUses[bb][color] in each in[bb][color] op.reachedses
    409         for (const MachineInstr *MI : BBInSet) {
    410           SetOfMachineInstr &OpReachedUses =
    411               getUses(ColorOpToReachedUses, CurReg, *MI);
    412           OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
    413         }
    414         //           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
    415         if (!Kill[&MBB].test(CurReg))
    416           BBOutSet.insert(BBInSet.begin(), BBInSet.end());
    417         if (Gen[&MBB][CurReg])
    418           BBOutSet.insert(Gen[&MBB][CurReg]);
    419         HasChanged |= BBOutSet.size() != Size;
    420       }
    421     }
    422   } while (HasChanged);
    423 }
    424 
    425 /// Reaching definition algorithm.
    426 /// \param MF function on which the algorithm will operate.
    427 /// \param[out] ColorOpToReachedUses will contain the result of the reaching
    428 /// def algorithm.
    429 /// \param ADRPMode specify whether the reaching def algorithm should be tuned
    430 /// for ADRP optimization. \see initReachingDef for more details.
    431 /// \param DummyOp if not NULL, the algorithm will work at
    432 /// basic block scope and will set for every exposed definition a use to
    433 /// @p DummyOp.
    434 /// \pre ColorOpToReachedUses is an array of at least number of registers of
    435 /// InstrToInstrs.
    436 static void reachingDef(const MachineFunction &MF,
    437                         InstrToInstrs *ColorOpToReachedUses,
    438                         const MapRegToId &RegToId, bool ADRPMode = false,
    439                         const MachineInstr *DummyOp = nullptr) {
    440   // structures:
    441   // For each basic block.
    442   // Out: a set per color of definitions that reach the
    443   //      out boundary of this block.
    444   // In: Same as Out but for in boundary.
    445   // Gen: generated color in this block (one operation per color).
    446   // Kill: register set of killed color in this block.
    447   // ReachableUses: a set per color of uses (operation) reachable
    448   //                for "In" definitions.
    449   BlockToSetOfInstrsPerColor Out, In, ReachableUses;
    450   BlockToInstrPerColor Gen;
    451   BlockToRegSet Kill;
    452 
    453   // Initialize Gen, kill and reachableUses.
    454   initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
    455                   DummyOp, ADRPMode);
    456 
    457   // Algo.
    458   if (!DummyOp)
    459     reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
    460                          ReachableUses, RegToId.size());
    461 }
    462 
    463 #ifndef NDEBUG
    464 /// print the result of the reaching definition algorithm.
    465 static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
    466                              unsigned NbReg, const TargetRegisterInfo *TRI,
    467                              const MapIdToReg &IdToReg) {
    468   unsigned CurReg;
    469   for (CurReg = 0; CurReg < NbReg; ++CurReg) {
    470     if (ColorOpToReachedUses[CurReg].empty())
    471       continue;
    472     DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
    473 
    474     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
    475       DEBUG(dbgs() << "Def:\n");
    476       DEBUG(DefsIt.first->print(dbgs()));
    477       DEBUG(dbgs() << "Reachable uses:\n");
    478       for (const MachineInstr *MI : DefsIt.second) {
    479         DEBUG(MI->print(dbgs()));
    480       }
    481     }
    482   }
    483 }
    484 #endif // NDEBUG
    485 
    486 /// Answer the following question: Can Def be one of the definition
    487 /// involved in a part of a LOH?
    488 static bool canDefBePartOfLOH(const MachineInstr *Def) {
    489   unsigned Opc = Def->getOpcode();
    490   // Accept ADRP, ADDLow and LOADGot.
    491   switch (Opc) {
    492   default:
    493     return false;
    494   case AArch64::ADRP:
    495     return true;
    496   case AArch64::ADDXri:
    497     // Check immediate to see if the immediate is an address.
    498     switch (Def->getOperand(2).getType()) {
    499     default:
    500       return false;
    501     case MachineOperand::MO_GlobalAddress:
    502     case MachineOperand::MO_JumpTableIndex:
    503     case MachineOperand::MO_ConstantPoolIndex:
    504     case MachineOperand::MO_BlockAddress:
    505       return true;
    506     }
    507   case AArch64::LDRXui:
    508     // Check immediate to see if the immediate is an address.
    509     switch (Def->getOperand(2).getType()) {
    510     default:
    511       return false;
    512     case MachineOperand::MO_GlobalAddress:
    513       return true;
    514     }
    515   }
    516   // Unreachable.
