Home | History | Annotate | Download | only in SelectionDAG
      1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/SchedulerRegistry.h"
     22 #include "ScheduleDAGSDNodes.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     25 #include "llvm/CodeGen/ResourcePriorityQueue.h"
     26 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     27 #include "llvm/CodeGen/SelectionDAGISel.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <climits>
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "pre-RA-sched"
     39 
     40 STATISTIC(NumNoops , "Number of noops inserted");
     41 STATISTIC(NumStalls, "Number of pipeline stalls");
     42 
     43 static RegisterScheduler
     44   VLIWScheduler("vliw-td", "VLIW scheduler",
     45                 createVLIWDAGScheduler);
     46 
     47 namespace {
     48 //===----------------------------------------------------------------------===//
     49 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation.  This
     50 /// supports / top-down scheduling.
     51 ///
     52 class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
     53 private:
     54   /// AvailableQueue - The priority queue to use for the available SUnits.
     55   ///
     56   SchedulingPriorityQueue *AvailableQueue;
     57 
     58   /// PendingQueue - This contains all of the instructions whose operands have
     59   /// been issued, but their results are not ready yet (due to the latency of
     60   /// the operation).  Once the operands become available, the instruction is
     61   /// added to the AvailableQueue.
     62   std::vector<SUnit*> PendingQueue;
     63 
     64   /// HazardRec - The hazard recognizer to use.
     65   ScheduleHazardRecognizer *HazardRec;
     66 
     67   /// AA - AliasAnalysis for making memory reference queries.
     68   AliasAnalysis *AA;
     69 
     70 public:
     71   ScheduleDAGVLIW(MachineFunction &mf,
     72                   AliasAnalysis *aa,
     73                   SchedulingPriorityQueue *availqueue)
     74     : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
     75     const TargetSubtargetInfo &STI = mf.getSubtarget();
     76     HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
     77   }
     78 
     79   ~ScheduleDAGVLIW() override {
     80     delete HazardRec;
     81     delete AvailableQueue;
     82   }
     83 
     84   void Schedule() override;
     85 
     86 private:
     87   void releaseSucc(SUnit *SU, const SDep &D);
     88   void releaseSuccessors(SUnit *SU);
     89   void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
     90   void listScheduleTopDown();
     91 };
     92 }  // end anonymous namespace
     93 
     94 /// Schedule - Schedule the DAG using list scheduling.
     95 void ScheduleDAGVLIW::Schedule() {
     96   DEBUG(dbgs()
     97         << "********** List Scheduling BB#" << BB->getNumber()
     98         << " '" << BB->getName() << "' **********\n");
     99 
    100   // Build the scheduling graph.
    101   BuildSchedGraph(AA);
    102 
    103   AvailableQueue->initNodes(SUnits);
    104 
    105   listScheduleTopDown();
    106 
    107   AvailableQueue->releaseState();
    108 }
    109 
    110 //===----------------------------------------------------------------------===//
    111 //  Top-Down Scheduling
    112 //===----------------------------------------------------------------------===//
    113 
    114 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    115 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
    116 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
    117   SUnit *SuccSU = D.getSUnit();
    118 
    119 #ifndef NDEBUG
    120   if (SuccSU->NumPredsLeft == 0) {
    121     dbgs() << "*** Scheduling failed! ***\n";
    122     SuccSU->dump(this);
    123     dbgs() << " has been released too many times!\n";
    124     llvm_unreachable(nullptr);
    125   }
    126 #endif
    127   assert(!D.isWeak() && "unexpected artificial DAG edge");
    128 
    129   --SuccSU->NumPredsLeft;
    130 
    131   SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
    132 
    133   // If all the node's predecessors are scheduled, this node is ready
    134   // to be scheduled. Ignore the special ExitSU node.
    135   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
    136     PendingQueue.push_back(SuccSU);
    137   }
    138 }
    139 
    140 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
    141   // Top down: release successors.
    142   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    143        I != E; ++I) {
    144     assert(!I->isAssignedRegDep() &&
    145            "The list-td scheduler doesn't yet support physreg dependencies!");
    146 
    147     releaseSucc(SU, *I);
    148   }
    149 }
    150 
    151 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    152 /// count of its successors. If a successor pending count is zero, add it to
    153 /// the Available queue.
