Home | History | Annotate | Download | only in ssl
      1 /*
      2  * DTLS implementation written by Nagendra Modadugu
      3  * (nagendra (at) cs.stanford.edu) for the OpenSSL project 2005.
      4  */
      5 /* ====================================================================
      6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  *
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in
     17  *    the documentation and/or other materials provided with the
     18  *    distribution.
     19  *
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgment:
     22  *    "This product includes software developed by the OpenSSL Project
     23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     24  *
     25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     26  *    endorse or promote products derived from this software without
     27  *    prior written permission. For written permission, please contact
     28  *    openssl-core (at) openssl.org.
     29  *
     30  * 5. Products derived from this software may not be called "OpenSSL"
     31  *    nor may "OpenSSL" appear in their names without prior written
     32  *    permission of the OpenSSL Project.
     33  *
     34  * 6. Redistributions of any form whatsoever must retain the following
     35  *    acknowledgment:
     36  *    "This product includes software developed by the OpenSSL Project
     37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     50  * OF THE POSSIBILITY OF SUCH DAMAGE.
     51  * ====================================================================
     52  *
     53  * This product includes cryptographic software written by Eric Young
     54  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     55  * Hudson (tjh (at) cryptsoft.com).
     56  *
     57  */
     58 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
     59  * All rights reserved.
     60  *
     61  * This package is an SSL implementation written
     62  * by Eric Young (eay (at) cryptsoft.com).
     63  * The implementation was written so as to conform with Netscapes SSL.
     64  *
     65  * This library is free for commercial and non-commercial use as long as
     66  * the following conditions are aheared to.  The following conditions
     67  * apply to all code found in this distribution, be it the RC4, RSA,
     68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     69  * included with this distribution is covered by the same copyright terms
     70  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     71  *
     72  * Copyright remains Eric Young's, and as such any Copyright notices in
     73  * the code are not to be removed.
     74  * If this package is used in a product, Eric Young should be given attribution
     75  * as the author of the parts of the library used.
     76  * This can be in the form of a textual message at program startup or
     77  * in documentation (online or textual) provided with the package.
     78  *
     79  * Redistribution and use in source and binary forms, with or without
     80  * modification, are permitted provided that the following conditions
     81  * are met:
     82  * 1. Redistributions of source code must retain the copyright
     83  *    notice, this list of conditions and the following disclaimer.
     84  * 2. Redistributions in binary form must reproduce the above copyright
     85  *    notice, this list of conditions and the following disclaimer in the
     86  *    documentation and/or other materials provided with the distribution.
     87  * 3. All advertising materials mentioning features or use of this software
     88  *    must display the following acknowledgement:
     89  *    "This product includes cryptographic software written by
     90  *     Eric Young (eay (at) cryptsoft.com)"
     91  *    The word 'cryptographic' can be left out if the rouines from the library
     92  *    being used are not cryptographic related :-).
     93  * 4. If you include any Windows specific code (or a derivative thereof) from
     94  *    the apps directory (application code) you must include an acknowledgement:
     95  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     96  *
     97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    107  * SUCH DAMAGE.