    517   return false;
    518 }
    519 
    520 /// Check whether the given instruction can the end of a LOH chain involving a
    521 /// store.
    522 static bool isCandidateStore(const MachineInstr *Instr) {
    523   switch (Instr->getOpcode()) {
    524   default:
    525     return false;
    526   case AArch64::STRBui:
    527   case AArch64::STRHui:
    528   case AArch64::STRWui:
    529   case AArch64::STRXui:
    530   case AArch64::STRSui:
    531   case AArch64::STRDui:
    532   case AArch64::STRQui:
    533     // In case we have str xA, [xA, #imm], this is two different uses
    534     // of xA and we cannot fold, otherwise the xA stored may be wrong,
    535     // even if #imm == 0.
    536     if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
    537       return true;
    538   }
    539   return false;
    540 }
    541 
    542 /// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
    543 /// Build the Use to Defs information and filter out obvious non-LOH candidates.
    544 /// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
    545 /// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
    546 /// i.e., no simple chain.
    547 /// \param ADRPMode -- \see initReachingDef.
    548 static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
    549                               const InstrToInstrs *ColorOpToReachedUses,
    550                               const MapRegToId &RegToId,
    551                               bool ADRPMode = false) {
    552 
    553   SetOfMachineInstr NotCandidate;
    554   unsigned NbReg = RegToId.size();
    555   MapRegToId::const_iterator EndIt = RegToId.end();
    556   for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
    557     // If this color is never defined, continue.
    558     if (ColorOpToReachedUses[CurReg].empty())
    559       continue;
    560 
    561     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
    562       for (const MachineInstr *MI : DefsIt.second) {
    563         const MachineInstr *Def = DefsIt.first;
    564         MapRegToId::const_iterator It;
    565         // if all the reaching defs are not adrp, this use will not be
    566         // simplifiable.
    567         if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
    568             (!ADRPMode && !canDefBePartOfLOH(Def)) ||
    569             (!ADRPMode && isCandidateStore(MI) &&
    570              // store are LOH candidate iff the end of the chain is used as
    571              // base.
    572              ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
    573               It->second != CurReg))) {
    574           NotCandidate.insert(MI);
    575           continue;
    576         }
    577         // Do not consider self reaching as a simplifiable case for ADRP.
    578         if (!ADRPMode || MI != DefsIt.first) {
    579           UseToReachingDefs[MI].insert(DefsIt.first);
    580           // If UsesIt has several reaching definitions, it is not
    581           // candidate for simplificaton in non-ADRPMode.
    582           if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
    583             NotCandidate.insert(MI);
    584         }
    585       }
    586     }
    587   }
    588   for (const MachineInstr *Elem : NotCandidate) {
    589     DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
    590     // It would have been better if we could just remove the entry
    591     // from the map.  Because of that, we have to filter the garbage
    592     // (second.empty) in the subsequence analysis.
    593     UseToReachingDefs[Elem].clear();
    594   }
    595 }
    596 
    597 /// Based on the use to defs information (in ADRPMode), compute the
    598 /// opportunities of LOH ADRP-related.
    599 static void computeADRP(const InstrToInstrs &UseToDefs,
    600                         AArch64FunctionInfo &AArch64FI,
    601                         const MachineDominatorTree *MDT) {
    602   DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
    603   for (const auto &Entry : UseToDefs) {
    604     unsigned Size = Entry.second.size();
    605     if (Size == 0)
    606       continue;
    607     if (Size == 1) {
    608       const MachineInstr *L2 = *Entry.second.begin();
    609       const MachineInstr *L1 = Entry.first;
    610       if (!MDT->dominates(L2, L1)) {
    611         DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
    612                      << '\n');
    613         continue;
    614       }
    615       DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
    616       SmallVector<const MachineInstr *, 2> Args;
    617       Args.push_back(L2);
    618       Args.push_back(L1);
    619       AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
    620       ++NumADRPSimpleCandidate;
    621     }
    622 #ifdef DEBUG
    623     else if (Size == 2)
    624       ++NumADRPComplexCandidate2;
    625     else if (Size == 3)
    626       ++NumADRPComplexCandidate3;
    627     else
    628       ++NumADRPComplexCandidateOther;
    629 #endif
    630     // if Size < 1, the use should have been removed from the candidates
    631     assert(Size >= 1 && "No reaching defs for that use!");
    632   }
    633 }
    634 
    635 /// Check whether the given instruction can be the end of a LOH chain
    636 /// involving a load.
