Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkScalerContext.h"
     11 #include "SkColorPriv.h"
     12 #include "SkDescriptor.h"
     13 #include "SkDraw.h"
     14 #include "SkGlyph.h"
     15 #include "SkMaskFilter.h"
     16 #include "SkMaskGamma.h"
     17 #include "SkMatrix22.h"
     18 #include "SkReadBuffer.h"
     19 #include "SkWriteBuffer.h"
     20 #include "SkPathEffect.h"
     21 #include "SkRasterizer.h"
     22 #include "SkRasterClip.h"
     23 #include "SkStroke.h"
     24 #include "SkThread.h"
     25 
     26 #define ComputeBWRowBytes(width)        (((unsigned)(width) + 7) >> 3)
     27 
     28 void SkGlyph::toMask(SkMask* mask) const {
     29     SkASSERT(mask);
     30 
     31     mask->fImage = (uint8_t*)fImage;
     32     mask->fBounds.set(fLeft, fTop, fLeft + fWidth, fTop + fHeight);
     33     mask->fRowBytes = this->rowBytes();
     34     mask->fFormat = static_cast<SkMask::Format>(fMaskFormat);
     35 }
     36 
     37 size_t SkGlyph::computeImageSize() const {
     38     const size_t size = this->rowBytes() * fHeight;
     39 
     40     switch (fMaskFormat) {
     41         case SkMask::k3D_Format:
     42             return 3 * size;
     43         default:
     44             return size;
     45     }
     46 }
     47 
     48 void SkGlyph::zeroMetrics() {
     49     fAdvanceX = 0;
     50     fAdvanceY = 0;
     51     fWidth    = 0;
     52     fHeight   = 0;
     53     fTop      = 0;
     54     fLeft     = 0;
     55     fRsbDelta = 0;
     56     fLsbDelta = 0;
     57 }
     58 
     59 ///////////////////////////////////////////////////////////////////////////////
     60 
     61 #ifdef SK_DEBUG
     62     #define DUMP_RECx
     63 #endif
     64 
     65 static SkFlattenable* load_flattenable(const SkDescriptor* desc, uint32_t tag,
     66                                        SkFlattenable::Type ft) {
     67     SkFlattenable*  obj = NULL;
     68     uint32_t        len;
     69     const void*     data = desc->findEntry(tag, &len);
     70 
     71     if (data) {
     72         SkReadBuffer buffer(data, len);
     73         obj = buffer.readFlattenable(ft);
     74         SkASSERT(buffer.offset() == buffer.size());
     75     }
     76     return obj;
     77 }
     78 
     79 SkScalerContext::SkScalerContext(SkTypeface* typeface, const SkDescriptor* desc)
     80     : fRec(*static_cast<const Rec*>(desc->findEntry(kRec_SkDescriptorTag, NULL)))
     81 
     82     , fTypeface(SkRef(typeface))
     83     , fPathEffect(static_cast<SkPathEffect*>(load_flattenable(desc, kPathEffect_SkDescriptorTag,
     84                                              SkFlattenable::kSkPathEffect_Type)))
     85     , fMaskFilter(static_cast<SkMaskFilter*>(load_flattenable(desc, kMaskFilter_SkDescriptorTag,
     86                                              SkFlattenable::kSkMaskFilter_Type)))
     87     , fRasterizer(static_cast<SkRasterizer*>(load_flattenable(desc, kRasterizer_SkDescriptorTag,
     88                                              SkFlattenable::kSkRasterizer_Type)))
     89       // Initialize based on our settings. Subclasses can also force this.