    108  *
    109  * The licence and distribution terms for any publically available version or
    110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
    111  * copied and put under another distribution licence
    112  * [including the GNU Public Licence.] */
    113 
    114 #include <assert.h>
    115 #include <limits.h>
    116 #include <stdio.h>
    117 #include <string.h>
    118 
    119 #include <openssl/buf.h>
    120 #include <openssl/err.h>
    121 #include <openssl/evp.h>
    122 #include <openssl/mem.h>
    123 #include <openssl/obj.h>
    124 #include <openssl/rand.h>
    125 #include <openssl/x509.h>
    126 
    127 #include "internal.h"
    128 
    129 
    130 /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
    131  * for these values? Notably, why is kMinMTU a function of the transport
    132  * protocol's overhead rather than, say, what's needed to hold a minimally-sized
    133  * handshake fragment plus protocol overhead. */
    134 
    135 /* kMinMTU is the minimum acceptable MTU value. */
    136 static const unsigned int kMinMTU = 256 - 28;
    137 
    138 /* kDefaultMTU is the default MTU value to use if neither the user nor
    139  * the underlying BIO supplies one. */
    140 static const unsigned int kDefaultMTU = 1500 - 28;
    141 
    142 /* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
    143  * current one to buffer. */
    144 static const unsigned int kHandshakeBufferSize = 10;
    145 
    146 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
    147                                      unsigned long frag_len);
    148 static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p);
    149 
    150 static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len,
    151                                           int reassembly) {
    152   hm_fragment *frag = NULL;
    153   uint8_t *buf = NULL;
    154   uint8_t *bitmask = NULL;
    155 
    156   frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
    157   if (frag == NULL) {
    158     OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
    159     return NULL;
    160   }
    161 
    162   if (frag_len) {
    163     buf = (uint8_t *)OPENSSL_malloc(frag_len);
    164     if (buf == NULL) {
    165       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
    166       OPENSSL_free(frag);
    167       return NULL;
    168     }
    169   }
    170 
    171   /* zero length fragment gets zero frag->fragment */
    172   frag->fragment = buf;
    173 
    174   /* Initialize reassembly bitmask if necessary */
    175   if (reassembly && frag_len > 0) {
    176     if (frag_len + 7 < frag_len) {
    177       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_OVERFLOW);
    178       return NULL;
    179     }
    180     size_t bitmask_len = (frag_len + 7) / 8;
    181     bitmask = (uint8_t *)OPENSSL_malloc(bitmask_len);
    182     if (bitmask == NULL) {
    183       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
    184       if (buf != NULL) {
    185         OPENSSL_free(buf);
    186       }
    187       OPENSSL_free(frag);
    188       return NULL;
    189     }
    190     memset(bitmask, 0, bitmask_len);
    191   }
    192 
    193   frag->reassembly = bitmask;
    194 
    195   return frag;
    196 }
    197 
    198 void dtls1_hm_fragment_free(hm_fragment *frag) {
    199   if (frag == NULL) {
    200     return;
    201   }
    202   OPENSSL_free(frag->fragment);
    203   OPENSSL_free(frag->reassembly);
    204   OPENSSL_free(frag);
    205 }
    206 
    207 #if !defined(inline)
    208 #define inline __inline
    209 #endif
    210 
    211 /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
    212  * exclusive, set. */
    213 static inline uint8_t bit_range(size_t start, size_t end) {
    214   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
    215 }
    216 
    217 /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
    218  * as received in |frag|. If |frag| becomes complete, it clears
    219  * |frag->reassembly|. The range must be within the bounds of |frag|'s message
    220  * and |frag->reassembly| must not be NULL. */
    221 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
    222                                    size_t end) {
    223   size_t i;
    224   size_t msg_len = frag->msg_header.msg_len;
    225 
    226   if (frag->reassembly == NULL || start > end || end > msg_len) {
    227     assert(0);
    228     return;
    229   }
    230   /* A zero-length message will never have a pending reassembly. */
    231   assert(msg_len > 0);
    232 
    233   if ((start >> 3) == (end >> 3)) {
    234     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
    235   } else {
    236     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
    237     for (i = (start >> 3) + 1; i < (end >> 3); i++) {
    238       frag->reassembly[i] = 0xff;
    239     }
    240     if ((end & 7) != 0) {
    241       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