    637 static bool isCandidateLoad(const MachineInstr *Instr) {
    638   switch (Instr->getOpcode()) {
    639   default:
    640     return false;
    641   case AArch64::LDRSBWui:
    642   case AArch64::LDRSBXui:
    643   case AArch64::LDRSHWui:
    644   case AArch64::LDRSHXui:
    645   case AArch64::LDRSWui:
    646   case AArch64::LDRBui:
    647   case AArch64::LDRHui:
    648   case AArch64::LDRWui:
    649   case AArch64::LDRXui:
    650   case AArch64::LDRSui:
    651   case AArch64::LDRDui:
    652   case AArch64::LDRQui:
    653     if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
    654       return false;
    655     return true;
    656   }
    657   // Unreachable.
    658   return false;
    659 }
    660 
    661 /// Check whether the given instruction can load a litteral.
    662 static bool supportLoadFromLiteral(const MachineInstr *Instr) {
    663   switch (Instr->getOpcode()) {
    664   default:
    665     return false;
    666   case AArch64::LDRSWui:
    667   case AArch64::LDRWui:
    668   case AArch64::LDRXui:
    669   case AArch64::LDRSui:
    670   case AArch64::LDRDui:
    671   case AArch64::LDRQui:
    672     return true;
    673   }
    674   // Unreachable.
    675   return false;
    676 }
    677 
    678 /// Check whether the given instruction is a LOH candidate.
    679 /// \param UseToDefs is used to check that Instr is at the end of LOH supported
    680 /// chain.
    681 /// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
    682 /// already been filtered out.
    683 static bool isCandidate(const MachineInstr *Instr,
    684                         const InstrToInstrs &UseToDefs,
    685                         const MachineDominatorTree *MDT) {
    686   if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
    687     return false;
    688 
    689   const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
    690   if (Def->getOpcode() != AArch64::ADRP) {
    691     // At this point, Def is ADDXri or LDRXui of the right type of
    692     // symbol, because we filtered out the uses that were not defined
    693     // by these kind of instructions (+ ADRP).
    694 
    695     // Check if this forms a simple chain: each intermediate node must
    696     // dominates the next one.
    697     if (!MDT->dominates(Def, Instr))
    698       return false;
    699     // Move one node up in the simple chain.
    700     if (UseToDefs.find(Def) ==
    701             UseToDefs.end()
    702             // The map may contain garbage we have to ignore.
    703         ||
    704         UseToDefs.find(Def)->second.empty())
    705       return false;
    706     Instr = Def;
    707     Def = *UseToDefs.find(Def)->second.begin();
    708   }
    709   // Check if we reached the top of the simple chain:
    710   // - top is ADRP.
    711   // - check the simple chain property: each intermediate node must
    712   // dominates the next one.
    713   if (Def->getOpcode() == AArch64::ADRP)
    714     return MDT->dominates(Def, Instr);
    715   return false;
    716 }
    717 
    718 static bool registerADRCandidate(const MachineInstr &Use,
    719                                  const InstrToInstrs &UseToDefs,
    720                                  const InstrToInstrs *DefsPerColorToUses,
    721                                  AArch64FunctionInfo &AArch64FI,
    722                                  SetOfMachineInstr *InvolvedInLOHs,
    723                                  const MapRegToId &RegToId) {
    724   // Look for opportunities to turn ADRP -> ADD or
    725   // ADRP -> LDR GOTPAGEOFF into ADR.
    726   // If ADRP has more than one use. Give up.
    727   if (Use.getOpcode() != AArch64::ADDXri &&
    728       (Use.getOpcode() != AArch64::LDRXui ||
    729        !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
    730     return false;
    731   InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
    732   // The map may contain garbage that we need to ignore.
    733   if (It == UseToDefs.end() || It->second.empty())
    734     return false;
    735   const MachineInstr &Def = **It->second.begin();
    736   if (Def.getOpcode() != AArch64::ADRP)
    737     return false;
    738   // Check the number of users of ADRP.