     90     , fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != NULL || fRasterizer != NULL)
     91 
     92     , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
     93     , fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec)
     94                                      : SkMaskGamma::PreBlend())
     95 {
     96 #ifdef DUMP_REC
     97     desc->assertChecksum();
     98     SkDebugf("SkScalerContext checksum %x count %d length %d\n",
     99              desc->getChecksum(), desc->getCount(), desc->getLength());
    100     SkDebugf(" textsize %g prescale %g preskew %g post [%g %g %g %g]\n",
    101         rec->fTextSize, rec->fPreScaleX, rec->fPreSkewX, rec->fPost2x2[0][0],
    102         rec->fPost2x2[0][1], rec->fPost2x2[1][0], rec->fPost2x2[1][1]);
    103     SkDebugf("  frame %g miter %g hints %d framefill %d format %d join %d\n",
    104         rec->fFrameWidth, rec->fMiterLimit, rec->fHints, rec->fFrameAndFill,
    105         rec->fMaskFormat, rec->fStrokeJoin);
    106     SkDebugf("  pathEffect %x maskFilter %x\n",
    107              desc->findEntry(kPathEffect_SkDescriptorTag, NULL),
    108         desc->findEntry(kMaskFilter_SkDescriptorTag, NULL));
    109 #endif
    110 }
    111 
    112 SkScalerContext::~SkScalerContext() {
    113     SkSafeUnref(fPathEffect);
    114     SkSafeUnref(fMaskFilter);
    115     SkSafeUnref(fRasterizer);
    116 }
    117 
    118 void SkScalerContext::getAdvance(SkGlyph* glyph) {
    119     // mark us as just having a valid advance
    120     glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE;
    121     // we mark the format before making the call, in case the impl
    122     // internally ends up calling its generateMetrics, which is OK
    123     // albeit slower than strictly necessary
    124     generateAdvance(glyph);
    125 }
    126 
    127 void SkScalerContext::getMetrics(SkGlyph* glyph) {
    128     generateMetrics(glyph);
    129 
    130     // for now we have separate cache entries for devkerning on and off
    131     // in the future we might share caches, but make our measure/draw
    132     // code make the distinction. Thus we zap the values if the caller
    133     // has not asked for them.
    134     if ((fRec.fFlags & SkScalerContext::kDevKernText_Flag) == 0) {
    135         // no devkern, so zap the fields
    136         glyph->fLsbDelta = glyph->fRsbDelta = 0;
    137     }
    138 
    139     // if either dimension is empty, zap the image bounds of the glyph
    140     if (0 == glyph->fWidth || 0 == glyph->fHeight) {
    141         glyph->fWidth   = 0;
    142         glyph->fHeight  = 0;
    143         glyph->fTop     = 0;
    144         glyph->fLeft    = 0;
    145         glyph->fMaskFormat = 0;
    146         return;
    147     }
    148 
    149     if (fGenerateImageFromPath) {
    150         SkPath      devPath, fillPath;
    151         SkMatrix    fillToDevMatrix;
    152 
    153         this->internalGetPath(*glyph, &fillPath, &devPath, &fillToDevMatrix);
    154 
    155         if (fRasterizer) {
    156             SkMask  mask;
    157 
    158             if (fRasterizer->rasterize(fillPath, fillToDevMatrix, NULL,
    159                                        fMaskFilter, &mask,
    160                                        SkMask::kJustComputeBounds_CreateMode)) {
    161                 glyph->fLeft    = mask.fBounds.fLeft;
    162                 glyph->fTop     = mask.fBounds.fTop;
    163                 glyph->fWidth   = SkToU16(mask.fBounds.width());
    164                 glyph->fHeight  = SkToU16(mask.fBounds.height());
    165             } else {
    166                 goto SK_ERROR;
    167             }
    168         } else {
    169             // just use devPath
    170             const SkIRect ir = devPath.getBounds().roundOut();
    171 
    172             if (ir.isEmpty() || !ir.is16Bit()) {
    173                 goto SK_ERROR;
    174             }
    175             glyph->fLeft    = ir.fLeft;
    176             glyph->fTop     = ir.fTop;
    177             glyph->fWidth   = SkToU16(ir.width());
    178             glyph->fHeight  = SkToU16(ir.height());
    179 
    180             if (glyph->fWidth > 0) {
    181                 switch (fRec.fMaskFormat) {
    182                 case SkMask::kLCD16_Format:
    183                     glyph->fWidth += 2;
    184                     glyph->fLeft -= 1;
    185                     break;
    186                 default:
    187                     break;
    188                 }
    189             }
    190         }
    191     }
    192 
    193     if (SkMask::kARGB32_Format != glyph->fMaskFormat) {
    194         glyph->fMaskFormat = fRec.fMaskFormat;
    195     }
    196 