    154 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    155   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    156   DEBUG(SU->dump(this));
    157 
    158   Sequence.push_back(SU);
    159   assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
    160   SU->setDepthToAtLeast(CurCycle);
    161 
    162   releaseSuccessors(SU);
    163   SU->isScheduled = true;
    164   AvailableQueue->scheduledNode(SU);
    165 }
    166 
    167 /// listScheduleTopDown - The main loop of list scheduling for top-down
    168 /// schedulers.
    169 void ScheduleDAGVLIW::listScheduleTopDown() {
    170   unsigned CurCycle = 0;
    171 
    172   // Release any successors of the special Entry node.
    173   releaseSuccessors(&EntrySU);
    174 
    175   // All leaves to AvailableQueue.
    176   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    177     // It is available if it has no predecessors.
    178     if (SUnits[i].Preds.empty()) {
    179       AvailableQueue->push(&SUnits[i]);
    180       SUnits[i].isAvailable = true;
    181     }
    182   }
    183 
    184   // While AvailableQueue is not empty, grab the node with the highest
    185   // priority. If it is not ready put it back.  Schedule the node.
    186   std::vector<SUnit*> NotReady;
    187   Sequence.reserve(SUnits.size());
    188   while (!AvailableQueue->empty() || !PendingQueue.empty()) {
    189     // Check to see if any of the pending instructions are ready to issue.  If
    190     // so, add them to the available queue.
    191     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    192       if (PendingQueue[i]->getDepth() == CurCycle) {
    193         AvailableQueue->push(PendingQueue[i]);
    194         PendingQueue[i]->isAvailable = true;
    195         PendingQueue[i] = PendingQueue.back();
    196         PendingQueue.pop_back();
    197         --i; --e;
    198       }
    199       else {
    200         assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
    201       }
    202     }
    203 
    204     // If there are no instructions available, don't try to issue anything, and
    205     // don't advance the hazard recognizer.
    206     if (AvailableQueue->empty()) {
    207       // Reset DFA state.
    208       AvailableQueue->scheduledNode(nullptr);
    209       ++CurCycle;
    210       continue;
    211     }
    212 
    213     SUnit *FoundSUnit = nullptr;
    214 
    215     bool HasNoopHazards = false;
    216     while (!AvailableQueue->empty()) {
    217       SUnit *CurSUnit = AvailableQueue->pop();
    218 
    219       ScheduleHazardRecognizer::HazardType HT =
    220         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    221       if (HT == ScheduleHazardRecognizer::NoHazard) {
    222         FoundSUnit = CurSUnit;
    223         break;
    224       }
    225 
    226       // Remember if this is a noop hazard.
    227       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    228 
    229       NotReady.push_back(CurSUnit);
    230     }
    231 
    232     // Add the nodes that aren't ready back onto the available list.
    233     if (!NotReady.empty()) {
    234       AvailableQueue->push_all(NotReady);
    235       NotReady.clear();
    236     }
    237 
    238     // If we found a node to schedule, do it now.
    239     if (FoundSUnit) {
    240       scheduleNodeTopDown(FoundSUnit, CurCycle);
    241       HazardRec->EmitInstruction(FoundSUnit);
    242 
    243       // If this is a pseudo-op node, we don't want to increment the current
    244       // cycle.
    245       if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
    246         ++CurCycle;
    247     } else if (!HasNoopHazards) {
    248       // Otherwise, we have a pipeline stall, but no other problem, just advance
    249       // the current cycle and try again.
    250       DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
    251       HazardRec->AdvanceCycle();
    252       ++NumStalls;
    253       ++CurCycle;
    254     } else {
    255       // Otherwise, we have no instructions to issue and we have instructions
    256       // that will fault if we don't do this right.  This is the case for
    257       // processors without pipeline interlocks and other cases.
    258       DEBUG(dbgs() << "*** Emitting noop\n");
    259       HazardRec->EmitNoop();
    260       Sequence.push_back(nullptr);   // NULL here means noop
    261       ++NumNoops;
    262       ++CurCycle;
    263     }
    264   }
    265 
    266 #ifndef NDEBUG
    267   VerifyScheduledSequence(/*isBottomUp=*/false);
    268 #endif
    269 }
    270 
    271 //===----------------------------------------------------------------------===//
    272 //                         Public Constructor Functions
    273 //===----------------------------------------------------------------------===//
    274 
    275 /// createVLIWDAGScheduler - This creates a top-down list scheduler.
    276 ScheduleDAGSDNodes *
    277 llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
    278   return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
    279 }
    280