    739   const SetOfMachineInstr *Users =
    740       getUses(DefsPerColorToUses,
    741               RegToId.find(Def.getOperand(0).getReg())->second, Def);
    742   if (Users->size() > 1) {
    743     ++NumADRComplexCandidate;
    744     return false;
    745   }
    746   ++NumADRSimpleCandidate;
    747   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
    748          "ADRP already involved in LOH.");
    749   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
    750          "ADD already involved in LOH.");
    751   DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
    752 
    753   SmallVector<const MachineInstr *, 2> Args;
    754   Args.push_back(&Def);
    755   Args.push_back(&Use);
    756 
    757   AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
    758                                                            : MCLOH_AdrpLdrGot,
    759                           Args);
    760   return true;
    761 }
    762 
    763 /// Based on the use to defs information (in non-ADRPMode), compute the
    764 /// opportunities of LOH non-ADRP-related
    765 static void computeOthers(const InstrToInstrs &UseToDefs,
    766                           const InstrToInstrs *DefsPerColorToUses,
    767                           AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
    768                           const MachineDominatorTree *MDT) {
    769   SetOfMachineInstr *InvolvedInLOHs = nullptr;
    770 #ifdef DEBUG
    771   SetOfMachineInstr InvolvedInLOHsStorage;
    772   InvolvedInLOHs = &InvolvedInLOHsStorage;
    773 #endif // DEBUG
    774   DEBUG(dbgs() << "*** Compute LOH for Others\n");
    775   // ADRP -> ADD/LDR -> LDR/STR pattern.
    776   // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
    777 
    778   // FIXME: When the statistics are not important,
    779   // This initial filtering loop can be merged into the next loop.
    780   // Currently, we didn't do it to have the same code for both DEBUG and
    781   // NDEBUG builds. Indeed, the iterator of the second loop would need
    782   // to be changed.
    783   SetOfMachineInstr PotentialCandidates;
    784   SetOfMachineInstr PotentialADROpportunities;
    785   for (auto &Use : UseToDefs) {
    786     // If no definition is available, this is a non candidate.
    787     if (Use.second.empty())
    788       continue;
    789     // Keep only instructions that are load or store and at the end of
    790     // a ADRP -> ADD/LDR/Nothing chain.
    791     // We already filtered out the no-chain cases.
    792     if (!isCandidate(Use.first, UseToDefs, MDT)) {
    793       PotentialADROpportunities.insert(Use.first);
    794       continue;
    795     }
    796     PotentialCandidates.insert(Use.first);
    797   }
    798 
    799   // Make the following distinctions for statistics as the linker does
    800   // know how to decode instructions:
    801   // - ADD/LDR/Nothing make there different patterns.
    802   // - LDR/STR make two different patterns.
    803   // Hence, 6 - 1 base patterns.
    804   // (because ADRP-> Nothing -> STR is not simplifiable)
    805 
    806   // The linker is only able to have a simple semantic, i.e., if pattern A
    807   // do B.
    808   // However, we want to see the opportunity we may miss if we were able to
    809   // catch more complex cases.
    810 
    811   // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
    812   // A potential candidate becomes a candidate, if its current immediate
    813   // operand is zero and all nodes of the chain have respectively only one user
    814 #ifdef DEBUG
    815   SetOfMachineInstr DefsOfPotentialCandidates;
    816 #endif
    817   for (const MachineInstr *Candidate : PotentialCandidates) {
    818     // Get the definition of the candidate i.e., ADD or LDR.
    819     const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
    820     // Record the elements of the chain.
    821     const MachineInstr *L1 = Def;
    822     const MachineInstr *L2 = nullptr;
    823     unsigned ImmediateDefOpc = Def->getOpcode();
    824     if (Def->getOpcode() != AArch64::ADRP) {
    825       // Check the number of users of this node.
    826       const SetOfMachineInstr *Users =
    827           getUses(DefsPerColorToUses,
    828                   RegToId.find(Def->getOperand(0).getReg())->second, *Def);
    829       if (Users->size() > 1) {
    830 #ifdef DEBUG
    831         // if all the uses of this def are in potential candidate, this is
    832         // a complex candidate of level 2.
    833         bool IsLevel2 = true;
    834         for (const MachineInstr *MI : *Users) {
    835           if (!PotentialCandidates.count(MI)) {
    836             ++NumTooCplxLvl2;
    837             IsLevel2 = false;
    838             break;
    839           }
    840         }
    841         if (IsLevel2)
    842           ++NumCplxLvl2;
    843 #endif // DEBUG
    844         PotentialADROpportunities.insert(Def);
    845         continue;
    846       }
    847       L2 = Def;
    848       Def = *UseToDefs.find(Def)->second.begin();
    849       L1 = Def;
    850     } // else the element in the middle of the chain is nothing, thus
    851       // Def already contains the first element of the chain.