    197     // If we are going to create the mask, then we cannot keep the color
    198     if ((fGenerateImageFromPath || fMaskFilter) &&
    199             SkMask::kARGB32_Format == glyph->fMaskFormat) {
    200         glyph->fMaskFormat = SkMask::kA8_Format;
    201     }
    202 
    203     if (fMaskFilter) {
    204         SkMask      src, dst;
    205         SkMatrix    matrix;
    206 
    207         glyph->toMask(&src);
    208         fRec.getMatrixFrom2x2(&matrix);
    209 
    210         src.fImage = NULL;  // only want the bounds from the filter
    211         if (fMaskFilter->filterMask(&dst, src, matrix, NULL)) {
    212             if (dst.fBounds.isEmpty() || !dst.fBounds.is16Bit()) {
    213                 goto SK_ERROR;
    214             }
    215             SkASSERT(dst.fImage == NULL);
    216             glyph->fLeft    = dst.fBounds.fLeft;
    217             glyph->fTop     = dst.fBounds.fTop;
    218             glyph->fWidth   = SkToU16(dst.fBounds.width());
    219             glyph->fHeight  = SkToU16(dst.fBounds.height());
    220             glyph->fMaskFormat = dst.fFormat;
    221         }
    222     }
    223     return;
    224 
    225 SK_ERROR:
    226     // draw nothing 'cause we failed
    227     glyph->fLeft    = 0;
    228     glyph->fTop     = 0;
    229     glyph->fWidth   = 0;
    230     glyph->fHeight  = 0;
    231     // put a valid value here, in case it was earlier set to
    232     // MASK_FORMAT_JUST_ADVANCE
    233     glyph->fMaskFormat = fRec.fMaskFormat;
    234 }
    235 
    236 #define SK_SHOW_TEXT_BLIT_COVERAGE 0
    237 
    238 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
    239     uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
    240     unsigned rowBytes = mask.fRowBytes;
    241 
    242     for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
    243         for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
    244             dst[x] = lut[dst[x]];
    245         }
    246         dst += rowBytes;
    247     }
    248 }
    249 
    250 template<bool APPLY_PREBLEND>
    251 static void pack4xHToLCD16(const SkBitmap& src, const SkMask& dst,
    252                            const SkMaskGamma::PreBlend& maskPreBlend) {
    253 #define SAMPLES_PER_PIXEL 4
    254 #define LCD_PER_PIXEL 3
    255     SkASSERT(kAlpha_8_SkColorType == src.colorType());
    256     SkASSERT(SkMask::kLCD16_Format == dst.fFormat);
    257 
    258     const int sample_width = src.width();
    259     const int height = src.height();
    260 
    261     uint16_t* dstP = (uint16_t*)dst.fImage;
    262     size_t dstRB = dst.fRowBytes;
    263     // An N tap FIR is defined by
    264     // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
    265     // or
    266     // out[n] = sum(i, 0, N, coeff[i]*x[n-i])
    267 
    268     // The strategy is to use one FIR (different coefficients) for each of r, g, and b.
    269     // This means using every 4th FIR output value of each FIR and discarding the rest.
    270     // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
    271     // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
    272 
    273     // These are in some fixed point repesentation.
    274     // Adding up to more than one simulates ink spread.
    275     // For implementation reasons, these should never add up to more than two.
    276 
    277     // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
    278     // Calculated using tools/generate_fir_coeff.py
    279     // With this one almost no fringing is ever seen, but it is imperceptibly blurry.
    280     // The lcd smoothed text is almost imperceptibly different from gray,
    281     // but is still sharper on small stems and small rounded corners than gray.
    282     // This also seems to be about as wide as one can get and only have a three pixel kernel.
    283     // TODO: caculate these at runtime so parameters can be adjusted (esp contrast).
    284     static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
    285         //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
    286         { 0x03, 0x0b, 0x1c, 0x33,  0x40, 0x39, 0x24, 0x10,  0x05, 0x01, 0x00, 0x00, },
    287         //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
    288         { 0x00, 0x02, 0x08, 0x16,  0x2b, 0x3d, 0x3d, 0x2b,  0x16, 0x08, 0x02, 0x00, },
    289         //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
    290         { 0x00, 0x00, 0x01, 0x05,  0x10, 0x24, 0x39, 0x40,  0x33, 0x1c, 0x0b, 0x03, },
    291     };
    292 
    293     for (int y = 0; y < height; ++y) {
    294         const uint8_t* srcP = src.getAddr8(0, y);
    295 
    296         // TODO: this fir filter implementation is straight forward, but slow.