    242     }
    243   }
    244 
    245   /* Check if the fragment is complete. */
    246   for (i = 0; i < (msg_len >> 3); i++) {
    247     if (frag->reassembly[i] != 0xff) {
    248       return;
    249     }
    250   }
    251   if ((msg_len & 7) != 0 &&
    252       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
    253     return;
    254   }
    255 
    256   OPENSSL_free(frag->reassembly);
    257   frag->reassembly = NULL;
    258 }
    259 
    260 /* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
    261  * SSL3_RT_CHANGE_CIPHER_SPEC) */
    262 int dtls1_do_write(SSL *s, int type, enum dtls1_use_epoch_t use_epoch) {
    263   int ret;
    264   int curr_mtu;
    265   unsigned int len, frag_off;
    266 
    267   /* AHA!  Figure out the MTU, and stick to the right size */
    268   if (s->d1->mtu < dtls1_min_mtu() &&
    269       !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
    270     long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
    271     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
    272       s->d1->mtu = (unsigned)mtu;
    273     } else {
    274       s->d1->mtu = kDefaultMTU;
    275       BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL);
    276     }
    277   }
    278 
    279   /* should have something reasonable now */
    280   assert(s->d1->mtu >= dtls1_min_mtu());
    281 
    282   if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) {
    283     assert(s->init_num ==
    284            (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);
    285   }
    286 
    287   /* Determine the maximum overhead of the current cipher. */
    288   size_t max_overhead = SSL_AEAD_CTX_max_overhead(s->aead_write_ctx);
    289 
    290   frag_off = 0;
    291   while (s->init_num) {
    292     /* Account for data in the buffering BIO; multiple records may be packed
    293      * into a single packet during the handshake.
    294      *
    295      * TODO(davidben): This is buggy; if the MTU is larger than the buffer size,
    296      * the large record will be split across two packets. Moreover, in that
    297      * case, the |dtls1_write_bytes| call may not return synchronously. This
    298      * will break on retry as the |s->init_off| and |s->init_num| adjustment
    299      * will run a second time. */
    300     curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
    301         DTLS1_RT_HEADER_LENGTH - max_overhead;
    302 
    303     if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
    304       /* Flush the buffer and continue with a fresh packet.
    305        *
    306        * TODO(davidben): If |BIO_flush| is not synchronous and requires multiple
    307        * calls to |dtls1_do_write|, |frag_off| will be wrong. */
    308       ret = BIO_flush(SSL_get_wbio(s));
    309       if (ret <= 0) {
    310         return ret;
    311       }
    312       assert(BIO_wpending(SSL_get_wbio(s)) == 0);
    313       curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH - max_overhead;
    314     }
    315 
    316     /* XDTLS: this function is too long.  split out the CCS part */
    317     if (type == SSL3_RT_HANDSHAKE) {
    318       /* If this isn't the first fragment, reserve space to prepend a new
    319        * fragment header. This will override the body of a previous fragment. */
    320       if (s->init_off != 0) {
    321         assert(s->init_off > DTLS1_HM_HEADER_LENGTH);
    322         s->init_off -= DTLS1_HM_HEADER_LENGTH;
    323         s->init_num += DTLS1_HM_HEADER_LENGTH;
    324       }
    325 
    326       if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
    327         /* To make forward progress, the MTU must, at minimum, fit the handshake
    328          * header and one byte of handshake body. */
    329         OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
    330         return -1;
    331       }
    332 
    333       if (s->init_num > curr_mtu) {
    334         len = curr_mtu;
    335       } else {
    336         len = s->init_num;
    337       }
    338       assert(len >= DTLS1_HM_HEADER_LENGTH);
    339 
    340       dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH);
    341       dtls1_write_message_header(
    342           s, (uint8_t *)&s->init_buf->data[s->init_off]);
    343     } else {
    344       assert(type == SSL3_RT_CHANGE_CIPHER_SPEC);
    345       /* ChangeCipherSpec cannot be fragmented. */
    346       if (s->init_num > curr_mtu) {
    347         OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
    348         return -1;
    349       }
    350       len = s->init_num;
    351     }
    352 
    353     ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len,
    354                             use_epoch);
    355     if (ret < 0) {
    356       return -1;
    357     }
    358 
    359     /* bad if this assert fails, only part of the handshake message got sent.