    852 
    853     // Check the number of users of the first node in the chain, i.e., ADRP
    854     const SetOfMachineInstr *Users =
    855         getUses(DefsPerColorToUses,
    856                 RegToId.find(Def->getOperand(0).getReg())->second, *Def);
    857     if (Users->size() > 1) {
    858 #ifdef DEBUG
    859       // if all the uses of this def are in the defs of the potential candidate,
    860       // this is a complex candidate of level 1
    861       if (DefsOfPotentialCandidates.empty()) {
    862         // lazy init
    863         DefsOfPotentialCandidates = PotentialCandidates;
    864         for (const MachineInstr *Candidate : PotentialCandidates) {
    865           if (!UseToDefs.find(Candidate)->second.empty())
    866             DefsOfPotentialCandidates.insert(
    867                 *UseToDefs.find(Candidate)->second.begin());
    868         }
    869       }
    870       bool Found = false;
    871       for (auto &Use : *Users) {
    872         if (!DefsOfPotentialCandidates.count(Use)) {
    873           ++NumTooCplxLvl1;
    874           Found = true;
    875           break;
    876         }
    877       }
    878       if (!Found)
    879         ++NumCplxLvl1;
    880 #endif // DEBUG
    881       continue;
    882     }
    883 
    884     bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
    885     // If the chain is three instructions long and ldr is the second element,
    886     // then this ldr must load form GOT, otherwise this is not a correct chain.
    887     if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
    888       continue;
    889     SmallVector<const MachineInstr *, 3> Args;
    890     MCLOHType Kind;
    891     if (isCandidateLoad(Candidate)) {
    892       if (!L2) {
    893         // At this point, the candidate LOH indicates that the ldr instruction
    894         // may use a direct access to the symbol. There is not such encoding
    895         // for loads of byte and half.
    896         if (!supportLoadFromLiteral(Candidate))
    897           continue;
    898 
    899         DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
    900                      << '\n');
    901         Kind = MCLOH_AdrpLdr;
    902         Args.push_back(L1);
    903         Args.push_back(Candidate);
    904         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
    905                "L1 already involved in LOH.");
    906         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
    907                "Candidate already involved in LOH.");
    908         ++NumADRPToLDR;
    909       } else {
    910         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
    911                      << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
    912                      << '\n');
    913 
    914         Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
    915         Args.push_back(L1);
    916         Args.push_back(L2);
    917         Args.push_back(Candidate);
    918 
    919         PotentialADROpportunities.remove(L2);
    920         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
    921                "L1 already involved in LOH.");
    922         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
    923                "L2 already involved in LOH.");
    924         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
    925                "Candidate already involved in LOH.");
    926 #ifdef DEBUG
    927         // get the immediate of the load
    928         if (Candidate->getOperand(2).getImm() == 0)
    929           if (ImmediateDefOpc == AArch64::ADDXri)
    930             ++NumADDToLDR;
    931           else
    932             ++NumLDRToLDR;
    933         else if (ImmediateDefOpc == AArch64::ADDXri)
    934           ++NumADDToLDRWithImm;
    935         else
    936           ++NumLDRToLDRWithImm;
    937 #endif // DEBUG
    938       }
    939     } else {
    940       if (ImmediateDefOpc == AArch64::ADRP)
    941         continue;
    942       else {
    943 
    944         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
    945                      << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
    946                      << '\n');
    947 
    948         Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
    949         Args.push_back(L1);
    950         Args.push_back(L2);
    951         Args.push_back(Candidate);
    952 
    953         PotentialADROpportunities.remove(L2);
    954         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
    955                "L1 already involved in LOH.");
    956         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
    957                "L2 already involved in LOH.");
    958         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
    959                "Candidate already involved in LOH.");
    960 #ifdef DEBUG
    961         // get the immediate of the store
    962         if (Candidate->getOperand(2).getImm() == 0)
    963           if (ImmediateDefOpc == AArch64::ADDXri)
    964             ++NumADDToSTR;
    965           else
    966             ++NumLDRToSTR;
    967         else if (ImmediateDefOpc == AArch64::ADDXri)
    968           ++NumADDToSTRWithImm;
    969         else
    970           ++NumLDRToSTRWithImm;
    971 #endif // DEBUG
    972       }
    973     }
    974     AArch64FI.addLOHDirective(Kind, Args);
    975   }
    976 
    977   // Now, we grabbed all the big patterns, check ADR opportunities.