    297         // It should be possible to make it much faster.
    298         for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) {
    299             int fir[LCD_PER_PIXEL] = { 0 };
    300             for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
    301                 ; sample_index < SkMin32(sample_x + 8, sample_width)
    302                 ; ++sample_index, ++coeff_index)
    303             {
    304                 int sample_value = srcP[sample_index];
    305                 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
    306                     fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
    307                 }
    308             }
    309             for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
    310                 fir[subpxl_index] /= 0x100;
    311                 fir[subpxl_index] = SkMin32(fir[subpxl_index], 255);
    312             }
    313 
    314             U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR);
    315             U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG);
    316             U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB);
    317 #if SK_SHOW_TEXT_BLIT_COVERAGE
    318             r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10);
    319 #endif
    320             dstP[pixel_x] = SkPack888ToRGB16(r, g, b);
    321         }
    322         dstP = (uint16_t*)((char*)dstP + dstRB);
    323     }
    324 }
    325 
    326 static inline int convert_8_to_1(unsigned byte) {
    327     SkASSERT(byte <= 0xFF);
    328     return byte >> 7;
    329 }
    330 
    331 static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
    332     unsigned bits = 0;
    333     for (int i = 0; i < 8; ++i) {
    334         bits <<= 1;
    335         bits |= convert_8_to_1(alpha[i]);
    336     }
    337     return SkToU8(bits);
    338 }
    339 
    340 static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
    341     const int height = mask.fBounds.height();
    342     const int width = mask.fBounds.width();
    343     const int octs = width >> 3;
    344     const int leftOverBits = width & 7;
    345 
    346     uint8_t* dst = mask.fImage;
    347     const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
    348     SkASSERT(dstPad >= 0);
    349 
    350     SkASSERT(width >= 0);
    351     SkASSERT(srcRB >= (size_t)width);
    352     const size_t srcPad = srcRB - width;
    353 
    354     for (int y = 0; y < height; ++y) {
    355         for (int i = 0; i < octs; ++i) {
    356             *dst++ = pack_8_to_1(src);
    357             src += 8;
    358         }
    359         if (leftOverBits > 0) {
    360             unsigned bits = 0;
    361             int shift = 7;
    362             for (int i = 0; i < leftOverBits; ++i, --shift) {
    363                 bits |= convert_8_to_1(*src++) << shift;
    364             }
    365             *dst++ = bits;
    366         }
    367         src += srcPad;
    368         dst += dstPad;
    369     }
    370 }
    371 
    372 static void generateMask(const SkMask& mask, const SkPath& path,
    373                          const SkMaskGamma::PreBlend& maskPreBlend) {
    374     SkPaint paint;
    375 
    376     int srcW = mask.fBounds.width();
    377     int srcH = mask.fBounds.height();
    378     int dstW = srcW;
    379     int dstH = srcH;
    380     int dstRB = mask.fRowBytes;
    381 
    382     SkMatrix matrix;
    383     matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
    384                         -SkIntToScalar(mask.fBounds.fTop));
    385 
    386     paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
    387     switch (mask.fFormat) {
    388         case SkMask::kBW_Format:
    389             dstRB = 0;  // signals we need a copy
    390             break;
    391         case SkMask::kA8_Format:
    392             break;
    393         case SkMask::kLCD16_Format:
    394             // TODO: trigger off LCD orientation
    395             dstW = 4*dstW - 8;
    396             matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
    397                                 -SkIntToScalar(mask.fBounds.fTop));
    398             matrix.postScale(SkIntToScalar(4), SK_Scalar1);
    399             dstRB = 0;  // signals we need a copy
    400             break;
    401         default:
    402             SkDEBUGFAIL("unexpected mask format");
    403     }
    404 
    405     SkRasterClip clip;
    406     clip.setRect(SkIRect::MakeWH(dstW, dstH));
    407 