    360      * But why would this happen? */
    361     assert(len == (unsigned int)ret);
    362 
    363     if (ret == s->init_num) {
    364       if (s->msg_callback) {
    365         s->msg_callback(1, s->version, type, s->init_buf->data,
    366                         (size_t)(s->init_off + s->init_num), s,
    367                         s->msg_callback_arg);
    368       }
    369 
    370       s->init_off = 0; /* done writing this message */
    371       s->init_num = 0;
    372 
    373       return 1;
    374     }
    375     s->init_off += ret;
    376     s->init_num -= ret;
    377     frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
    378   }
    379 
    380   return 0;
    381 }
    382 
    383 /* dtls1_is_next_message_complete returns one if the next handshake message is
    384  * complete and zero otherwise. */
    385 static int dtls1_is_next_message_complete(SSL *s) {
    386   pitem *item = pqueue_peek(s->d1->buffered_messages);
    387   if (item == NULL) {
    388     return 0;
    389   }
    390 
    391   hm_fragment *frag = (hm_fragment *)item->data;
    392   assert(s->d1->handshake_read_seq <= frag->msg_header.seq);
    393 
    394   return s->d1->handshake_read_seq == frag->msg_header.seq &&
    395       frag->reassembly == NULL;
    396 }
    397 
    398 /* dtls1_discard_fragment_body discards a handshake fragment body of length
    399  * |frag_len|. It returns one on success and zero on error.
    400  *
    401  * TODO(davidben): This function will go away when ssl_read_bytes is gone from
    402  * the DTLS side. */
    403 static int dtls1_discard_fragment_body(SSL *s, size_t frag_len) {
    404   uint8_t discard[256];
    405   while (frag_len > 0) {
    406     size_t chunk = frag_len < sizeof(discard) ? frag_len : sizeof(discard);
    407     int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, discard, chunk, 0);
    408     if (ret != chunk) {
    409       return 0;
    410     }
    411     frag_len -= chunk;
    412   }
    413   return 1;
    414 }
    415 
    416 /* dtls1_get_buffered_message returns the buffered message corresponding to
    417  * |msg_hdr|. If none exists, it creates a new one and inserts it in the
    418  * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
    419  * returns NULL on failure. The caller does not take ownership of the result. */
    420 static hm_fragment *dtls1_get_buffered_message(
    421     SSL *s, const struct hm_header_st *msg_hdr) {
    422   uint8_t seq64be[8];
    423   memset(seq64be, 0, sizeof(seq64be));
    424   seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
    425   seq64be[7] = (uint8_t)msg_hdr->seq;
    426   pitem *item = pqueue_find(s->d1->buffered_messages, seq64be);
    427 
    428   hm_fragment *frag;
    429   if (item == NULL) {
    430     /* This is the first fragment from this message. */
    431     frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
    432                                  1 /* reassembly buffer needed */);
    433     if (frag == NULL) {
    434       return NULL;
    435     }
    436     memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
    437     item = pitem_new(seq64be, frag);
    438     if (item == NULL) {
    439       dtls1_hm_fragment_free(frag);
    440       return NULL;
    441     }
    442     item = pqueue_insert(s->d1->buffered_messages, item);
    443     /* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
    444      * be a duplicate. */
    445     assert(item != NULL);
    446   } else {
    447     frag = item->data;
    448     assert(frag->msg_header.seq == msg_hdr->seq);
    449     if (frag->msg_header.type != msg_hdr->type ||
    450         frag->msg_header.msg_len != msg_hdr->msg_len) {
    451       /* The new fragment must be compatible with the previous fragments from
    452        * this message. */
    453       OPENSSL_PUT_ERROR(SSL, dtls1_get_buffered_message,
    454                         SSL_R_FRAGMENT_MISMATCH);
    455       ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
    456       return NULL;
    457     }
    458   }
    459   return frag;
    460 }
    461 
    462 /* dtls1_max_handshake_message_len returns the maximum number of bytes
    463  * permitted in a DTLS handshake message for |s|. The minimum is 16KB, but may
    464  * be greater if the maximum certificate list size requires it. */
    465 static size_t dtls1_max_handshake_message_len(const SSL *s) {
    466   size_t max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;
    467   if (max_len < s->max_cert_list) {
    468     return s->max_cert_list;
    469   }
    470   return max_len;
    471 }
    472 
    473 /* dtls1_process_fragment reads a handshake fragment and processes it. It
    474  * returns one if a fragment was successfully processed and 0 or -1 on error. */
    475 static int dtls1_process_fragment(SSL *s) {
    476   /* Read handshake message header.