    978   for (const MachineInstr *Candidate : PotentialADROpportunities)
    979     registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
    980                          InvolvedInLOHs, RegToId);
    981 }
    982 
    983 /// Look for every register defined by potential LOHs candidates.
    984 /// Map these registers with dense id in @p RegToId and vice-versa in
    985 /// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
    986 static void collectInvolvedReg(const MachineFunction &MF, MapRegToId &RegToId,
    987                                MapIdToReg &IdToReg,
    988                                const TargetRegisterInfo *TRI) {
    989   unsigned CurRegId = 0;
    990   if (!PreCollectRegister) {
    991     unsigned NbReg = TRI->getNumRegs();
    992     for (; CurRegId < NbReg; ++CurRegId) {
    993       RegToId[CurRegId] = CurRegId;
    994       DEBUG(IdToReg.push_back(CurRegId));
    995       DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
    996     }
    997     return;
    998   }
    999 
   1000   DEBUG(dbgs() << "** Collect Involved Register\n");
   1001   for (const auto &MBB : MF) {
   1002     for (const MachineInstr &MI : MBB) {
   1003       if (!canDefBePartOfLOH(&MI))
   1004         continue;
   1005 
   1006       // Process defs
   1007       for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
   1008                                             IOEnd = MI.operands_end();
   1009            IO != IOEnd; ++IO) {
   1010         if (!IO->isReg() || !IO->isDef())
   1011           continue;
   1012         unsigned CurReg = IO->getReg();
   1013         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
   1014           if (RegToId.find(*AI) == RegToId.end()) {
   1015             DEBUG(IdToReg.push_back(*AI);
   1016                   assert(IdToReg[CurRegId] == *AI &&
   1017                          "Reg index mismatches insertion index."));
   1018             RegToId[*AI] = CurRegId++;
   1019             DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
   1020           }
   1021       }
   1022     }
   1023   }
   1024 }
   1025 
   1026 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
   1027   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   1028   const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
   1029 
   1030   MapRegToId RegToId;
   1031   MapIdToReg IdToReg;
   1032   AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
   1033   assert(AArch64FI && "No MachineFunctionInfo for this function!");
   1034 
   1035   DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
   1036 
   1037   collectInvolvedReg(MF, RegToId, IdToReg, TRI);
   1038   if (RegToId.empty())
   1039     return false;
   1040 
   1041   MachineInstr *DummyOp = nullptr;
   1042   if (BasicBlockScopeOnly) {
   1043     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
   1044     // For local analysis, create a dummy operation to record uses that are not
   1045     // local.
   1046     DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
   1047   }
   1048 
   1049   unsigned NbReg = RegToId.size();
   1050   bool Modified = false;
   1051 
   1052   // Start with ADRP.
   1053   InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
   1054 
   1055   // Compute the reaching def in ADRP mode, meaning ADRP definitions
   1056   // are first considered as uses.
   1057   reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
   1058   DEBUG(dbgs() << "ADRP reaching defs\n");
   1059   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
   1060 
   1061   // Translate the definition to uses map into a use to definitions map to ease
   1062   // statistic computation.
   1063   InstrToInstrs ADRPToReachingDefs;
   1064   reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
   1065 
   1066   // Compute LOH for ADRP.
   1067   computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
   1068   delete[] ColorOpToReachedUses;
   1069 
   1070   // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
   1071   ColorOpToReachedUses = new InstrToInstrs[NbReg];
   1072 
   1073   // first perform a regular reaching def analysis.
   1074   reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
   1075   DEBUG(dbgs() << "All reaching defs\n");
   1076   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
   1077 
   1078   // Turn that into a use to defs to ease statistic computation.
   1079   InstrToInstrs UsesToReachingDefs;
   1080   reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
   1081 
   1082   // Compute other than AdrpAdrp LOH.
   1083   computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
   1084                 MDT);
   1085   delete[] ColorOpToReachedUses;
   1086 
   1087   if (BasicBlockScopeOnly)
   1088     MF.DeleteMachineInstr(DummyOp);
   1089 
   1090   return Modified;
   1091 }
   1092 
   1093 /// createAArch64CollectLOHPass - returns an instance of the Statistic for
   1094 /// linker optimization pass.
   1095 FunctionPass *llvm::createAArch64CollectLOHPass() {
   1096   return new AArch64CollectLOH();
   1097 }
   1098