    408     const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
    409     SkBitmap bm;
    410 
    411     if (0 == dstRB) {
    412         if (!bm.tryAllocPixels(info)) {
    413             // can't allocate offscreen, so empty the mask and return
    414             sk_bzero(mask.fImage, mask.computeImageSize());
    415             return;
    416         }
    417     } else {
    418         bm.installPixels(info, mask.fImage, dstRB);
    419     }
    420     sk_bzero(bm.getPixels(), bm.getSafeSize());
    421 
    422     SkDraw  draw;
    423     draw.fRC    = &clip;
    424     draw.fClip  = &clip.bwRgn();
    425     draw.fMatrix = &matrix;
    426     draw.fBitmap = &bm;
    427     draw.drawPath(path, paint);
    428 
    429     switch (mask.fFormat) {
    430         case SkMask::kBW_Format:
    431             packA8ToA1(mask, bm.getAddr8(0, 0), bm.rowBytes());
    432             break;
    433         case SkMask::kA8_Format:
    434             if (maskPreBlend.isApplicable()) {
    435                 applyLUTToA8Mask(mask, maskPreBlend.fG);
    436             }
    437             break;
    438         case SkMask::kLCD16_Format:
    439             if (maskPreBlend.isApplicable()) {
    440                 pack4xHToLCD16<true>(bm, mask, maskPreBlend);
    441             } else {
    442                 pack4xHToLCD16<false>(bm, mask, maskPreBlend);
    443             }
    444             break;
    445         default:
    446             break;
    447     }
    448 }
    449 
    450 static void extract_alpha(const SkMask& dst,
    451                           const SkPMColor* srcRow, size_t srcRB) {
    452     int width = dst.fBounds.width();
    453     int height = dst.fBounds.height();
    454     int dstRB = dst.fRowBytes;
    455     uint8_t* dstRow = dst.fImage;
    456 
    457     for (int y = 0; y < height; ++y) {
    458         for (int x = 0; x < width; ++x) {
    459             dstRow[x] = SkGetPackedA32(srcRow[x]);
    460         }
    461         // zero any padding on each row
    462         for (int x = width; x < dstRB; ++x) {
    463             dstRow[x] = 0;
    464         }
    465         dstRow += dstRB;
    466         srcRow = (const SkPMColor*)((const char*)srcRow + srcRB);
    467     }
    468 }
    469 
    470 void SkScalerContext::getImage(const SkGlyph& origGlyph) {
    471     const SkGlyph*  glyph = &origGlyph;
    472     SkGlyph         tmpGlyph;
    473 
    474     // in case we need to call generateImage on a mask-format that is different
    475     // (i.e. larger) than what our caller allocated by looking at origGlyph.
    476     SkAutoMalloc tmpGlyphImageStorage;
    477 
    478     // If we are going to draw-from-path, then we cannot generate color, since
    479     // the path only makes a mask. This case should have been caught up in
    480     // generateMetrics().
    481     SkASSERT(!fGenerateImageFromPath ||
    482              SkMask::kARGB32_Format != origGlyph.fMaskFormat);
    483 
    484     if (fMaskFilter) {   // restore the prefilter bounds
    485         tmpGlyph.initGlyphIdFrom(origGlyph);
    486 
    487         // need the original bounds, sans our maskfilter
    488         SkMaskFilter* mf = fMaskFilter;
    489         fMaskFilter = NULL;             // temp disable
    490         this->getMetrics(&tmpGlyph);
    491         fMaskFilter = mf;               // restore
    492 
    493         // we need the prefilter bounds to be <= filter bounds
    494         SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth);
    495         SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight);
    496 
    497         if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) {
    498             tmpGlyph.fImage = origGlyph.fImage;
    499         } else {
    500             tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize());
    501             tmpGlyph.fImage = tmpGlyphImageStorage.get();
    502         }
    503         glyph = &tmpGlyph;
    504     }
    505 
    506     if (fGenerateImageFromPath) {
    507         SkPath      devPath, fillPath;
    508         SkMatrix    fillToDevMatrix;
    509         SkMask      mask;
    510 
    511         this->internalGetPath(*glyph, &fillPath, &devPath, &fillToDevMatrix);
    512         glyph->toMask(&mask);
    513 
    514         if (fRasterizer) {
    515             mask.fFormat = SkMask::kA8_Format;
    516             sk_bzero(glyph->fImage, mask.computeImageSize());
    517 
    518             if (!fRasterizer->rasterize(fillPath, fillToDevMatrix, NULL,