    477    *
    478    * TODO(davidben): ssl_read_bytes allows splitting the fragment header and
    479    * body across two records. Change this interface to consume the fragment in
    480    * one pass. */
    481   uint8_t header[DTLS1_HM_HEADER_LENGTH];
    482   int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, header,
    483                              DTLS1_HM_HEADER_LENGTH, 0);
    484   if (ret <= 0) {
    485     return ret;
    486   }
    487   if (ret != DTLS1_HM_HEADER_LENGTH) {
    488     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
    489     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
    490     return -1;
    491   }
    492 
    493   /* Parse the message fragment header. */
    494   struct hm_header_st msg_hdr;
    495   dtls1_get_message_header(header, &msg_hdr);
    496 
    497   const size_t frag_off = msg_hdr.frag_off;
    498   const size_t frag_len = msg_hdr.frag_len;
    499   const size_t msg_len = msg_hdr.msg_len;
    500   if (frag_off > msg_len || frag_off + frag_len < frag_off ||
    501       frag_off + frag_len > msg_len ||
    502       msg_len > dtls1_max_handshake_message_len(s)) {
    503     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment,
    504                       SSL_R_EXCESSIVE_MESSAGE_SIZE);
    505     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
    506     return -1;
    507   }
    508 
    509   if (msg_hdr.seq < s->d1->handshake_read_seq ||
    510       msg_hdr.seq > (unsigned)s->d1->handshake_read_seq +
    511                     kHandshakeBufferSize) {
    512     /* Ignore fragments from the past, or ones too far in the future. */
    513     if (!dtls1_discard_fragment_body(s, frag_len)) {
    514       return -1;
    515     }
    516     return 1;
    517   }
    518 
    519   hm_fragment *frag = dtls1_get_buffered_message(s, &msg_hdr);
    520   if (frag == NULL) {
    521     return -1;
    522   }
    523   assert(frag->msg_header.msg_len == msg_len);
    524 
    525   if (frag->reassembly == NULL) {
    526     /* The message is already assembled. */
    527     if (!dtls1_discard_fragment_body(s, frag_len)) {
    528       return -1;
    529     }
    530     return 1;
    531   }
    532   assert(msg_len > 0);
    533 
    534   /* Read the body of the fragment. */
    535   ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, frag->fragment + frag_off,
    536                          frag_len, 0);
    537   if (ret != frag_len) {
    538     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
    539     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
    540     return -1;
    541   }
    542   dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
    543 
    544   return 1;
    545 }
    546 
    547 /* dtls1_get_message reads a handshake message of message type |msg_type| (any
    548  * if |msg_type| == -1), maximum acceptable body length |max|. Read an entire
    549  * handshake message. Handshake messages arrive in fragments. */
    550 long dtls1_get_message(SSL *s, int st1, int stn, int msg_type, long max,
    551                        enum ssl_hash_message_t hash_message, int *ok) {
    552   pitem *item = NULL;
    553   hm_fragment *frag = NULL;
    554   int al;
    555 
    556   /* s3->tmp is used to store messages that are unexpected, caused
    557    * by the absence of an optional handshake message */
    558   if (s->s3->tmp.reuse_message) {
    559     /* A ssl_dont_hash_message call cannot be combined with reuse_message; the
    560      * ssl_dont_hash_message would have to have been applied to the previous
    561      * call. */
    562     assert(hash_message == ssl_hash_message);
    563     s->s3->tmp.reuse_message = 0;
    564     if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
    565       al = SSL_AD_UNEXPECTED_MESSAGE;
    566       OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
    567       goto f_err;
    568     }
    569     *ok = 1;
    570     s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
    571     s->init_num = (int)s->s3->tmp.message_size;
    572     return s->init_num;
    573   }
    574 
    575   /* Process fragments until one is found. */
    576   while (!dtls1_is_next_message_complete(s)) {
    577     int ret = dtls1_process_fragment(s);
    578     if (ret <= 0) {
    579       *ok = 0;
    580       return ret;
    581     }
    582   }
    583 
    584   /* Read out the next complete handshake message. */
    585   item = pqueue_pop(s->d1->buffered_messages);
    586   assert(item != NULL);
    587   frag = (hm_fragment *)item->data;
    588   assert(s->d1->handshake_read_seq == frag->msg_header.seq);
    589   assert(frag->reassembly == NULL);
    590 
    591   if (frag->msg_header.msg_len > (size_t)max) {
    592     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_EXCESSIVE_MESSAGE_SIZE);
    593     goto err;
    594   }
    595 
    596   CBB cbb;
    597   if (!BUF_MEM_grow(s->init_buf,
    598                     (size_t)frag->msg_header.msg_len +
    599                     DTLS1_HM_HEADER_LENGTH) ||
    600       !CBB_init_fixed(&cbb, (uint8_t *)s->init_buf->data, s->init_buf->max)) {
    601     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_MALLOC_FAILURE);
    602     goto err;
    603   }
    604 
    605   /* Reconstruct the assembled message. */
    606   size_t len;
    607   if (!CBB_add_u8(&cbb, frag->msg_header.type) ||
    608       !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
    609       !CBB_add_u16(&cbb, frag->msg_header.seq) ||
    610       !CBB_add_u24(&cbb, 0 /* frag_off */) ||
    611       !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
    612       !CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
    613       !CBB_finish(&cbb, NULL, &len)) {
    614     CBB_cleanup(&cbb);
    615     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_INTERNAL_ERROR);
    616     goto err;
    617   }
    618   assert(len == (size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
    619 
    620   s->d1->handshake_read_seq++;
    621 
    622   /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
    623    * |ssl_get_message| API. */
    624   s->s3->tmp.message_type = frag->msg_header.type;
    625   s->s3->tmp.message_size = frag->msg_header.msg_len;
    626   s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
    627   s->init_num = frag->msg_header.msg_len;
    628 
    629   if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
    630     al = SSL_AD_UNEXPECTED_MESSAGE;
    631     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
    632     goto f_err;
    633   }
    634   if (hash_message == ssl_hash_message && !ssl3_hash_current_message(s)) {
    635     goto err;
    636   }
    637   if (s->msg_callback) {
    638     s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
    639                     s->init_num + DTLS1_HM_HEADER_LENGTH, s,
    640                     s->msg_callback_arg);
    641   }
    642 
    643   pitem_free(item);
    644   dtls1_hm_fragment_free(frag);
    645 
    646   s->state = stn;
    647   *ok = 1;
    648   return s->init_num;
    649 
    650 f_err:
    651   ssl3_send_alert(s, SSL3_AL_FATAL, al);
    652 err:
    653   pitem_free(item);
    654   dtls1_hm_fragment_free(frag);
    655   *ok = 0;
    656   return -1;
    657 }
    658 
    659 /* for these 2 messages, we need to
    660  * ssl->enc_read_ctx			re-init
    661  * ssl->s3->read_sequence		zero
    662  * ssl->s3->read_mac_secret		re-init
    663  * ssl->session->read_sym_enc		assign
    664  * ssl->session->read_compression	assign
    665  * ssl->session->read_hash		assign */
    666 int dtls1_send_change_cipher_spec(SSL *s, int a, int b) {
    667   uint8_t *p;
    668 
    669   if (s->state == a) {
    670     p = (uint8_t *)s->init_buf->data;
    671     *p++ = SSL3_MT_CCS;