    519                                         fMaskFilter, &mask,
    520                                         SkMask::kJustRenderImage_CreateMode)) {
    521                 return;
    522             }
    523             if (fPreBlend.isApplicable()) {
    524                 applyLUTToA8Mask(mask, fPreBlend.fG);
    525             }
    526         } else {
    527             SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
    528             generateMask(mask, devPath, fPreBlend);
    529         }
    530     } else {
    531         generateImage(*glyph);
    532     }
    533 
    534     if (fMaskFilter) {
    535         SkMask      srcM, dstM;
    536         SkMatrix    matrix;
    537 
    538         // the src glyph image shouldn't be 3D
    539         SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat);
    540 
    541         SkAutoSMalloc<32*32> a8storage;
    542         glyph->toMask(&srcM);
    543         if (SkMask::kARGB32_Format == srcM.fFormat) {
    544             // now we need to extract the alpha-channel from the glyph's image
    545             // and copy it into a temp buffer, and then point srcM at that temp.
    546             srcM.fFormat = SkMask::kA8_Format;
    547             srcM.fRowBytes = SkAlign4(srcM.fBounds.width());
    548             size_t size = srcM.computeImageSize();
    549             a8storage.reset(size);
    550             srcM.fImage = (uint8_t*)a8storage.get();
    551             extract_alpha(srcM,
    552                           (const SkPMColor*)glyph->fImage, glyph->rowBytes());
    553         }
    554 
    555         fRec.getMatrixFrom2x2(&matrix);
    556 
    557         if (fMaskFilter->filterMask(&dstM, srcM, matrix, NULL)) {
    558             int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width());
    559             int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height());
    560             int dstRB = origGlyph.rowBytes();
    561             int srcRB = dstM.fRowBytes;
    562 
    563             const uint8_t* src = (const uint8_t*)dstM.fImage;
    564             uint8_t* dst = (uint8_t*)origGlyph.fImage;
    565 
    566             if (SkMask::k3D_Format == dstM.fFormat) {
    567                 // we have to copy 3 times as much
    568                 height *= 3;
    569             }
    570 
    571             // clean out our glyph, since it may be larger than dstM
    572             //sk_bzero(dst, height * dstRB);
    573 
    574             while (--height >= 0) {
    575                 memcpy(dst, src, width);
    576                 src += srcRB;
    577                 dst += dstRB;
    578             }
    579             SkMask::FreeImage(dstM.fImage);
    580 
    581             if (fPreBlendForFilter.isApplicable()) {
    582                 applyLUTToA8Mask(srcM, fPreBlendForFilter.fG);
    583             }
    584         }
    585     }
    586 }
    587 
    588 void SkScalerContext::getPath(const SkGlyph& glyph, SkPath* path) {
    589     this->internalGetPath(glyph, NULL, path, NULL);
    590 }
    591 
    592 void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) {
    593     this->generateFontMetrics(fm);
    594 }
    595 
    596 SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) {
    597     return 0;
    598 }
    599 
    600 ///////////////////////////////////////////////////////////////////////////////
    601 
    602 void SkScalerContext::internalGetPath(const SkGlyph& glyph, SkPath* fillPath,
    603                                   SkPath* devPath, SkMatrix* fillToDevMatrix) {
    604     SkPath  path;
    605     generatePath(glyph, &path);
    606 
    607     if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
    608         SkFixed dx = glyph.getSubXFixed();
    609         SkFixed dy = glyph.getSubYFixed();
    610         if (dx | dy) {
    611             path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
    612         }
    613     }
    614 
    615     if (fRec.fFrameWidth > 0 || fPathEffect != NULL) {
    616         // need the path in user-space, with only the point-size applied
    617         // so that our stroking and effects will operate the same way they
    618         // would if the user had extracted the path themself, and then
    619         // called drawPath
    620         SkPath      localPath;
    621         SkMatrix    matrix, inverse;
    622 
    623         fRec.getMatrixFrom2x2(&matrix);
    624         if (!matrix.invert(&inverse)) {
    625             // assume fillPath and devPath are already empty.