    672     s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
    673     s->init_num = DTLS1_CCS_HEADER_LENGTH;
    674 
    675     s->init_off = 0;
    676 
    677     dtls1_set_message_header(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0,
    678                              0);
    679 
    680     /* buffer the message to handle re-xmits */
    681     dtls1_buffer_message(s, 1);
    682 
    683     s->state = b;
    684   }
    685 
    686   /* SSL3_ST_CW_CHANGE_B */
    687   return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC, dtls1_use_current_epoch);
    688 }
    689 
    690 int dtls1_read_failed(SSL *s, int code) {
    691   if (code > 0) {
    692     assert(0);
    693     return 1;
    694   }
    695 
    696   if (!dtls1_is_timer_expired(s)) {
    697     /* not a timeout, none of our business, let higher layers handle this. In
    698      * fact, it's probably an error */
    699     return code;
    700   }
    701 
    702   if (!SSL_in_init(s)) {
    703     /* done, no need to send a retransmit */
    704     BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
    705     return code;
    706   }
    707 
    708   return DTLSv1_handle_timeout(s);
    709 }
    710 
    711 int dtls1_get_queue_priority(unsigned short seq, int is_ccs) {
    712   /* The index of the retransmission queue actually is the message sequence
    713    * number, since the queue only contains messages of a single handshake.
    714    * However, the ChangeCipherSpec has no message sequence number and so using
    715    * only the sequence will result in the CCS and Finished having the same
    716    * index. To prevent this, the sequence number is multiplied by 2. In case of
    717    * a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
    718    * maintains the order of the index (important for priority queues) and fits
    719    * in the unsigned short variable. */
    720   return seq * 2 - is_ccs;
    721 }
    722 
    723 static int dtls1_retransmit_message(SSL *s, hm_fragment *frag) {
    724   int ret;
    725   /* XDTLS: for now assuming that read/writes are blocking */
    726   unsigned long header_length;
    727 
    728   /* assert(s->init_num == 0);
    729      assert(s->init_off == 0); */
    730 
    731   if (frag->msg_header.is_ccs) {
    732     header_length = DTLS1_CCS_HEADER_LENGTH;
    733   } else {
    734     header_length = DTLS1_HM_HEADER_LENGTH;
    735   }
    736 
    737   memcpy(s->init_buf->data, frag->fragment,
    738          frag->msg_header.msg_len + header_length);
    739   s->init_num = frag->msg_header.msg_len + header_length;
    740 
    741   dtls1_set_message_header(s, frag->msg_header.type,
    742                            frag->msg_header.msg_len, frag->msg_header.seq,
    743                            0, frag->msg_header.frag_len);
    744 
    745   /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
    746    * (negotiated cipher) exist. */
    747   assert(s->d1->w_epoch == 0 || s->d1->w_epoch == 1);
    748   assert(frag->msg_header.epoch <= s->d1->w_epoch);
    749   enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
    750   if (s->d1->w_epoch == 1 && frag->msg_header.epoch == 0) {
    751     use_epoch = dtls1_use_previous_epoch;
    752   }
    753 
    754   ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC
    755                                                   : SSL3_RT_HANDSHAKE,
    756                        use_epoch);
    757 
    758   (void)BIO_flush(SSL_get_wbio(s));
    759   return ret;
    760 }
    761 
    762 
    763 int dtls1_retransmit_buffered_messages(SSL *s) {
    764   pqueue sent = s->d1->sent_messages;
    765   piterator iter = pqueue_iterator(sent);
    766   pitem *item;
    767 
    768   for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
    769     hm_fragment *frag = (hm_fragment *)item->data;
    770     if (dtls1_retransmit_message(s, frag) <= 0) {
    771       return -1;
    772     }
    773   }
    774 
    775   return 1;
    776 }
    777 
    778 int dtls1_buffer_message(SSL *s, int is_ccs) {
    779   pitem *item;
    780   hm_fragment *frag;
    781   uint8_t seq64be[8];
    782 
    783   /* this function is called immediately after a message has
    784    * been serialized */
    785   assert(s->init_off == 0);
    786 
    787   frag = dtls1_hm_fragment_new(s->init_num, 0);
    788   if (!frag) {
    789     return 0;
    790   }
    791 
    792   memcpy(frag->fragment, s->init_buf->data, s->init_num);
    793 
    794   if (is_ccs) {
    795     assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH ==
    796            (unsigned int)s->init_num);
    797   } else {
    798     assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
    799            (unsigned int)s->init_num);
    800   }
    801 
    802   frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
    803   frag->msg_header.seq = s->d1->w_msg_hdr.seq;
    804   frag->msg_header.type = s->d1->w_msg_hdr.type;
    805   frag->msg_header.frag_off = 0;
    806   frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
    807   frag->msg_header.is_ccs = is_ccs;
    808   frag->msg_header.epoch = s->d1->w_epoch;
    809 
    810   memset(seq64be, 0, sizeof(seq64be));
    811   seq64be[6] = (uint8_t)(
    812       dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >>
    813       8);
    814   seq64be[7] = (uint8_t)(
    815       dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs));
    816 
    817   item = pitem_new(seq64be, frag);
    818   if (item == NULL) {
    819     dtls1_hm_fragment_free(frag);
    820     return 0;
    821   }
    822 
    823   pqueue_insert(s->d1->sent_messages, item);
    824   return 1;
    825 }
    826 
    827 /* call this function when the buffered messages are no longer needed */
    828 void dtls1_clear_record_buffer(SSL *s) {
    829   pitem *item;
    830 
    831   for (item = pqueue_pop(s->d1->sent_messages); item != NULL;
    832        item = pqueue_pop(s->d1->sent_messages)) {
    833     dtls1_hm_fragment_free((hm_fragment *)item->data);
    834     pitem_free(item);
    835   }
    836 }
    837 
    838 /* don't actually do the writing, wait till the MTU has been retrieved */
    839 void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
    840                               unsigned short seq_num, unsigned long frag_off,
    841                               unsigned long frag_len) {
    842   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
    843 
    844   msg_hdr->type = mt;
    845   msg_hdr->msg_len = len;
    846   msg_hdr->seq = seq_num;
    847   msg_hdr->frag_off = frag_off;
    848   msg_hdr->frag_len = frag_len;
    849 }
    850 
    851 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
    852                                      unsigned long frag_len) {
    853   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
    854 
    855   msg_hdr->frag_off = frag_off;
    856   msg_hdr->frag_len = frag_len;
    857 }
    858 
    859 static uint8_t *dtls1_write_message_header(SSL *s, uint8_t *p) {
    860   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
    861 
    862   *p++ = msg_hdr->type;
    863   l2n3(msg_hdr->msg_len, p);
    864 
    865   s2n(msg_hdr->seq, p);
    866   l2n3(msg_hdr->frag_off, p);
    867   l2n3(msg_hdr->frag_len, p);
    868 
    869   return p;
    870 }
    871 
    872 unsigned int dtls1_min_mtu(void) {
    873   return kMinMTU;
    874 }
    875 
    876 void dtls1_get_message_header(uint8_t *data,
    877                               struct hm_header_st *msg_hdr) {
    878   memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
    879   msg_hdr->type = *(data++);
    880   n2l3(data, msg_hdr->msg_len);
    881 
    882   n2s(data, msg_hdr->seq);
    883   n2l3(data, msg_hdr->frag_off);
    884   n2l3(data, msg_hdr->frag_len);
    885 }
    886