    626             return;
    627         }
    628         path.transform(inverse, &localPath);
    629         // now localPath is only affected by the paint settings, and not the canvas matrix
    630 
    631         SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
    632 
    633         if (fRec.fFrameWidth > 0) {
    634             rec.setStrokeStyle(fRec.fFrameWidth,
    635                                SkToBool(fRec.fFlags & kFrameAndFill_Flag));
    636             // glyphs are always closed contours, so cap type is ignored,
    637             // so we just pass something.
    638             rec.setStrokeParams(SkPaint::kButt_Cap,
    639                                 (SkPaint::Join)fRec.fStrokeJoin,
    640                                 fRec.fMiterLimit);
    641         }
    642 
    643         if (fPathEffect) {
    644             SkPath effectPath;
    645             if (fPathEffect->filterPath(&effectPath, localPath, &rec, NULL)) {
    646                 localPath.swap(effectPath);
    647             }
    648         }
    649 
    650         if (rec.needToApply()) {
    651             SkPath strokePath;
    652             if (rec.applyToPath(&strokePath, localPath)) {
    653                 localPath.swap(strokePath);
    654             }
    655         }
    656 
    657         // now return stuff to the caller
    658         if (fillToDevMatrix) {
    659             *fillToDevMatrix = matrix;
    660         }
    661         if (devPath) {
    662             localPath.transform(matrix, devPath);
    663         }
    664         if (fillPath) {
    665             fillPath->swap(localPath);
    666         }
    667     } else {   // nothing tricky to do
    668         if (fillToDevMatrix) {
    669             fillToDevMatrix->reset();
    670         }
    671         if (devPath) {
    672             if (fillPath == NULL) {
    673                 devPath->swap(path);
    674             } else {
    675                 *devPath = path;
    676             }
    677         }
    678 
    679         if (fillPath) {
    680             fillPath->swap(path);
    681         }
    682     }
    683 
    684     if (devPath) {
    685         devPath->updateBoundsCache();
    686     }
    687     if (fillPath) {
    688         fillPath->updateBoundsCache();
    689     }
    690 }
    691 
    692 
    693 void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
    694     dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
    695                 fPost2x2[1][0], fPost2x2[1][1], 0,
    696                 0,              0,              1);
    697 }
    698 
    699 void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
    700     SkPaint::SetTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX);
    701 }
    702 
    703 void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
    704     this->getLocalMatrix(m);
    705 
    706     //  now concat the device matrix
    707     SkMatrix    deviceMatrix;
    708     this->getMatrixFrom2x2(&deviceMatrix);
    709     m->postConcat(deviceMatrix);
    710 }
    711 
    712 void SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
    713                                          SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
    714 {
    715     // A is the 'total' matrix.
    716     SkMatrix A;
    717     this->getSingleMatrix(&A);
    718 
    719     // The caller may find the 'total' matrix useful when dealing directly with EM sizes.
    720     if (A_out) {
    721         *A_out = A;
    722     }
    723 
    724     // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
    725     // All underlying ports have issues with zero text size, so use the matricies to zero.
    726 
    727     // Map the vectors [1,1] and [1,-1] (the EM) through the 'total' matrix.
    728     // If the length of one of these vectors is less than 1/256 then an EM filling square will
    729     // never affect any pixels.
    730     SkVector diag[2] = { { A.getScaleX() + A.getSkewX(), A.getScaleY() + A.getSkewY() },
    731                          { A.getScaleX() - A.getSkewX(), A.getScaleY() - A.getSkewY() }, };
    732     if (diag[0].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
    733         diag[1].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero)
    734     {
    735         s->fX = SK_Scalar1;
    736         s->fY = SK_Scalar1;
    737         sA->setScale(0, 0);
    738         if (GsA) {
    739             GsA->setScale(0, 0);
    740         }
    741         if (G_inv) {
    742             G_inv->reset();
    743         }
    744         return;
    745     }
    746 
    747     // GA is the matrix A with rotation removed.
    748     SkMatrix GA;
    749     bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
    750     if (skewedOrFlipped) {
    751         // h is where A maps the horizontal baseline.
    752         SkPoint h = SkPoint::Make(SK_Scalar1, 0);
    753         A.mapPoints(&h, 1);
    754 
    755         // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
    756         SkMatrix G;
    757         SkComputeGivensRotation(h, &G);
    758 
    759         GA = G;
    760         GA.preConcat(A);
    761 
    762         // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
    763         if (G_inv) {
    764             G_inv->setAll(
    765                 G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
    766                 -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
    767                 G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
    768         }
    769     } else {
    770         GA = A;
    771         if (G_inv) {
    772             G_inv->reset();
    773         }
    774     }
    775 
    776     // At this point, given GA, create s.
    777     switch (preMatrixScale) {
    778         case kFull_PreMatrixScale:
    779             s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
    780             s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
    781             break;
    782         case kVertical_PreMatrixScale: {
    783             SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
    784             s->fX = yScale;
    785             s->fY = yScale;
    786             break;
    787         }
    788         case kVerticalInteger_PreMatrixScale: {
    789             SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
    790             SkScalar intYScale = SkScalarRoundToScalar(realYScale);
    791             if (intYScale == 0) {
    792                 intYScale = SK_Scalar1;
    793             }
    794             s->fX = intYScale;
    795             s->fY = intYScale;
    796             break;
    797         }
    798     }
    799 
    800     // The 'remaining' matrix sA is the total matrix A without the scale.
    801     if (!skewedOrFlipped && (
    802             (kFull_PreMatrixScale == preMatrixScale) ||
    803             (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY())))
    804     {
    805         // If GA == A and kFull_PreMatrixScale, sA is identity.
    806         // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity.
    807         sA->reset();
    808     } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) {
    809         // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1.
    810         sA->reset();
    811         sA->setScaleX(A.getScaleX() / s->fY);
    812     } else {
    813         // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales.
    814         *sA = A;
    815         sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
    816     }
    817 
    818     // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
    819     if (GsA) {
    820         *GsA = GA;
    821          // G is rotational so reorders with the scale.
    822         GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
    823     }
    824 }
    825 
    826 SkAxisAlignment SkComputeAxisAlignmentForHText(const SkMatrix& matrix) {
    827     SkASSERT(!matrix.hasPerspective());
    828 
    829     if (0 == matrix[SkMatrix::kMSkewY]) {
    830         return kX_SkAxisAlignment;
    831     }
    832     if (0 == matrix[SkMatrix::kMScaleX]) {
    833         return kY_SkAxisAlignment;
    834     }
    835     return kNone_SkAxisAlignment;
    836 }
    837 
    838 ///////////////////////////////////////////////////////////////////////////////
    839 
    840 class SkScalerContext_Empty : public SkScalerContext {
    841 public:
    842     SkScalerContext_Empty(SkTypeface* face, const SkDescriptor* desc)
    843         : SkScalerContext(face, desc) {}
    844 
    845 protected:
    846     unsigned generateGlyphCount() override {
    847         return 0;
    848     }
    849     uint16_t generateCharToGlyph(SkUnichar uni) override {
    850         return 0;
    851     }
    852     void generateAdvance(SkGlyph* glyph) override {
    853         glyph->zeroMetrics();
    854     }
    855     void generateMetrics(SkGlyph* glyph) override {
    856         glyph->zeroMetrics();
    857     }
    858     void generateImage(const SkGlyph& glyph) override {}
    859     void generatePath(const SkGlyph& glyph, SkPath* path) override {}
    860     void generateFontMetrics(SkPaint::FontMetrics* metrics) override {
    861         if (metrics) {
    862             sk_bzero(metrics, sizeof(*metrics));
    863         }
    864     }
    865 };
    866 
    867 extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc);
    868 
    869 SkScalerContext* SkTypeface::createScalerContext(const SkDescriptor* desc,
    870                                                  bool allowFailure) const {
    871     SkScalerContext* c = this->onCreateScalerContext(desc);
    872 
    873     if (!c && !allowFailure) {
    874         c = SkNEW_ARGS(SkScalerContext_Empty,
    875                        (const_cast<SkTypeface*>(this), desc));
    876     }
    877     return c;
    878 }
    879